blob: 907ea6d309c960e1022fb7dc650b0f8fec438be9 [file] [log] [blame]
//! The Rust AST Visitor. Extracts useful information and massages it into a form
//! usable for `clean`.
use rustc_data_structures::fx::{FxHashSet, FxIndexMap};
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId, LocalDefIdSet};
use rustc_hir::intravisit::{walk_body, walk_item, Visitor};
use rustc_hir::{Node, CRATE_HIR_ID};
use rustc_middle::hir::nested_filter;
use rustc_middle::ty::TyCtxt;
use rustc_span::def_id::{CRATE_DEF_ID, LOCAL_CRATE};
use rustc_span::hygiene::MacroKind;
use rustc_span::symbol::{kw, sym, Symbol};
use rustc_span::Span;
use std::mem;
use crate::clean::utils::{inherits_doc_hidden, should_ignore_res};
use crate::clean::{cfg::Cfg, reexport_chain, AttributesExt, NestedAttributesExt};
use crate::core;
/// This module is used to store stuff from Rust's AST in a more convenient
/// manner (and with prettier names) before cleaning.
#[derive(Debug)]
pub(crate) struct Module<'hir> {
pub(crate) name: Symbol,
pub(crate) where_inner: Span,
pub(crate) mods: Vec<Module<'hir>>,
pub(crate) def_id: LocalDefId,
pub(crate) renamed: Option<Symbol>,
pub(crate) import_id: Option<LocalDefId>,
/// The key is the item `ItemId` and the value is: (item, renamed, import_id).
/// We use `FxIndexMap` to keep the insert order.
pub(crate) items: FxIndexMap<
(LocalDefId, Option<Symbol>),
(&'hir hir::Item<'hir>, Option<Symbol>, Option<LocalDefId>),
>,
/// Same as for `items`.
pub(crate) inlined_foreigns: FxIndexMap<(DefId, Option<Symbol>), (Res, LocalDefId)>,
pub(crate) foreigns: Vec<(&'hir hir::ForeignItem<'hir>, Option<Symbol>)>,
}
impl Module<'_> {
pub(crate) fn new(
name: Symbol,
def_id: LocalDefId,
where_inner: Span,
renamed: Option<Symbol>,
import_id: Option<LocalDefId>,
) -> Self {
Module {
name,
def_id,
where_inner,
renamed,
import_id,
mods: Vec::new(),
items: FxIndexMap::default(),
inlined_foreigns: FxIndexMap::default(),
foreigns: Vec::new(),
}
}
pub(crate) fn where_outer(&self, tcx: TyCtxt<'_>) -> Span {
tcx.def_span(self.def_id)
}
}
// FIXME: Should this be replaced with tcx.def_path_str?
fn def_id_to_path(tcx: TyCtxt<'_>, did: DefId) -> Vec<Symbol> {
let crate_name = tcx.crate_name(did.krate);
let relative = tcx.def_path(did).data.into_iter().filter_map(|elem| elem.data.get_opt_name());
std::iter::once(crate_name).chain(relative).collect()
}
pub(crate) struct RustdocVisitor<'a, 'tcx> {
cx: &'a mut core::DocContext<'tcx>,
view_item_stack: LocalDefIdSet,
inlining: bool,
/// Are the current module and all of its parents public?
inside_public_path: bool,
exact_paths: DefIdMap<Vec<Symbol>>,
modules: Vec<Module<'tcx>>,
is_importable_from_parent: bool,
inside_body: bool,
}
impl<'a, 'tcx> RustdocVisitor<'a, 'tcx> {
pub(crate) fn new(cx: &'a mut core::DocContext<'tcx>) -> RustdocVisitor<'a, 'tcx> {
// If the root is re-exported, terminate all recursion.
let mut stack = LocalDefIdSet::default();
stack.insert(CRATE_DEF_ID);
let om = Module::new(
cx.tcx.crate_name(LOCAL_CRATE),
CRATE_DEF_ID,
cx.tcx.hir().root_module().spans.inner_span,
None,
None,
);
RustdocVisitor {
cx,
view_item_stack: stack,
inlining: false,
inside_public_path: true,
exact_paths: Default::default(),
modules: vec![om],
is_importable_from_parent: true,
inside_body: false,
}
}
fn store_path(&mut self, did: DefId) {
let tcx = self.cx.tcx;
self.exact_paths.entry(did).or_insert_with(|| def_id_to_path(tcx, did));
}
pub(crate) fn visit(mut self) -> Module<'tcx> {
let root_module = self.cx.tcx.hir().root_module();
self.visit_mod_contents(CRATE_DEF_ID, root_module);
let mut top_level_module = self.modules.pop().unwrap();
// `#[macro_export] macro_rules!` items are reexported at the top level of the
// crate, regardless of where they're defined. We want to document the
// top level re-export of the macro, not its original definition, since
// the re-export defines the path that a user will actually see. Accordingly,
// we add the re-export as an item here, and then skip over the original
// definition in `visit_item()` below.
//
// We also skip `#[macro_export] macro_rules!` that have already been inserted,
// it can happen if within the same module a `#[macro_export] macro_rules!`
// is declared but also a reexport of itself producing two exports of the same
// macro in the same module.
let mut inserted = FxHashSet::default();
for child in self.cx.tcx.module_children_local(CRATE_DEF_ID) {
if !child.reexport_chain.is_empty()
&& let Res::Def(DefKind::Macro(_), def_id) = child.res
&& let Some(local_def_id) = def_id.as_local()
&& self.cx.tcx.has_attr(def_id, sym::macro_export)
&& inserted.insert(def_id)
{
let item = self.cx.tcx.hir().expect_item(local_def_id);
top_level_module
.items
.insert((local_def_id, Some(item.ident.name)), (item, None, None));
}
}
self.cx.cache.hidden_cfg = self
.cx
.tcx
.hir()
.attrs(CRATE_HIR_ID)
.iter()
.filter(|attr| attr.has_name(sym::doc))
.flat_map(|attr| attr.meta_item_list().into_iter().flatten())
.filter(|attr| attr.has_name(sym::cfg_hide))
.flat_map(|attr| {
attr.meta_item_list()
.unwrap_or(&[])
.iter()
.filter_map(|attr| {
Cfg::parse(attr.meta_item()?)
.map_err(|e| self.cx.sess().dcx().span_err(e.span, e.msg))
.ok()
})
.collect::<Vec<_>>()
})
.chain([
Cfg::Cfg(sym::test, None),
Cfg::Cfg(sym::doc, None),
Cfg::Cfg(sym::doctest, None),
])
.collect();
self.cx.cache.exact_paths = self.exact_paths;
top_level_module
}
/// This method will go through the given module items in two passes:
/// 1. The items which are not glob imports/reexports.
/// 2. The glob imports/reexports.
fn visit_mod_contents(&mut self, def_id: LocalDefId, m: &'tcx hir::Mod<'tcx>) {
debug!("Going through module {m:?}");
// Keep track of if there were any private modules in the path.
let orig_inside_public_path = self.inside_public_path;
self.inside_public_path &= self.cx.tcx.local_visibility(def_id).is_public();
// Reimplementation of `walk_mod` because we need to do it in two passes (explanations in
// the second loop):
for &i in m.item_ids {
let item = self.cx.tcx.hir().item(i);
if !matches!(item.kind, hir::ItemKind::Use(_, hir::UseKind::Glob)) {
self.visit_item(item);
}
}
for &i in m.item_ids {
let item = self.cx.tcx.hir().item(i);
// To match the way import precedence works, visit glob imports last.
// Later passes in rustdoc will de-duplicate by name and kind, so if glob-
// imported items appear last, then they'll be the ones that get discarded.
if matches!(item.kind, hir::ItemKind::Use(_, hir::UseKind::Glob)) {
self.visit_item(item);
}
}
self.inside_public_path = orig_inside_public_path;
debug!("Leaving module {m:?}");
}
/// Tries to resolve the target of a `pub use` statement and inlines the
/// target if it is defined locally and would not be documented otherwise,
/// or when it is specifically requested with `please_inline`.
/// (the latter is the case when the import is marked `doc(inline)`)
///
/// Cross-crate inlining occurs later on during crate cleaning
/// and follows different rules.
///
/// Returns `true` if the target has been inlined.
fn maybe_inline_local(
&mut self,
def_id: LocalDefId,
res: Res,
renamed: Option<Symbol>,
glob: bool,
please_inline: bool,
) -> bool {
debug!("maybe_inline_local (renamed: {renamed:?}) res: {res:?}");
if renamed == Some(kw::Underscore) {
// We never inline `_` reexports.
return false;
}
if self.cx.output_format.is_json() {
return false;
}
let tcx = self.cx.tcx;
let Some(ori_res_did) = res.opt_def_id() else {
return false;
};
let document_hidden = self.cx.render_options.document_hidden;
let use_attrs = tcx.hir().attrs(tcx.local_def_id_to_hir_id(def_id));
// Don't inline `doc(hidden)` imports so they can be stripped at a later stage.
let is_no_inline = use_attrs.lists(sym::doc).has_word(sym::no_inline)
|| (document_hidden && use_attrs.lists(sym::doc).has_word(sym::hidden));
if is_no_inline {
return false;
}
let is_hidden = !document_hidden && tcx.is_doc_hidden(ori_res_did);
let Some(res_did) = ori_res_did.as_local() else {
// For cross-crate impl inlining we need to know whether items are
// reachable in documentation -- a previously unreachable item can be
// made reachable by cross-crate inlining which we're checking here.
// (this is done here because we need to know this upfront).
crate::visit_lib::lib_embargo_visit_item(self.cx, ori_res_did);
if is_hidden || glob {
return false;
}
// We store inlined foreign items otherwise, it'd mean that the `use` item would be kept
// around. It's not a problem unless this `use` imports both a local AND a foreign item.
// If a local item is inlined, its `use` is not supposed to still be around in `clean`,
// which would make appear the `use` in the generated documentation like the local item
// was not inlined even though it actually was.
self.modules
.last_mut()
.unwrap()
.inlined_foreigns
.insert((ori_res_did, renamed), (res, def_id));
return true;
};
let is_private = !self.cx.cache.effective_visibilities.is_directly_public(tcx, ori_res_did);
let item = tcx.hir_node_by_def_id(res_did);
if !please_inline {
let inherits_hidden = !document_hidden && inherits_doc_hidden(tcx, res_did, None);
// Only inline if requested or if the item would otherwise be stripped.
if (!is_private && !inherits_hidden) || (
is_hidden &&
// If it's a doc hidden module, we need to keep it in case some of its inner items
// are re-exported.
!matches!(item, Node::Item(&hir::Item { kind: hir::ItemKind::Mod(_), .. }))
) ||
// The imported item is public and not `doc(hidden)` so no need to inline it.
self.reexport_public_and_not_hidden(def_id, res_did)
{
return false;
}
}
let is_bang_macro = matches!(
item,
Node::Item(&hir::Item { kind: hir::ItemKind::Macro(_, MacroKind::Bang), .. })
);
if !self.view_item_stack.insert(res_did) && !is_bang_macro {
return false;
}
let inlined = match item {
// Bang macros are handled a bit on their because of how they are handled by the
// compiler. If they have `#[doc(hidden)]` and the re-export doesn't have
// `#[doc(inline)]`, then we don't inline it.
Node::Item(_) if is_bang_macro && !please_inline && renamed.is_some() && is_hidden => {
return false;
}
Node::Item(&hir::Item { kind: hir::ItemKind::Mod(ref m), .. }) if glob => {
let prev = mem::replace(&mut self.inlining, true);
for &i in m.item_ids {
let i = tcx.hir().item(i);
self.visit_item_inner(i, None, Some(def_id));
}
self.inlining = prev;
true
}
Node::Item(it) if !glob => {
let prev = mem::replace(&mut self.inlining, true);
self.visit_item_inner(it, renamed, Some(def_id));
self.inlining = prev;
true
}
Node::ForeignItem(it) if !glob => {
let prev = mem::replace(&mut self.inlining, true);
self.visit_foreign_item_inner(it, renamed);
self.inlining = prev;
true
}
_ => false,
};
self.view_item_stack.remove(&res_did);
if inlined {
self.cx.cache.inlined_items.insert(ori_res_did);
}
inlined
}
/// Returns `true` if the item is visible, meaning it's not `#[doc(hidden)]` or private.
///
/// This function takes into account the entire re-export `use` chain, so it needs the
/// ID of the "leaf" `use` and the ID of the "root" item.
fn reexport_public_and_not_hidden(
&self,
import_def_id: LocalDefId,
target_def_id: LocalDefId,
) -> bool {
if self.cx.render_options.document_hidden {
return true;
}
let tcx = self.cx.tcx;
let item_def_id = reexport_chain(tcx, import_def_id, target_def_id.to_def_id())
.iter()
.flat_map(|reexport| reexport.id())
.map(|id| id.expect_local())
.nth(1)
.unwrap_or(target_def_id);
item_def_id != import_def_id
&& self.cx.cache.effective_visibilities.is_directly_public(tcx, item_def_id.to_def_id())
&& !tcx.is_doc_hidden(item_def_id)
&& !inherits_doc_hidden(tcx, item_def_id, None)
}
#[inline]
fn add_to_current_mod(
&mut self,
item: &'tcx hir::Item<'_>,
renamed: Option<Symbol>,
parent_id: Option<LocalDefId>,
) {
if self.is_importable_from_parent
// If we're inside an item, only impl blocks and `macro_rules!` with the `macro_export`
// attribute can still be visible.
|| match item.kind {
hir::ItemKind::Impl(..) => true,
hir::ItemKind::Macro(_, MacroKind::Bang) => {
self.cx.tcx.has_attr(item.owner_id.def_id, sym::macro_export)
}
_ => false,
}
{
self.modules
.last_mut()
.unwrap()
.items
.insert((item.owner_id.def_id, renamed), (item, renamed, parent_id));
}
}
fn visit_item_inner(
&mut self,
item: &'tcx hir::Item<'_>,
renamed: Option<Symbol>,
import_id: Option<LocalDefId>,
) {
debug!("visiting item {item:?}");
if self.inside_body {
// Only impls can be "seen" outside a body. For example:
//
// ```
// struct Bar;
//
// fn foo() {
// impl Bar { fn bar() {} }
// }
// Bar::bar();
// ```
if let hir::ItemKind::Impl(impl_) = item.kind &&
// Don't duplicate impls when inlining or if it's implementing a trait, we'll pick
// them up regardless of where they're located.
impl_.of_trait.is_none()
{
self.add_to_current_mod(item, None, None);
}
return;
}
let name = renamed.unwrap_or(item.ident.name);
let tcx = self.cx.tcx;
let def_id = item.owner_id.to_def_id();
let is_pub = tcx.visibility(def_id).is_public();
if is_pub {
self.store_path(item.owner_id.to_def_id());
}
match item.kind {
hir::ItemKind::ForeignMod { items, .. } => {
for item in items {
let item = tcx.hir().foreign_item(item.id);
self.visit_foreign_item_inner(item, None);
}
}
// If we're inlining, skip private items.
_ if self.inlining && !is_pub => {}
hir::ItemKind::GlobalAsm(..) => {}
hir::ItemKind::Use(_, hir::UseKind::ListStem) => {}
hir::ItemKind::Use(path, kind) => {
for &res in &path.res {
// Struct and variant constructors and proc macro stubs always show up alongside
// their definitions, we've already processed them so just discard these.
if should_ignore_res(res) {
continue;
}
let attrs = tcx.hir().attrs(tcx.local_def_id_to_hir_id(item.owner_id.def_id));
// If there was a private module in the current path then don't bother inlining
// anything as it will probably be stripped anyway.
if is_pub && self.inside_public_path {
let please_inline = attrs.iter().any(|item| match item.meta_item_list() {
Some(ref list) if item.has_name(sym::doc) => {
list.iter().any(|i| i.has_name(sym::inline))
}
_ => false,
});
let is_glob = kind == hir::UseKind::Glob;
let ident = if is_glob { None } else { Some(name) };
if self.maybe_inline_local(
item.owner_id.def_id,
res,
ident,
is_glob,
please_inline,
) {
debug!("Inlining {:?}", item.owner_id.def_id);
continue;
}
}
self.add_to_current_mod(item, renamed, import_id);
}
}
hir::ItemKind::Macro(ref macro_def, _) => {
// `#[macro_export] macro_rules!` items are handled separately in `visit()`,
// above, since they need to be documented at the module top level. Accordingly,
// we only want to handle macros if one of three conditions holds:
//
// 1. This macro was defined by `macro`, and thus isn't covered by the case
// above.
// 2. This macro isn't marked with `#[macro_export]`, and thus isn't covered
// by the case above.
// 3. We're inlining, since a reexport where inlining has been requested
// should be inlined even if it is also documented at the top level.
let def_id = item.owner_id.to_def_id();
let is_macro_2_0 = !macro_def.macro_rules;
let nonexported = !tcx.has_attr(def_id, sym::macro_export);
if is_macro_2_0 || nonexported || self.inlining {
self.add_to_current_mod(item, renamed, import_id);
}
}
hir::ItemKind::Mod(ref m) => {
self.enter_mod(item.owner_id.def_id, m, name, renamed, import_id);
}
hir::ItemKind::Fn(..)
| hir::ItemKind::ExternCrate(..)
| hir::ItemKind::Enum(..)
| hir::ItemKind::Struct(..)
| hir::ItemKind::Union(..)
| hir::ItemKind::TyAlias(..)
| hir::ItemKind::OpaqueTy(hir::OpaqueTy {
origin: hir::OpaqueTyOrigin::TyAlias { .. },
..
})
| hir::ItemKind::Static(..)
| hir::ItemKind::Trait(..)
| hir::ItemKind::TraitAlias(..) => {
self.add_to_current_mod(item, renamed, import_id);
}
hir::ItemKind::OpaqueTy(hir::OpaqueTy {
origin: hir::OpaqueTyOrigin::AsyncFn(_) | hir::OpaqueTyOrigin::FnReturn(_),
..
}) => {
// return-position impl traits are never nameable, and should never be documented.
}
hir::ItemKind::Const(..) => {
// Underscore constants do not correspond to a nameable item and
// so are never useful in documentation.
if name != kw::Underscore {
self.add_to_current_mod(item, renamed, import_id);
}
}
hir::ItemKind::Impl(impl_) => {
// Don't duplicate impls when inlining or if it's implementing a trait, we'll pick
// them up regardless of where they're located.
if !self.inlining && impl_.of_trait.is_none() {
self.add_to_current_mod(item, None, None);
}
}
}
}
fn visit_foreign_item_inner(
&mut self,
item: &'tcx hir::ForeignItem<'_>,
renamed: Option<Symbol>,
) {
// If inlining we only want to include public functions.
if !self.inlining || self.cx.tcx.visibility(item.owner_id).is_public() {
self.modules.last_mut().unwrap().foreigns.push((item, renamed));
}
}
/// This method will create a new module and push it onto the "modules stack" then call
/// `visit_mod_contents`. Once done, it'll remove it from the "modules stack" and instead
/// add into the list of modules of the current module.
fn enter_mod(
&mut self,
id: LocalDefId,
m: &'tcx hir::Mod<'tcx>,
name: Symbol,
renamed: Option<Symbol>,
import_id: Option<LocalDefId>,
) {
self.modules.push(Module::new(name, id, m.spans.inner_span, renamed, import_id));
self.visit_mod_contents(id, m);
let last = self.modules.pop().unwrap();
self.modules.last_mut().unwrap().mods.push(last);
}
}
// We need to implement this visitor so it'll go everywhere and retrieve items we're interested in
// such as impl blocks in const blocks.
impl<'a, 'tcx> Visitor<'tcx> for RustdocVisitor<'a, 'tcx> {
type NestedFilter = nested_filter::All;
fn nested_visit_map(&mut self) -> Self::Map {
self.cx.tcx.hir()
}
fn visit_item(&mut self, i: &'tcx hir::Item<'tcx>) {
self.visit_item_inner(i, None, None);
let new_value = self.is_importable_from_parent
&& matches!(
i.kind,
hir::ItemKind::Mod(..)
| hir::ItemKind::ForeignMod { .. }
| hir::ItemKind::Impl(..)
| hir::ItemKind::Trait(..)
);
let prev = mem::replace(&mut self.is_importable_from_parent, new_value);
walk_item(self, i);
self.is_importable_from_parent = prev;
}
fn visit_mod(&mut self, _: &hir::Mod<'tcx>, _: Span, _: hir::HirId) {
// Handled in `visit_item_inner`
}
fn visit_use(&mut self, _: &hir::UsePath<'tcx>, _: hir::HirId) {
// Handled in `visit_item_inner`
}
fn visit_path(&mut self, _: &hir::Path<'tcx>, _: hir::HirId) {
// Handled in `visit_item_inner`
}
fn visit_label(&mut self, _: &rustc_ast::Label) {
// Unneeded.
}
fn visit_infer(&mut self, _: &hir::InferArg) {
// Unneeded.
}
fn visit_lifetime(&mut self, _: &hir::Lifetime) {
// Unneeded.
}
fn visit_body(&mut self, b: &'tcx hir::Body<'tcx>) {
let prev = mem::replace(&mut self.inside_body, true);
walk_body(self, b);
self.inside_body = prev;
}
}