blob: b3394eb330bb8cc420be24d15bc39a3ee6c27ede [file] [log] [blame]
// WARNING: This file is machine generated by fidlgen.
// fidl_experiment = output_index_json
#![warn(clippy::all)]
#![allow(unused_parens, unused_mut, unused_imports, nonstandard_style)]
use {
bitflags::bitflags,
fidl::{
client::QueryResponseFut,
endpoints::{ControlHandle as _, Responder as _},
},
fuchsia_zircon_status as zx_status,
futures::future::{self, MaybeDone, TryFutureExt},
};
#[cfg(target_os = "fuchsia")]
use fuchsia_zircon as zx;
bitflags! {
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct BitsMember: u32 {
const BIT_ONE = 1;
const BIT_TWO = 2;
}
}
impl BitsMember {
#[inline(always)]
pub fn from_bits_allow_unknown(bits: u32) -> Self {
Self::from_bits_retain(bits)
}
#[inline(always)]
pub fn has_unknown_bits(&self) -> bool {
self.get_unknown_bits() != 0
}
#[inline(always)]
pub fn get_unknown_bits(&self) -> u32 {
self.bits() & !Self::all().bits()
}
}
bitflags! {
#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Flags: u16 {
const INLINE = 1;
}
}
impl Flags {
#[inline(always)]
pub fn from_bits_allow_unknown(bits: u16) -> Self {
Self::from_bits_retain(bits)
}
#[inline(always)]
pub fn has_unknown_bits(&self) -> bool {
self.get_unknown_bits() != 0
}
#[inline(always)]
pub fn get_unknown_bits(&self) -> u16 {
self.bits() & !Self::all().bits()
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub enum Op {
Add,
Mul,
Div,
#[doc(hidden)]
__SourceBreaking {
unknown_ordinal: u32,
},
}
/// Pattern that matches an unknown `Op` member.
#[macro_export]
macro_rules! OpUnknown {
() => {
_
};
}
impl Op {
#[inline]
pub fn from_primitive(prim: u32) -> Option<Self> {
match prim {
1 => Some(Self::Add),
2 => Some(Self::Mul),
3 => Some(Self::Div),
_ => None,
}
}
#[inline]
pub fn from_primitive_allow_unknown(prim: u32) -> Self {
match prim {
1 => Self::Add,
2 => Self::Mul,
3 => Self::Div,
unknown_ordinal => Self::__SourceBreaking { unknown_ordinal },
}
}
#[inline]
pub fn unknown() -> Self {
Self::__SourceBreaking { unknown_ordinal: 0xffffffff }
}
#[inline]
pub const fn into_primitive(self) -> u32 {
match self {
Self::Add => 1,
Self::Mul => 2,
Self::Div => 3,
Self::__SourceBreaking { unknown_ordinal } => unknown_ordinal,
}
}
#[inline]
pub fn is_unknown(&self) -> bool {
match self {
Self::__SourceBreaking { unknown_ordinal: _ } => true,
_ => false,
}
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub enum SomeProtocolSomeMethodError {
ErrorOne,
ErrorTwo,
#[doc(hidden)]
__SourceBreaking {
unknown_ordinal: u32,
},
}
/// Pattern that matches an unknown `SomeProtocolSomeMethodError` member.
#[macro_export]
macro_rules! SomeProtocolSomeMethodErrorUnknown {
() => {
_
};
}
impl SomeProtocolSomeMethodError {
#[inline]
pub fn from_primitive(prim: u32) -> Option<Self> {
match prim {
1 => Some(Self::ErrorOne),
2 => Some(Self::ErrorTwo),
_ => None,
}
}
#[inline]
pub fn from_primitive_allow_unknown(prim: u32) -> Self {
match prim {
1 => Self::ErrorOne,
2 => Self::ErrorTwo,
unknown_ordinal => Self::__SourceBreaking { unknown_ordinal },
}
}
#[inline]
pub fn unknown() -> Self {
Self::__SourceBreaking { unknown_ordinal: 0xffffffff }
}
#[inline]
pub const fn into_primitive(self) -> u32 {
match self {
Self::ErrorOne => 1,
Self::ErrorTwo => 2,
Self::__SourceBreaking { unknown_ordinal } => unknown_ordinal,
}
}
#[inline]
pub fn is_unknown(&self) -> bool {
match self {
Self::__SourceBreaking { unknown_ordinal: _ } => true,
_ => false,
}
}
}
#[derive(Clone, Debug, PartialEq)]
pub struct OverrideTest {
pub op: Op,
pub left: Option<Box<Expression>>,
pub right: Option<Box<Expression>>,
}
impl fidl::Persistable for OverrideTest {}
#[derive(Clone, Debug, PartialEq)]
pub struct SomeProtocolSomeMethodRequest {
pub union_member: UnionMember,
pub table_member: TableMember,
}
impl fidl::Persistable for SomeProtocolSomeMethodRequest {}
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct SomeProtocolSomeMethodResponse {
pub bits_member: BitsMember,
}
impl fidl::Persistable for SomeProtocolSomeMethodResponse {}
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[repr(C)]
pub struct TableData {
pub data: u8,
}
impl fidl::Persistable for TableData {}
#[derive(Clone, Debug, Default, PartialEq)]
pub struct FunctionApplication {
pub func: Option<String>,
pub args: Option<Vec<Option<Box<Expression>>>>,
pub flags: Option<Flags>,
#[doc(hidden)]
pub __source_breaking: fidl::marker::SourceBreaking,
}
impl fidl::Persistable for FunctionApplication {}
#[derive(Clone, Debug, Default, PartialEq)]
pub struct TableMember {
pub table_data: Option<Vec<TableData>>,
#[doc(hidden)]
pub __source_breaking: fidl::marker::SourceBreaking,
}
impl fidl::Persistable for TableMember {}
#[derive(Clone, Debug)]
pub enum Expression {
Value(u64),
BinOp(OverrideTest),
FunctionApplication(FunctionApplication),
#[doc(hidden)]
__SourceBreaking {
unknown_ordinal: u64,
},
}
/// Pattern that matches an unknown `Expression` member.
#[macro_export]
macro_rules! ExpressionUnknown {
() => {
_
};
}
// Custom PartialEq so that unknown variants are not equal to themselves.
impl PartialEq for Expression {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Self::Value(x), Self::Value(y)) => *x == *y,
(Self::BinOp(x), Self::BinOp(y)) => *x == *y,
(Self::FunctionApplication(x), Self::FunctionApplication(y)) => *x == *y,
_ => false,
}
}
}
impl Expression {
#[inline]
pub fn ordinal(&self) -> u64 {
match *self {
Self::Value(_) => 1,
Self::BinOp(_) => 2,
Self::FunctionApplication(_) => 3,
Self::__SourceBreaking { unknown_ordinal } => unknown_ordinal,
}
}
#[inline]
pub fn unknown_variant_for_testing() -> Self {
Self::__SourceBreaking { unknown_ordinal: 0 }
}
#[inline]
pub fn is_unknown(&self) -> bool {
match self {
Self::__SourceBreaking { .. } => true,
_ => false,
}
}
}
impl fidl::Persistable for Expression {}
#[derive(Clone, Debug)]
pub enum UnionMember {
UnionData(u8),
#[doc(hidden)]
__SourceBreaking {
unknown_ordinal: u64,
},
}
/// Pattern that matches an unknown `UnionMember` member.
#[macro_export]
macro_rules! UnionMemberUnknown {
() => {
_
};
}
// Custom PartialEq so that unknown variants are not equal to themselves.
impl PartialEq for UnionMember {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(Self::UnionData(x), Self::UnionData(y)) => *x == *y,
_ => false,
}
}
}
impl UnionMember {
#[inline]
pub fn ordinal(&self) -> u64 {
match *self {
Self::UnionData(_) => 2,
Self::__SourceBreaking { unknown_ordinal } => unknown_ordinal,
}
}
#[inline]
pub fn unknown_variant_for_testing() -> Self {
Self::__SourceBreaking { unknown_ordinal: 0 }
}
#[inline]
pub fn is_unknown(&self) -> bool {
match self {
Self::__SourceBreaking { .. } => true,
_ => false,
}
}
}
impl fidl::Persistable for UnionMember {}
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct SomeProtocolMarker;
impl fidl::endpoints::ProtocolMarker for SomeProtocolMarker {
type Proxy = SomeProtocolProxy;
type RequestStream = SomeProtocolRequestStream;
#[cfg(target_os = "fuchsia")]
type SynchronousProxy = SomeProtocolSynchronousProxy;
const DEBUG_NAME: &'static str = "(anonymous) SomeProtocol";
}
pub type SomeProtocolSomeMethodResult = Result<BitsMember, SomeProtocolSomeMethodError>;
pub trait SomeProtocolProxyInterface: Send + Sync {
type SomeMethodResponseFut: std::future::Future<Output = Result<SomeProtocolSomeMethodResult, fidl::Error>>
+ Send;
fn r#some_method(
&self,
union_member: &UnionMember,
table_member: &TableMember,
) -> Self::SomeMethodResponseFut;
}
#[derive(Debug)]
#[cfg(target_os = "fuchsia")]
pub struct SomeProtocolSynchronousProxy {
client: fidl::client::sync::Client,
}
#[cfg(target_os = "fuchsia")]
impl fidl::endpoints::SynchronousProxy for SomeProtocolSynchronousProxy {
type Proxy = SomeProtocolProxy;
type Protocol = SomeProtocolMarker;
fn from_channel(inner: fidl::Channel) -> Self {
Self::new(inner)
}
fn into_channel(self) -> fidl::Channel {
self.client.into_channel()
}
fn as_channel(&self) -> &fidl::Channel {
self.client.as_channel()
}
}
#[cfg(target_os = "fuchsia")]
impl SomeProtocolSynchronousProxy {
pub fn new(channel: fidl::Channel) -> Self {
let protocol_name = <SomeProtocolMarker as fidl::endpoints::ProtocolMarker>::DEBUG_NAME;
Self { client: fidl::client::sync::Client::new(channel, protocol_name) }
}
pub fn into_channel(self) -> fidl::Channel {
self.client.into_channel()
}
/// Waits until an event arrives and returns it. It is safe for other
/// threads to make concurrent requests while waiting for an event.
pub fn wait_for_event(&self, deadline: zx::Time) -> Result<SomeProtocolEvent, fidl::Error> {
SomeProtocolEvent::decode(self.client.wait_for_event(deadline)?)
}
pub fn r#some_method(
&self,
mut union_member: &UnionMember,
mut table_member: &TableMember,
___deadline: zx::Time,
) -> Result<SomeProtocolSomeMethodResult, fidl::Error> {
let _response =
self.client.send_query::<SomeProtocolSomeMethodRequest, fidl::encoding::ResultType<
SomeProtocolSomeMethodResponse,
SomeProtocolSomeMethodError,
>>(
(union_member, table_member),
0x22ea52ec7a5146d8,
fidl::encoding::DynamicFlags::empty(),
___deadline,
)?;
Ok(_response.map(|x| x.bits_member))
}
}
#[derive(Debug, Clone)]
pub struct SomeProtocolProxy {
client: fidl::client::Client,
}
impl fidl::endpoints::Proxy for SomeProtocolProxy {
type Protocol = SomeProtocolMarker;
fn from_channel(inner: fidl::AsyncChannel) -> Self {
Self::new(inner)
}
fn into_channel(self) -> Result<::fidl::AsyncChannel, Self> {
self.client.into_channel().map_err(|client| Self { client })
}
fn as_channel(&self) -> &::fidl::AsyncChannel {
self.client.as_channel()
}
}
impl SomeProtocolProxy {
/// Create a new Proxy for test.anonymous/SomeProtocol.
pub fn new(channel: fidl::AsyncChannel) -> Self {
let protocol_name = <SomeProtocolMarker as fidl::endpoints::ProtocolMarker>::DEBUG_NAME;
Self { client: fidl::client::Client::new(channel, protocol_name) }
}
/// Get a Stream of events from the remote end of the protocol.
///
/// # Panics
///
/// Panics if the event stream was already taken.
pub fn take_event_stream(&self) -> SomeProtocolEventStream {
SomeProtocolEventStream { event_receiver: self.client.take_event_receiver() }
}
pub fn r#some_method(
&self,
mut union_member: &UnionMember,
mut table_member: &TableMember,
) -> fidl::client::QueryResponseFut<SomeProtocolSomeMethodResult> {
SomeProtocolProxyInterface::r#some_method(self, union_member, table_member)
}
}
impl SomeProtocolProxyInterface for SomeProtocolProxy {
type SomeMethodResponseFut = fidl::client::QueryResponseFut<SomeProtocolSomeMethodResult>;
fn r#some_method(
&self,
mut union_member: &UnionMember,
mut table_member: &TableMember,
) -> Self::SomeMethodResponseFut {
fn _decode(
mut _buf: Result<fidl::MessageBufEtc, fidl::Error>,
) -> Result<SomeProtocolSomeMethodResult, fidl::Error> {
let _response = fidl::client::decode_transaction_body::<
fidl::encoding::ResultType<
SomeProtocolSomeMethodResponse,
SomeProtocolSomeMethodError,
>,
0x22ea52ec7a5146d8,
>(_buf?)?;
Ok(_response.map(|x| x.bits_member))
}
self.client
.send_query_and_decode::<SomeProtocolSomeMethodRequest, SomeProtocolSomeMethodResult>(
(union_member, table_member),
0x22ea52ec7a5146d8,
fidl::encoding::DynamicFlags::empty(),
_decode,
)
}
}
pub struct SomeProtocolEventStream {
event_receiver: fidl::client::EventReceiver,
}
impl std::marker::Unpin for SomeProtocolEventStream {}
impl futures::stream::FusedStream for SomeProtocolEventStream {
fn is_terminated(&self) -> bool {
self.event_receiver.is_terminated()
}
}
impl futures::Stream for SomeProtocolEventStream {
type Item = Result<SomeProtocolEvent, fidl::Error>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Option<Self::Item>> {
match futures::ready!(futures::stream::StreamExt::poll_next_unpin(
&mut self.event_receiver,
cx
)?) {
Some(buf) => std::task::Poll::Ready(Some(SomeProtocolEvent::decode(buf))),
None => std::task::Poll::Ready(None),
}
}
}
#[derive(Debug)]
pub enum SomeProtocolEvent {}
impl SomeProtocolEvent {
/// Decodes a message buffer as a [`SomeProtocolEvent`].
fn decode(mut buf: fidl::MessageBufEtc) -> Result<SomeProtocolEvent, fidl::Error> {
let (bytes, _handles) = buf.split_mut();
let (tx_header, _body_bytes) = fidl::encoding::decode_transaction_header(bytes)?;
debug_assert_eq!(tx_header.tx_id, 0);
match tx_header.ordinal {
_ => Err(fidl::Error::UnknownOrdinal {
ordinal: tx_header.ordinal,
protocol_name: <SomeProtocolMarker as fidl::endpoints::ProtocolMarker>::DEBUG_NAME,
}),
}
}
}
/// A Stream of incoming requests for test.anonymous/SomeProtocol.
pub struct SomeProtocolRequestStream {
inner: std::sync::Arc<fidl::ServeInner>,
is_terminated: bool,
}
impl std::marker::Unpin for SomeProtocolRequestStream {}
impl futures::stream::FusedStream for SomeProtocolRequestStream {
fn is_terminated(&self) -> bool {
self.is_terminated
}
}
impl fidl::endpoints::RequestStream for SomeProtocolRequestStream {
type Protocol = SomeProtocolMarker;
type ControlHandle = SomeProtocolControlHandle;
fn from_channel(channel: fidl::AsyncChannel) -> Self {
Self { inner: std::sync::Arc::new(fidl::ServeInner::new(channel)), is_terminated: false }
}
fn control_handle(&self) -> Self::ControlHandle {
SomeProtocolControlHandle { inner: self.inner.clone() }
}
fn into_inner(self) -> (::std::sync::Arc<fidl::ServeInner>, bool) {
(self.inner, self.is_terminated)
}
fn from_inner(inner: std::sync::Arc<fidl::ServeInner>, is_terminated: bool) -> Self {
Self { inner, is_terminated }
}
}
impl futures::Stream for SomeProtocolRequestStream {
type Item = Result<SomeProtocolRequest, fidl::Error>;
fn poll_next(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Option<Self::Item>> {
let this = &mut *self;
if this.inner.check_shutdown(cx) {
this.is_terminated = true;
return std::task::Poll::Ready(None);
}
if this.is_terminated {
panic!("polled SomeProtocolRequestStream after completion");
}
fidl::encoding::with_tls_decode_buf(|bytes, handles| {
match this.inner.channel().read_etc(cx, bytes, handles) {
std::task::Poll::Ready(Ok(())) => {}
std::task::Poll::Pending => return std::task::Poll::Pending,
std::task::Poll::Ready(Err(zx_status::Status::PEER_CLOSED)) => {
this.is_terminated = true;
return std::task::Poll::Ready(None);
}
std::task::Poll::Ready(Err(e)) => {
return std::task::Poll::Ready(Some(Err(fidl::Error::ServerRequestRead(e))))
}
}
// A message has been received from the channel
let (header, _body_bytes) = fidl::encoding::decode_transaction_header(bytes)?;
std::task::Poll::Ready(Some(match header.ordinal {
0x22ea52ec7a5146d8 => {
header.validate_request_tx_id(fidl::MethodType::TwoWay)?;
let mut req = fidl::new_empty!(SomeProtocolSomeMethodRequest);
fidl::encoding::Decoder::decode_into::<SomeProtocolSomeMethodRequest>(
&header,
_body_bytes,
handles,
&mut req,
)?;
let control_handle = SomeProtocolControlHandle { inner: this.inner.clone() };
Ok(SomeProtocolRequest::SomeMethod {
union_member: req.union_member,
table_member: req.table_member,
responder: SomeProtocolSomeMethodResponder {
control_handle: std::mem::ManuallyDrop::new(control_handle),
tx_id: header.tx_id,
},
})
}
_ => Err(fidl::Error::UnknownOrdinal {
ordinal: header.ordinal,
protocol_name:
<SomeProtocolMarker as fidl::endpoints::ProtocolMarker>::DEBUG_NAME,
}),
}))
})
}
}
#[derive(Debug)]
pub enum SomeProtocolRequest {
SomeMethod {
union_member: UnionMember,
table_member: TableMember,
responder: SomeProtocolSomeMethodResponder,
},
}
impl SomeProtocolRequest {
#[allow(irrefutable_let_patterns)]
pub fn into_some_method(
self,
) -> Option<(UnionMember, TableMember, SomeProtocolSomeMethodResponder)> {
if let SomeProtocolRequest::SomeMethod { union_member, table_member, responder } = self {
Some((union_member, table_member, responder))
} else {
None
}
}
/// Name of the method defined in FIDL
pub fn method_name(&self) -> &'static str {
match *self {
SomeProtocolRequest::SomeMethod { .. } => "some_method",
}
}
}
#[derive(Debug, Clone)]
pub struct SomeProtocolControlHandle {
inner: std::sync::Arc<fidl::ServeInner>,
}
impl fidl::endpoints::ControlHandle for SomeProtocolControlHandle {
fn shutdown(&self) {
self.inner.shutdown()
}
fn shutdown_with_epitaph(&self, status: zx_status::Status) {
self.inner.shutdown_with_epitaph(status)
}
fn is_closed(&self) -> bool {
self.inner.channel().is_closed()
}
fn on_closed(&self) -> fidl::OnSignalsRef<'_> {
self.inner.channel().on_closed()
}
}
impl SomeProtocolControlHandle {}
#[must_use = "FIDL methods require a response to be sent"]
#[derive(Debug)]
pub struct SomeProtocolSomeMethodResponder {
control_handle: std::mem::ManuallyDrop<SomeProtocolControlHandle>,
tx_id: u32,
}
/// Set the the channel to be shutdown (see [`SomeProtocolControlHandle::shutdown`])
/// if the responder is dropped without sending a response, so that the client
/// doesn't hang. To prevent this behavior, call `drop_without_shutdown`.
impl std::ops::Drop for SomeProtocolSomeMethodResponder {
fn drop(&mut self) {
self.control_handle.shutdown();
// Safety: drops once, never accessed again
unsafe { std::mem::ManuallyDrop::drop(&mut self.control_handle) };
}
}
impl fidl::endpoints::Responder for SomeProtocolSomeMethodResponder {
type ControlHandle = SomeProtocolControlHandle;
fn control_handle(&self) -> &SomeProtocolControlHandle {
&self.control_handle
}
fn drop_without_shutdown(mut self) {
// Safety: drops once, never accessed again due to mem::forget
unsafe { std::mem::ManuallyDrop::drop(&mut self.control_handle) };
// Prevent Drop from running (which would shut down the channel)
std::mem::forget(self);
}
}
impl SomeProtocolSomeMethodResponder {
/// Sends a response to the FIDL transaction.
///
/// Sets the channel to shutdown if an error occurs.
pub fn send(
self,
mut result: Result<BitsMember, SomeProtocolSomeMethodError>,
) -> Result<(), fidl::Error> {
let _result = self.send_raw(result);
if _result.is_err() {
self.control_handle.shutdown();
}
self.drop_without_shutdown();
_result
}
/// Similar to "send" but does not shutdown the channel if an error occurs.
pub fn send_no_shutdown_on_err(
self,
mut result: Result<BitsMember, SomeProtocolSomeMethodError>,
) -> Result<(), fidl::Error> {
let _result = self.send_raw(result);
self.drop_without_shutdown();
_result
}
fn send_raw(
&self,
mut result: Result<BitsMember, SomeProtocolSomeMethodError>,
) -> Result<(), fidl::Error> {
self.control_handle.inner.send::<fidl::encoding::ResultType<
SomeProtocolSomeMethodResponse,
SomeProtocolSomeMethodError,
>>(
result.map(|bits_member| (bits_member,)),
self.tx_id,
0x22ea52ec7a5146d8,
fidl::encoding::DynamicFlags::empty(),
)
}
}
mod internal {
use super::*;
unsafe impl fidl::encoding::TypeMarker for BitsMember {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
4
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
4
}
}
impl fidl::encoding::ValueTypeMarker for BitsMember {
type Borrowed<'a> = Self;
#[inline(always)]
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
*value
}
}
unsafe impl fidl::encoding::Encode<Self> for BitsMember {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Self>(offset);
encoder.write_num(self.bits(), offset);
Ok(())
}
}
impl fidl::encoding::Decode<Self> for BitsMember {
#[inline(always)]
fn new_empty() -> Self {
Self::empty()
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let prim = decoder.read_num::<u32>(offset);
*self = Self::from_bits_allow_unknown(prim);
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for Flags {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
2
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
2
}
}
impl fidl::encoding::ValueTypeMarker for Flags {
type Borrowed<'a> = Self;
#[inline(always)]
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
*value
}
}
unsafe impl fidl::encoding::Encode<Self> for Flags {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Self>(offset);
encoder.write_num(self.bits(), offset);
Ok(())
}
}
impl fidl::encoding::Decode<Self> for Flags {
#[inline(always)]
fn new_empty() -> Self {
Self::empty()
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let prim = decoder.read_num::<u16>(offset);
*self = Self::from_bits_allow_unknown(prim);
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for Op {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
std::mem::align_of::<u32>()
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
std::mem::size_of::<u32>()
}
#[inline(always)]
fn encode_is_copy() -> bool {
false
}
#[inline(always)]
fn decode_is_copy() -> bool {
false
}
}
impl fidl::encoding::ValueTypeMarker for Op {
type Borrowed<'a> = Self;
#[inline(always)]
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
*value
}
}
unsafe impl fidl::encoding::Encode<Self> for Op {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Self>(offset);
encoder.write_num(self.into_primitive(), offset);
Ok(())
}
}
impl fidl::encoding::Decode<Self> for Op {
#[inline(always)]
fn new_empty() -> Self {
Self::unknown()
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let prim = decoder.read_num::<u32>(offset);
*self = Self::from_primitive_allow_unknown(prim);
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for SomeProtocolSomeMethodError {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
std::mem::align_of::<u32>()
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
std::mem::size_of::<u32>()
}
#[inline(always)]
fn encode_is_copy() -> bool {
false
}
#[inline(always)]
fn decode_is_copy() -> bool {
false
}
}
impl fidl::encoding::ValueTypeMarker for SomeProtocolSomeMethodError {
type Borrowed<'a> = Self;
#[inline(always)]
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
*value
}
}
unsafe impl fidl::encoding::Encode<Self> for SomeProtocolSomeMethodError {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Self>(offset);
encoder.write_num(self.into_primitive(), offset);
Ok(())
}
}
impl fidl::encoding::Decode<Self> for SomeProtocolSomeMethodError {
#[inline(always)]
fn new_empty() -> Self {
Self::unknown()
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let prim = decoder.read_num::<u32>(offset);
*self = Self::from_primitive_allow_unknown(prim);
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for OverrideTest {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
8
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
40
}
}
impl fidl::encoding::ValueTypeMarker for OverrideTest {
type Borrowed<'a> = &'a Self;
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
value
}
}
unsafe impl fidl::encoding::Encode<OverrideTest> for &OverrideTest {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<OverrideTest>(offset);
// Delegate to tuple encoding.
fidl::encoding::Encode::<OverrideTest>::encode(
(
<Op as fidl::encoding::ValueTypeMarker>::borrow(&self.op),
<fidl::encoding::OptionalUnion<Expression> as fidl::encoding::ValueTypeMarker>::borrow(&self.left),
<fidl::encoding::OptionalUnion<Expression> as fidl::encoding::ValueTypeMarker>::borrow(&self.right),
),
encoder, offset, _depth
)
}
}
unsafe impl<
T0: fidl::encoding::Encode<Op>,
T1: fidl::encoding::Encode<fidl::encoding::OptionalUnion<Expression>>,
T2: fidl::encoding::Encode<fidl::encoding::OptionalUnion<Expression>>,
> fidl::encoding::Encode<OverrideTest> for (T0, T1, T2)
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<OverrideTest>(offset);
// Zero out padding regions. There's no need to apply masks
// because the unmasked parts will be overwritten by fields.
unsafe {
let ptr = encoder.buf.as_mut_ptr().add(offset).offset(0);
(ptr as *mut u64).write_unaligned(0);
}
// Write the fields.
self.0.encode(encoder, offset + 0, depth)?;
self.1.encode(encoder, offset + 8, depth)?;
self.2.encode(encoder, offset + 24, depth)?;
Ok(())
}
}
impl fidl::encoding::Decode<Self> for OverrideTest {
#[inline(always)]
fn new_empty() -> Self {
Self {
op: fidl::new_empty!(Op),
left: fidl::new_empty!(fidl::encoding::OptionalUnion<Expression>),
right: fidl::new_empty!(fidl::encoding::OptionalUnion<Expression>),
}
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
// Verify that padding bytes are zero.
let ptr = unsafe { decoder.buf.as_ptr().add(offset).offset(0) };
let padval = unsafe { (ptr as *const u64).read_unaligned() };
let mask = 0xffffffff00000000u64;
let maskedval = padval & mask;
if maskedval != 0 {
return Err(fidl::Error::NonZeroPadding {
padding_start: offset + 0 + ((mask as u64).trailing_zeros() / 8) as usize,
});
}
fidl::decode!(Op, &mut self.op, decoder, offset + 0, _depth)?;
fidl::decode!(
fidl::encoding::OptionalUnion<Expression>,
&mut self.left,
decoder,
offset + 8,
_depth
)?;
fidl::decode!(
fidl::encoding::OptionalUnion<Expression>,
&mut self.right,
decoder,
offset + 24,
_depth
)?;
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for SomeProtocolSomeMethodRequest {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
8
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
32
}
}
impl fidl::encoding::ValueTypeMarker for SomeProtocolSomeMethodRequest {
type Borrowed<'a> = &'a Self;
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
value
}
}
unsafe impl fidl::encoding::Encode<SomeProtocolSomeMethodRequest>
for &SomeProtocolSomeMethodRequest
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<SomeProtocolSomeMethodRequest>(offset);
// Delegate to tuple encoding.
fidl::encoding::Encode::<SomeProtocolSomeMethodRequest>::encode(
(
<UnionMember as fidl::encoding::ValueTypeMarker>::borrow(&self.union_member),
<TableMember as fidl::encoding::ValueTypeMarker>::borrow(&self.table_member),
),
encoder,
offset,
_depth,
)
}
}
unsafe impl<T0: fidl::encoding::Encode<UnionMember>, T1: fidl::encoding::Encode<TableMember>>
fidl::encoding::Encode<SomeProtocolSomeMethodRequest> for (T0, T1)
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<SomeProtocolSomeMethodRequest>(offset);
// Zero out padding regions. There's no need to apply masks
// because the unmasked parts will be overwritten by fields.
// Write the fields.
self.0.encode(encoder, offset + 0, depth)?;
self.1.encode(encoder, offset + 16, depth)?;
Ok(())
}
}
impl fidl::encoding::Decode<Self> for SomeProtocolSomeMethodRequest {
#[inline(always)]
fn new_empty() -> Self {
Self {
union_member: fidl::new_empty!(UnionMember),
table_member: fidl::new_empty!(TableMember),
}
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
// Verify that padding bytes are zero.
fidl::decode!(UnionMember, &mut self.union_member, decoder, offset + 0, _depth)?;
fidl::decode!(TableMember, &mut self.table_member, decoder, offset + 16, _depth)?;
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for SomeProtocolSomeMethodResponse {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
4
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
4
}
}
impl fidl::encoding::ValueTypeMarker for SomeProtocolSomeMethodResponse {
type Borrowed<'a> = &'a Self;
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
value
}
}
unsafe impl fidl::encoding::Encode<SomeProtocolSomeMethodResponse>
for &SomeProtocolSomeMethodResponse
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<SomeProtocolSomeMethodResponse>(offset);
// Delegate to tuple encoding.
fidl::encoding::Encode::<SomeProtocolSomeMethodResponse>::encode(
(<BitsMember as fidl::encoding::ValueTypeMarker>::borrow(&self.bits_member),),
encoder,
offset,
_depth,
)
}
}
unsafe impl<T0: fidl::encoding::Encode<BitsMember>>
fidl::encoding::Encode<SomeProtocolSomeMethodResponse> for (T0,)
{
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<SomeProtocolSomeMethodResponse>(offset);
// Zero out padding regions. There's no need to apply masks
// because the unmasked parts will be overwritten by fields.
// Write the fields.
self.0.encode(encoder, offset + 0, depth)?;
Ok(())
}
}
impl fidl::encoding::Decode<Self> for SomeProtocolSomeMethodResponse {
#[inline(always)]
fn new_empty() -> Self {
Self { bits_member: fidl::new_empty!(BitsMember) }
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
// Verify that padding bytes are zero.
fidl::decode!(BitsMember, &mut self.bits_member, decoder, offset + 0, _depth)?;
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for TableData {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
1
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
1
}
#[inline(always)]
fn encode_is_copy() -> bool {
true
}
#[inline(always)]
fn decode_is_copy() -> bool {
true
}
}
impl fidl::encoding::ValueTypeMarker for TableData {
type Borrowed<'a> = &'a Self;
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
value
}
}
unsafe impl fidl::encoding::Encode<TableData> for &TableData {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<TableData>(offset);
unsafe {
// Copy the object into the buffer.
let buf_ptr = encoder.buf.as_mut_ptr().add(offset);
(buf_ptr as *mut TableData).write_unaligned((self as *const TableData).read());
// Zero out padding regions. Unlike `fidl_struct_impl_noncopy!`, this must be
// done second because the memcpy will write garbage to these bytes.
}
Ok(())
}
}
unsafe impl<T0: fidl::encoding::Encode<u8>> fidl::encoding::Encode<TableData> for (T0,) {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<TableData>(offset);
// Zero out padding regions. There's no need to apply masks
// because the unmasked parts will be overwritten by fields.
// Write the fields.
self.0.encode(encoder, offset + 0, depth)?;
Ok(())
}
}
impl fidl::encoding::Decode<Self> for TableData {
#[inline(always)]
fn new_empty() -> Self {
Self { data: fidl::new_empty!(u8) }
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let buf_ptr = unsafe { decoder.buf.as_ptr().add(offset) };
// Verify that padding bytes are zero.
// Copy from the buffer into the object.
unsafe {
std::ptr::copy_nonoverlapping(buf_ptr, self as *mut Self as *mut u8, 1);
}
Ok(())
}
}
impl FunctionApplication {
#[inline(always)]
fn max_ordinal_present(&self) -> u64 {
if let Some(_) = self.flags {
return 4;
}
if let Some(_) = self.args {
return 3;
}
if let Some(_) = self.func {
return 1;
}
0
}
}
unsafe impl fidl::encoding::TypeMarker for FunctionApplication {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
8
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
16
}
}
impl fidl::encoding::ValueTypeMarker for FunctionApplication {
type Borrowed<'a> = &'a Self;
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
value
}
}
unsafe impl fidl::encoding::Encode<FunctionApplication> for &FunctionApplication {
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
mut depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<FunctionApplication>(offset);
// Vector header
let max_ordinal: u64 = self.max_ordinal_present();
encoder.write_num(max_ordinal, offset);
encoder.write_num(fidl::encoding::ALLOC_PRESENT_U64, offset + 8);
// Calling encoder.out_of_line_offset(0) is not allowed.
if max_ordinal == 0 {
return Ok(());
}
depth.increment()?;
let envelope_size = 8;
let bytes_len = max_ordinal as usize * envelope_size;
#[allow(unused_variables)]
let offset = encoder.out_of_line_offset(bytes_len);
let mut _prev_end_offset: usize = 0;
if 1 > max_ordinal {
return Ok(());
}
// Write at offset+(ordinal-1)*envelope_size, since ordinals are one-based and envelopes
// are envelope_size bytes.
let cur_offset: usize = (1 - 1) * envelope_size;
// Zero reserved fields.
encoder.padding(offset + _prev_end_offset, cur_offset - _prev_end_offset);
// Safety:
// - bytes_len is calculated to fit envelope_size*max(member.ordinal).
// - Since cur_offset is envelope_size*(member.ordinal - 1) and the envelope takes
// envelope_size bytes, there is always sufficient room.
fidl::encoding::encode_in_envelope_optional::<fidl::encoding::BoundedString<100>>(
self.func.as_ref().map(
<fidl::encoding::BoundedString<100> as fidl::encoding::ValueTypeMarker>::borrow,
),
encoder,
offset + cur_offset,
depth,
)?;
_prev_end_offset = cur_offset + envelope_size;
if 3 > max_ordinal {
return Ok(());
}
// Write at offset+(ordinal-1)*envelope_size, since ordinals are one-based and envelopes
// are envelope_size bytes.
let cur_offset: usize = (3 - 1) * envelope_size;
// Zero reserved fields.
encoder.padding(offset + _prev_end_offset, cur_offset - _prev_end_offset);
// Safety:
// - bytes_len is calculated to fit envelope_size*max(member.ordinal).
// - Since cur_offset is envelope_size*(member.ordinal - 1) and the envelope takes
// envelope_size bytes, there is always sufficient room.
fidl::encoding::encode_in_envelope_optional::<fidl::encoding::Vector<fidl::encoding::OptionalUnion<Expression>, 5>>(
self.args.as_ref().map(<fidl::encoding::Vector<fidl::encoding::OptionalUnion<Expression>, 5> as fidl::encoding::ValueTypeMarker>::borrow),
encoder, offset + cur_offset, depth
)?;
_prev_end_offset = cur_offset + envelope_size;
if 4 > max_ordinal {
return Ok(());
}
// Write at offset+(ordinal-1)*envelope_size, since ordinals are one-based and envelopes
// are envelope_size bytes.
let cur_offset: usize = (4 - 1) * envelope_size;
// Zero reserved fields.
encoder.padding(offset + _prev_end_offset, cur_offset - _prev_end_offset);
// Safety:
// - bytes_len is calculated to fit envelope_size*max(member.ordinal).
// - Since cur_offset is envelope_size*(member.ordinal - 1) and the envelope takes
// envelope_size bytes, there is always sufficient room.
fidl::encoding::encode_in_envelope_optional::<Flags>(
self.flags.as_ref().map(<Flags as fidl::encoding::ValueTypeMarker>::borrow),
encoder,
offset + cur_offset,
depth,
)?;
_prev_end_offset = cur_offset + envelope_size;
Ok(())
}
}
impl fidl::encoding::Decode<Self> for FunctionApplication {
#[inline(always)]
fn new_empty() -> Self {
Self::default()
}
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
mut depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let len = match fidl::encoding::decode_vector_header(decoder, offset)? {
None => return Err(fidl::Error::NotNullable),
Some(len) => len,
};
// Calling decoder.out_of_line_offset(0) is not allowed.
if len == 0 {
return Ok(());
};
depth.increment()?;
let envelope_size = 8;
let bytes_len = len * envelope_size;
let offset = decoder.out_of_line_offset(bytes_len)?;
// Decode the envelope for each type.
let mut _next_ordinal_to_read = 0;
let mut next_offset = offset;
let end_offset = offset + bytes_len;
_next_ordinal_to_read += 1;
if next_offset >= end_offset {
return Ok(());
}
// Decode unknown envelopes for gaps in ordinals.
while _next_ordinal_to_read < 1 {
fidl::encoding::decode_unknown_envelope(decoder, next_offset, depth)?;
_next_ordinal_to_read += 1;
next_offset += envelope_size;
}
let next_out_of_line = decoder.next_out_of_line();
let handles_before = decoder.remaining_handles();
if let Some((inlined, num_bytes, num_handles)) =
fidl::encoding::decode_envelope_header(decoder, next_offset)?
{
let member_inline_size =
<fidl::encoding::BoundedString<100> as fidl::encoding::TypeMarker>::inline_size(
decoder.context,
);
if inlined != (member_inline_size <= 4) {
return Err(fidl::Error::InvalidInlineBitInEnvelope);
}
let inner_offset;
let mut inner_depth = depth.clone();
if inlined {
decoder.check_inline_envelope_padding(next_offset, member_inline_size)?;
inner_offset = next_offset;
} else {
inner_offset = decoder.out_of_line_offset(member_inline_size)?;
inner_depth.increment()?;
}
let val_ref = self
.func
.get_or_insert_with(|| fidl::new_empty!(fidl::encoding::BoundedString<100>));
fidl::decode!(
fidl::encoding::BoundedString<100>,
val_ref,
decoder,
inner_offset,
inner_depth
)?;
if !inlined && decoder.next_out_of_line() != next_out_of_line + (num_bytes as usize)
{
return Err(fidl::Error::InvalidNumBytesInEnvelope);
}
if handles_before != decoder.remaining_handles() + (num_handles as usize) {
return Err(fidl::Error::InvalidNumHandlesInEnvelope);
}
}
next_offset += envelope_size;
_next_ordinal_to_read += 1;
if next_offset >= end_offset {
return Ok(());
}
// Decode unknown envelopes for gaps in ordinals.
while _next_ordinal_to_read < 3 {
fidl::encoding::decode_unknown_envelope(decoder, next_offset, depth)?;
_next_ordinal_to_read += 1;
next_offset += envelope_size;
}
let next_out_of_line = decoder.next_out_of_line();
let handles_before = decoder.remaining_handles();
if let Some((inlined, num_bytes, num_handles)) =
fidl::encoding::decode_envelope_header(decoder, next_offset)?
{
let member_inline_size = <fidl::encoding::Vector<
fidl::encoding::OptionalUnion<Expression>,
5,
> as fidl::encoding::TypeMarker>::inline_size(
decoder.context
);
if inlined != (member_inline_size <= 4) {
return Err(fidl::Error::InvalidInlineBitInEnvelope);
}
let inner_offset;
let mut inner_depth = depth.clone();
if inlined {
decoder.check_inline_envelope_padding(next_offset, member_inline_size)?;
inner_offset = next_offset;
} else {
inner_offset = decoder.out_of_line_offset(member_inline_size)?;
inner_depth.increment()?;
}
let val_ref = self.args.get_or_insert_with(|| {
fidl::new_empty!(
fidl::encoding::Vector<fidl::encoding::OptionalUnion<Expression>, 5>
)
});
fidl::decode!(
fidl::encoding::Vector<fidl::encoding::OptionalUnion<Expression>, 5>,
val_ref,
decoder,
inner_offset,
inner_depth
)?;
if !inlined && decoder.next_out_of_line() != next_out_of_line + (num_bytes as usize)
{
return Err(fidl::Error::InvalidNumBytesInEnvelope);
}
if handles_before != decoder.remaining_handles() + (num_handles as usize) {
return Err(fidl::Error::InvalidNumHandlesInEnvelope);
}
}
next_offset += envelope_size;
_next_ordinal_to_read += 1;
if next_offset >= end_offset {
return Ok(());
}
// Decode unknown envelopes for gaps in ordinals.
while _next_ordinal_to_read < 4 {
fidl::encoding::decode_unknown_envelope(decoder, next_offset, depth)?;
_next_ordinal_to_read += 1;
next_offset += envelope_size;
}
let next_out_of_line = decoder.next_out_of_line();
let handles_before = decoder.remaining_handles();
if let Some((inlined, num_bytes, num_handles)) =
fidl::encoding::decode_envelope_header(decoder, next_offset)?
{
let member_inline_size =
<Flags as fidl::encoding::TypeMarker>::inline_size(decoder.context);
if inlined != (member_inline_size <= 4) {
return Err(fidl::Error::InvalidInlineBitInEnvelope);
}
let inner_offset;
let mut inner_depth = depth.clone();
if inlined {
decoder.check_inline_envelope_padding(next_offset, member_inline_size)?;
inner_offset = next_offset;
} else {
inner_offset = decoder.out_of_line_offset(member_inline_size)?;
inner_depth.increment()?;
}
let val_ref = self.flags.get_or_insert_with(|| fidl::new_empty!(Flags));
fidl::decode!(Flags, val_ref, decoder, inner_offset, inner_depth)?;
if !inlined && decoder.next_out_of_line() != next_out_of_line + (num_bytes as usize)
{
return Err(fidl::Error::InvalidNumBytesInEnvelope);
}
if handles_before != decoder.remaining_handles() + (num_handles as usize) {
return Err(fidl::Error::InvalidNumHandlesInEnvelope);
}
}
next_offset += envelope_size;
// Decode the remaining unknown envelopes.
while next_offset < end_offset {
_next_ordinal_to_read += 1;
fidl::encoding::decode_unknown_envelope(decoder, next_offset, depth)?;
next_offset += envelope_size;
}
Ok(())
}
}
impl TableMember {
#[inline(always)]
fn max_ordinal_present(&self) -> u64 {
if let Some(_) = self.table_data {
return 2;
}
0
}
}
unsafe impl fidl::encoding::TypeMarker for TableMember {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
8
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
16
}
}
impl fidl::encoding::ValueTypeMarker for TableMember {
type Borrowed<'a> = &'a Self;
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
value
}
}
unsafe impl fidl::encoding::Encode<TableMember> for &TableMember {
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
mut depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<TableMember>(offset);
// Vector header
let max_ordinal: u64 = self.max_ordinal_present();
encoder.write_num(max_ordinal, offset);
encoder.write_num(fidl::encoding::ALLOC_PRESENT_U64, offset + 8);
// Calling encoder.out_of_line_offset(0) is not allowed.
if max_ordinal == 0 {
return Ok(());
}
depth.increment()?;
let envelope_size = 8;
let bytes_len = max_ordinal as usize * envelope_size;
#[allow(unused_variables)]
let offset = encoder.out_of_line_offset(bytes_len);
let mut _prev_end_offset: usize = 0;
if 2 > max_ordinal {
return Ok(());
}
// Write at offset+(ordinal-1)*envelope_size, since ordinals are one-based and envelopes
// are envelope_size bytes.
let cur_offset: usize = (2 - 1) * envelope_size;
// Zero reserved fields.
encoder.padding(offset + _prev_end_offset, cur_offset - _prev_end_offset);
// Safety:
// - bytes_len is calculated to fit envelope_size*max(member.ordinal).
// - Since cur_offset is envelope_size*(member.ordinal - 1) and the envelope takes
// envelope_size bytes, there is always sufficient room.
fidl::encoding::encode_in_envelope_optional::<fidl::encoding::Vector<TableData, 10>>(
self.table_data.as_ref().map(<fidl::encoding::Vector<TableData, 10> as fidl::encoding::ValueTypeMarker>::borrow),
encoder, offset + cur_offset, depth
)?;
_prev_end_offset = cur_offset + envelope_size;
Ok(())
}
}
impl fidl::encoding::Decode<Self> for TableMember {
#[inline(always)]
fn new_empty() -> Self {
Self::default()
}
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
mut depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
let len = match fidl::encoding::decode_vector_header(decoder, offset)? {
None => return Err(fidl::Error::NotNullable),
Some(len) => len,
};
// Calling decoder.out_of_line_offset(0) is not allowed.
if len == 0 {
return Ok(());
};
depth.increment()?;
let envelope_size = 8;
let bytes_len = len * envelope_size;
let offset = decoder.out_of_line_offset(bytes_len)?;
// Decode the envelope for each type.
let mut _next_ordinal_to_read = 0;
let mut next_offset = offset;
let end_offset = offset + bytes_len;
_next_ordinal_to_read += 1;
if next_offset >= end_offset {
return Ok(());
}
// Decode unknown envelopes for gaps in ordinals.
while _next_ordinal_to_read < 2 {
fidl::encoding::decode_unknown_envelope(decoder, next_offset, depth)?;
_next_ordinal_to_read += 1;
next_offset += envelope_size;
}
let next_out_of_line = decoder.next_out_of_line();
let handles_before = decoder.remaining_handles();
if let Some((inlined, num_bytes, num_handles)) =
fidl::encoding::decode_envelope_header(decoder, next_offset)?
{
let member_inline_size = <fidl::encoding::Vector<TableData, 10> as fidl::encoding::TypeMarker>::inline_size(decoder.context);
if inlined != (member_inline_size <= 4) {
return Err(fidl::Error::InvalidInlineBitInEnvelope);
}
let inner_offset;
let mut inner_depth = depth.clone();
if inlined {
decoder.check_inline_envelope_padding(next_offset, member_inline_size)?;
inner_offset = next_offset;
} else {
inner_offset = decoder.out_of_line_offset(member_inline_size)?;
inner_depth.increment()?;
}
let val_ref = self
.table_data
.get_or_insert_with(|| fidl::new_empty!(fidl::encoding::Vector<TableData, 10>));
fidl::decode!(fidl::encoding::Vector<TableData, 10>, val_ref, decoder, inner_offset, inner_depth)?;
if !inlined && decoder.next_out_of_line() != next_out_of_line + (num_bytes as usize)
{
return Err(fidl::Error::InvalidNumBytesInEnvelope);
}
if handles_before != decoder.remaining_handles() + (num_handles as usize) {
return Err(fidl::Error::InvalidNumHandlesInEnvelope);
}
}
next_offset += envelope_size;
// Decode the remaining unknown envelopes.
while next_offset < end_offset {
_next_ordinal_to_read += 1;
fidl::encoding::decode_unknown_envelope(decoder, next_offset, depth)?;
next_offset += envelope_size;
}
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for Expression {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
8
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
16
}
}
impl fidl::encoding::ValueTypeMarker for Expression {
type Borrowed<'a> = &'a Self;
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
value
}
}
unsafe impl fidl::encoding::Encode<Expression> for &Expression {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<Expression>(offset);
encoder.write_num::<u64>(self.ordinal(), offset);
match self {
Expression::Value(ref val) => fidl::encoding::encode_in_envelope::<u64>(
<u64 as fidl::encoding::ValueTypeMarker>::borrow(val),
encoder,
offset + 8,
_depth,
),
Expression::BinOp(ref val) => fidl::encoding::encode_in_envelope::<OverrideTest>(
<OverrideTest as fidl::encoding::ValueTypeMarker>::borrow(val),
encoder,
offset + 8,
_depth,
),
Expression::FunctionApplication(ref val) => {
fidl::encoding::encode_in_envelope::<FunctionApplication>(
<FunctionApplication as fidl::encoding::ValueTypeMarker>::borrow(val),
encoder,
offset + 8,
_depth,
)
}
Expression::__SourceBreaking { .. } => Err(fidl::Error::UnknownUnionTag),
}
}
}
impl fidl::encoding::Decode<Self> for Expression {
#[inline(always)]
fn new_empty() -> Self {
Self::__SourceBreaking { unknown_ordinal: 0 }
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
mut depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
#[allow(unused_variables)]
let next_out_of_line = decoder.next_out_of_line();
let handles_before = decoder.remaining_handles();
let (ordinal, inlined, num_bytes, num_handles) =
fidl::encoding::decode_union_inline_portion(decoder, offset)?;
let member_inline_size = match ordinal {
1 => <u64 as fidl::encoding::TypeMarker>::inline_size(decoder.context),
2 => <OverrideTest as fidl::encoding::TypeMarker>::inline_size(decoder.context),
3 => <FunctionApplication as fidl::encoding::TypeMarker>::inline_size(
decoder.context,
),
0 => return Err(fidl::Error::UnknownUnionTag),
_ => num_bytes as usize,
};
if inlined != (member_inline_size <= 4) {
return Err(fidl::Error::InvalidInlineBitInEnvelope);
}
let _inner_offset;
if inlined {
decoder.check_inline_envelope_padding(offset + 8, member_inline_size)?;
_inner_offset = offset + 8;
} else {
depth.increment()?;
_inner_offset = decoder.out_of_line_offset(member_inline_size)?;
}
match ordinal {
1 => {
#[allow(irrefutable_let_patterns)]
if let Expression::Value(_) = self {
// Do nothing, read the value into the object
} else {
// Initialize `self` to the right variant
*self = Expression::Value(fidl::new_empty!(u64));
}
#[allow(irrefutable_let_patterns)]
if let Expression::Value(ref mut val) = self {
fidl::decode!(u64, val, decoder, _inner_offset, depth)?;
} else {
unreachable!()
}
}
2 => {
#[allow(irrefutable_let_patterns)]
if let Expression::BinOp(_) = self {
// Do nothing, read the value into the object
} else {
// Initialize `self` to the right variant
*self = Expression::BinOp(fidl::new_empty!(OverrideTest));
}
#[allow(irrefutable_let_patterns)]
if let Expression::BinOp(ref mut val) = self {
fidl::decode!(OverrideTest, val, decoder, _inner_offset, depth)?;
} else {
unreachable!()
}
}
3 => {
#[allow(irrefutable_let_patterns)]
if let Expression::FunctionApplication(_) = self {
// Do nothing, read the value into the object
} else {
// Initialize `self` to the right variant
*self =
Expression::FunctionApplication(fidl::new_empty!(FunctionApplication));
}
#[allow(irrefutable_let_patterns)]
if let Expression::FunctionApplication(ref mut val) = self {
fidl::decode!(FunctionApplication, val, decoder, _inner_offset, depth)?;
} else {
unreachable!()
}
}
#[allow(deprecated)]
ordinal => {
for _ in 0..num_handles {
decoder.drop_next_handle()?;
}
*self = Expression::__SourceBreaking { unknown_ordinal: ordinal };
}
}
if !inlined && decoder.next_out_of_line() != next_out_of_line + (num_bytes as usize) {
return Err(fidl::Error::InvalidNumBytesInEnvelope);
}
if handles_before != decoder.remaining_handles() + (num_handles as usize) {
return Err(fidl::Error::InvalidNumHandlesInEnvelope);
}
Ok(())
}
}
unsafe impl fidl::encoding::TypeMarker for UnionMember {
type Owned = Self;
#[inline(always)]
fn inline_align(_context: fidl::encoding::Context) -> usize {
8
}
#[inline(always)]
fn inline_size(_context: fidl::encoding::Context) -> usize {
16
}
}
impl fidl::encoding::ValueTypeMarker for UnionMember {
type Borrowed<'a> = &'a Self;
fn borrow<'a>(
value: &'a <Self as fidl::encoding::TypeMarker>::Owned,
) -> Self::Borrowed<'a> {
value
}
}
unsafe impl fidl::encoding::Encode<UnionMember> for &UnionMember {
#[inline]
unsafe fn encode(
self,
encoder: &mut fidl::encoding::Encoder<'_>,
offset: usize,
_depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
encoder.debug_check_bounds::<UnionMember>(offset);
encoder.write_num::<u64>(self.ordinal(), offset);
match self {
UnionMember::UnionData(ref val) => fidl::encoding::encode_in_envelope::<u8>(
<u8 as fidl::encoding::ValueTypeMarker>::borrow(val),
encoder,
offset + 8,
_depth,
),
UnionMember::__SourceBreaking { .. } => Err(fidl::Error::UnknownUnionTag),
}
}
}
impl fidl::encoding::Decode<Self> for UnionMember {
#[inline(always)]
fn new_empty() -> Self {
Self::__SourceBreaking { unknown_ordinal: 0 }
}
#[inline]
unsafe fn decode(
&mut self,
decoder: &mut fidl::encoding::Decoder<'_>,
offset: usize,
mut depth: fidl::encoding::Depth,
) -> fidl::Result<()> {
decoder.debug_check_bounds::<Self>(offset);
#[allow(unused_variables)]
let next_out_of_line = decoder.next_out_of_line();
let handles_before = decoder.remaining_handles();
let (ordinal, inlined, num_bytes, num_handles) =
fidl::encoding::decode_union_inline_portion(decoder, offset)?;
let member_inline_size = match ordinal {
2 => <u8 as fidl::encoding::TypeMarker>::inline_size(decoder.context),
0 => return Err(fidl::Error::UnknownUnionTag),
_ => num_bytes as usize,
};
if inlined != (member_inline_size <= 4) {
return Err(fidl::Error::InvalidInlineBitInEnvelope);
}
let _inner_offset;
if inlined {
decoder.check_inline_envelope_padding(offset + 8, member_inline_size)?;
_inner_offset = offset + 8;
} else {
depth.increment()?;
_inner_offset = decoder.out_of_line_offset(member_inline_size)?;
}
match ordinal {
2 => {
#[allow(irrefutable_let_patterns)]
if let UnionMember::UnionData(_) = self {
// Do nothing, read the value into the object
} else {
// Initialize `self` to the right variant
*self = UnionMember::UnionData(fidl::new_empty!(u8));
}
#[allow(irrefutable_let_patterns)]
if let UnionMember::UnionData(ref mut val) = self {
fidl::decode!(u8, val, decoder, _inner_offset, depth)?;
} else {
unreachable!()
}
}
#[allow(deprecated)]
ordinal => {
for _ in 0..num_handles {
decoder.drop_next_handle()?;
}
*self = UnionMember::__SourceBreaking { unknown_ordinal: ordinal };
}
}
if !inlined && decoder.next_out_of_line() != next_out_of_line + (num_bytes as usize) {
return Err(fidl::Error::InvalidNumBytesInEnvelope);
}
if handles_before != decoder.remaining_handles() + (num_handles as usize) {
return Err(fidl::Error::InvalidNumHandlesInEnvelope);
}
Ok(())
}
}
}