blob: c97100b10e8058b288be5f764e08e72b8cd04089 [file] [log] [blame]
// Copyright 2016 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <arpa/inet.h>
#include <inet6.h>
#include <printf.h>
#include <stdint.h>
#include <string.h>
// Enable at your own risk. Some of these packet errors can be fairly
// common when the buffers start to overflow.
#if 0
#define BAD(n, ...) \
do { \
printf("error: "); \
printf(n, ##__VA_ARGS__); \
printf("\n"); \
return; \
} while (0)
#else
#define BAD(n, ...) \
do { \
return; \
} while (0)
#endif
// useful addresses
const ip6_addr ip6_ll_all_nodes = {
.x = {0xFF, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
};
// standard broadcast address for mDNS.
const ip6_addr ip6_mdns_broadcast = {
.x = {0xFF, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFB},
};
// Convert MAC Address to IPv6 Link Local Address
// aa:bb:cc:dd:ee:ff => FF80::aabb:ccFF:FEdd:eeff
// bit 2 (U/L) of the mac is inverted
static void ll6addr_from_mac(ip6_addr* _ip, const mac_addr* _mac) {
uint8_t* ip = _ip->x;
const uint8_t* mac = _mac->x;
memset(ip, 0, IP6_ADDR_LEN);
ip[0] = 0xFE;
ip[1] = 0x80;
memset(ip + 2, 0, 6);
ip[8] = mac[0] ^ 2;
ip[9] = mac[1];
ip[10] = mac[2];
ip[11] = 0xFF;
ip[12] = 0xFE;
ip[13] = mac[3];
ip[14] = mac[4];
ip[15] = mac[5];
}
// Convert MAC Address to IPv6 Solicit Neighbor Multicast Address
// aa:bb:cc:dd:ee:ff -> FF02::1:FFdd:eeff
static void snmaddr_from_mac(ip6_addr* _ip, const mac_addr* _mac) {
uint8_t* ip = _ip->x;
const uint8_t* mac = _mac->x;
ip[0] = 0xFF;
ip[1] = 0x02;
memset(ip + 2, 0, 9);
ip[11] = 0x01;
ip[12] = 0xFF;
ip[13] = mac[3];
ip[14] = mac[4];
ip[15] = mac[5];
}
// Convert IPv6 Multicast Address to Ethernet Multicast Address
static void multicast_from_ip6(mac_addr* _mac, const ip6_addr* _ip6) {
const uint8_t* ip = _ip6->x;
uint8_t* mac = _mac->x;
mac[0] = 0x33;
mac[1] = 0x33;
mac[2] = ip[12];
mac[3] = ip[13];
mac[4] = ip[14];
mac[5] = ip[15];
}
// ip6 stack configuration
mac_addr ll_mac_addr;
ip6_addr ll_ip6_addr;
mac_addr snm_mac_addr;
ip6_addr snm_ip6_addr;
// cache for the last source addresses we've seen
static mac_addr rx_mac_addr;
static ip6_addr rx_ip6_addr;
void ip6_init(void* macaddr) {
char tmp[IP6TOAMAX];
mac_addr all;
// save our ethernet MAC and synthesize link layer addresses
memcpy(&ll_mac_addr, macaddr, 6);
ll6addr_from_mac(&ll_ip6_addr, &ll_mac_addr);
snmaddr_from_mac(&snm_ip6_addr, &ll_mac_addr);
multicast_from_ip6(&snm_mac_addr, &snm_ip6_addr);
eth_add_mcast_filter(&snm_mac_addr);
multicast_from_ip6(&all, &ip6_ll_all_nodes);
eth_add_mcast_filter(&all);
printf("macaddr: %02x:%02x:%02x:%02x:%02x:%02x\n", ll_mac_addr.x[0], ll_mac_addr.x[1],
ll_mac_addr.x[2], ll_mac_addr.x[3], ll_mac_addr.x[4], ll_mac_addr.x[5]);
printf("ip6addr: %s\n", ip6toa(tmp, &ll_ip6_addr));
printf("snmaddr: %s\n", ip6toa(tmp, &snm_ip6_addr));
}
static int resolve_ip6(mac_addr* _mac, const ip6_addr* _ip) {
const uint8_t* ip = _ip->x;
// Multicast addresses are a simple transform
if (ip[0] == 0xFF) {
multicast_from_ip6(_mac, _ip);
return 0;
}
// Trying to send to the IP that we last received a packet from?
// Assume their mac address has not changed
if (memcmp(_ip, &rx_ip6_addr, sizeof(rx_ip6_addr)) == 0) {
memcpy(_mac, &rx_mac_addr, sizeof(rx_mac_addr));
return 0;
}
// We don't know how to find peers or routers yet, so give up...
return -1;
}
static uint16_t checksum(const void* _data, size_t len, uint16_t _sum) {
uint32_t sum = _sum;
const uint16_t* data = _data;
while (len > 1) {
sum += *data++;
len -= 2;
}
if (len) {
sum += (*data & 0xFF);
}
while (sum > 0xFFFF) {
sum = (sum & 0xFFFF) + (sum >> 16);
}
return (uint16_t)sum;
}
typedef struct {
uint8_t eth[16];
ip6_hdr ip6;
uint8_t data[0];
} ip6_pkt;
typedef struct {
uint8_t eth[16];
ip6_hdr ip6;
udp_hdr udp;
uint8_t data[0];
} udp_pkt;
static uint16_t ip6_checksum(ip6_hdr* ip, unsigned type, size_t length) {
uint16_t sum;
// length and protocol field for pseudo-header
sum = checksum(&ip->length, 2, htons((uint16_t)type));
// src/dst for pseudo-header + payload
sum = checksum(ip->src, 32 + length, sum);
// 0 is illegal, so 0xffff remains 0xffff
return (sum != 0xFFFF) ? ~sum : sum;
}
static int ip6_setup(ip6_pkt* p, const ip6_addr* daddr, size_t length, uint8_t type) {
mac_addr dmac;
if (resolve_ip6(&dmac, daddr))
return -1;
// ethernet header
memcpy(p->eth + 2, &dmac, ETH_ADDR_LEN);
memcpy(p->eth + 8, &ll_mac_addr, ETH_ADDR_LEN);
p->eth[14] = (ETH_IP6 >> 8) & 0xFF;
p->eth[15] = ETH_IP6 & 0xFF;
// ip6 header
p->ip6.ver_tc_flow = 0x60; // v=6, tc=0, flow=0
p->ip6.length = htons((uint16_t)length);
p->ip6.next_header = type;
p->ip6.hop_limit = 255;
memcpy(p->ip6.src, &ll_ip6_addr, sizeof(ip6_addr));
memcpy(p->ip6.dst, daddr, sizeof(ip6_addr));
return 0;
}
int udp6_send(const void* data, size_t dlen, const ip6_addr* daddr, uint16_t dport,
uint16_t sport) {
size_t length = dlen + UDP_HDR_LEN;
udp_pkt* p = eth_get_buffer(ETH_MTU + 2);
if (p == NULL)
return -1;
if (dlen > UDP6_MAX_PAYLOAD) {
printf("Internal error: UDP write request is too long\n");
goto fail;
}
if (ip6_setup((void*)p, daddr, length, HDR_UDP)) {
printf("Error: ip6_setup failed!\n");
goto fail;
}
// udp header
p->udp.src_port = htons(sport);
p->udp.dst_port = htons(dport);
p->udp.length = htons((uint16_t)length);
p->udp.checksum = 0;
memcpy(p->data, data, dlen);
p->udp.checksum = ip6_checksum(&p->ip6, HDR_UDP, length);
return eth_send(p->eth + 2, ETH_HDR_LEN + IP6_HDR_LEN + length);
fail:
eth_put_buffer(p);
return -1;
}
#define ICMP6_MAX_PAYLOAD (ETH_MTU - ETH_HDR_LEN - IP6_HDR_LEN)
static uint16_t shift_combine(uint16_t x, uint16_t y) { return (uint16_t)(x << 8) | y; }
char* ip6toa(char* _out, void* ip6addr) {
const uint8_t* x = ip6addr;
const uint8_t* end = x + 16;
char* out = _out;
uint16_t n;
n = shift_combine(x[0], x[1]);
while ((n == 0) && (x < end)) {
x += 2;
n = shift_combine(x[0], x[1]);
}
if ((end - x) < 16) {
if (end == x) {
// all 0s - special case
sprintf(out, "::");
return _out;
}
// we consumed some number of leading 0s
out += sprintf(out, ":");
while (x < end) {
out += sprintf(out, ":%x", n);
x += 2;
n = shift_combine(x[0], x[1]);
}
return _out;
}
while (x < (end - 2)) {
out += sprintf(out, "%x:", n);
x += 2;
n = shift_combine(x[0], x[1]);
if (n == 0)
goto middle_zeros;
}
out += sprintf(out, "%x", n);
return _out;
middle_zeros:
while ((n == 0) && (x < end)) {
x += 2;
n = shift_combine(x[0], x[1]);
}
if (x == end) {
out += sprintf(out, ":");
return _out;
}
out += sprintf(out, ":%x", n);
while (x < (end - 2)) {
x += 2;
n = shift_combine(x[0], x[1]);
out += sprintf(out, ":%x", n);
}
return _out;
}