blob: 896ba798663f5626d6d621e2858b3df4e5b59788 [file] [log] [blame]
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use {crate::mac::*, ieee80211::MacAddr};
pub const EAPOL_PDU: &[u8] = &[5, 5, 5, 5, 5, 5, 5, 5];
pub fn make_mgmt_frame(ht_ctrl: bool) -> Vec<u8> {
#[rustfmt::skip]
let mut bytes = vec![
1, if ht_ctrl { 128 } else { 1 }, // fc
2, 2, // duration
3, 3, 3, 3, 3, 3, // addr1
4, 4, 4, 4, 4, 4, // addr2
5, 5, 5, 5, 5, 5, // addr3
6, 6, // sequence control
];
if ht_ctrl {
bytes.extend_from_slice(&[8, 8, 8, 8]);
}
bytes.extend_from_slice(&[9, 9, 9]);
bytes
}
pub fn make_data_hdr(
addr4: Option<[u8; 6]>,
qos_ctrl: [u8; 2],
ht_ctrl: Option<[u8; 4]>,
) -> Vec<u8> {
let mut fc = FrameControl(0);
fc.set_frame_type(FrameType::DATA);
fc.set_data_subtype(DataSubtype(0).with_qos(true));
fc.set_from_ds(addr4.is_some());
fc.set_to_ds(addr4.is_some());
fc.set_htc_order(ht_ctrl.is_some());
let fc = fc.0.to_le_bytes();
#[rustfmt::skip]
let mut bytes = vec![
// Data Header
fc[0], fc[1], // fc
2, 2, // duration
3, 3, 3, 3, 3, 3, // addr1
4, 4, 4, 4, 4, 4, // addr2
5, 5, 5, 5, 5, 5, // addr3
6, 6, // sequence control
];
if let Some(addr4) = addr4 {
bytes.extend_from_slice(&addr4);
}
bytes.extend_from_slice(&qos_ctrl);
if let Some(ht_ctrl) = ht_ctrl {
bytes.extend_from_slice(&ht_ctrl);
}
bytes
}
pub fn make_data_frame_single_llc(addr4: Option<[u8; 6]>, ht_ctrl: Option<[u8; 4]>) -> Vec<u8> {
let qos_ctrl = [1, 1];
let mut bytes = make_data_hdr(addr4, qos_ctrl, ht_ctrl);
#[rustfmt::skip]
bytes.extend_from_slice(&[
// LLC Header
7, 7, 7, // DSAP, SSAP & control
8, 8, 8, // OUI
9, 10, // eth type
// Trailing bytes
11, 11, 11,
]);
bytes
}
pub fn make_null_data_frame() -> Vec<u8> {
let fc = FrameControl(0)
.with_frame_type(FrameType::DATA)
.with_data_subtype(DataSubtype(0).with_null(true))
.with_to_ds(true);
let fc = fc.0.to_le_bytes();
#[rustfmt::skip]
let bytes = vec![
fc[0], fc[1], // FC
2, 2, // duration
3, 3, 3, 3, 3, 3, // addr1
4, 4, 4, 4, 4, 4, // addr2
5, 5, 5, 5, 5, 5, // addr3
6, 6, // sequence control
];
bytes
}
pub fn make_data_frame_with_padding() -> Vec<u8> {
let mut bytes = make_data_hdr(None, [1, 1], None);
#[rustfmt::skip]
bytes.extend(vec![
// Padding
2, 2,
// LLC Header
7, 7, 7, // DSAP, SSAP & control
8, 8, 8, // OUI
9, 10, //eth type
11, 11, 11, 11, 11, // payload
]);
bytes
}
#[rustfmt::skip]
pub const MSDU_1_LLC_HDR : &[u8] = &[
0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x08, 0x00,
];
#[rustfmt::skip]
pub const MSDU_1_PAYLOAD : &[u8] = &[
0x33, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04,
];
#[rustfmt::skip]
pub const MSDU_2_LLC_HDR : &[u8] = &[
0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x08, 0x01,
];
#[rustfmt::skip]
pub const MSDU_2_PAYLOAD : &[u8] = &[
// Payload
0x99, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
];
pub fn make_data_frame_amsdu() -> Vec<u8> {
let mut qos_ctrl = QosControl(0);
qos_ctrl.set_amsdu_present(true);
let mut amsdu_data_frame = make_data_hdr(None, qos_ctrl.0.to_le_bytes(), None);
#[rustfmt::skip]
amsdu_data_frame.extend(&[
// A-MSDU Subframe #1
0x78, 0x8a, 0x20, 0x0d, 0x67, 0x03, // dst_addr
0xb4, 0xf7, 0xa1, 0xbe, 0xb9, 0xab, // src_addr
0x00, 0x74, // MSDU length
]);
amsdu_data_frame.extend(MSDU_1_LLC_HDR);
amsdu_data_frame.extend(MSDU_1_PAYLOAD);
#[rustfmt::skip]
amsdu_data_frame.extend(&[
// Padding
0x00, 0x00,
// A-MSDU Subframe #2
0x78, 0x8a, 0x20, 0x0d, 0x67, 0x04, // dst_addr
0xb4, 0xf7, 0xa1, 0xbe, 0xb9, 0xac, // src_addr
0x00, 0x66, // MSDU length
]);
amsdu_data_frame.extend(MSDU_2_LLC_HDR);
amsdu_data_frame.extend(MSDU_2_PAYLOAD);
amsdu_data_frame
}
pub fn make_eapol_frame(addr1: MacAddr) -> (MacAddr, MacAddr, Vec<u8>) {
#[rustfmt::skip]
let mut frame = vec![
// Data header:
0b0000_10_00, 0b000000_1_0, // FC
0, 0, // Duration
6, 6, 6, 6, 6, 6, // addr1
7, 7, 7, 7, 7, 7, // addr2
7, 7, 7, 7, 7, 7, // addr3
0x10, 0, // Sequence Control
// LLC header:
0xaa, 0xaa, 0x03, // dsap ssap ctrl
0x00, 0x00, 0x00, // oui
0x88, 0x8E, // protocol id (EAPOL)
];
// overwrite addr1
frame[4..10].copy_from_slice(&addr1);
// EAPOL frame:
frame.extend(EAPOL_PDU);
// (src, dst, data frame)
([7; 6], addr1, frame)
}
pub fn make_data_frame_amsdu_padding_too_short() -> Vec<u8> {
let mut qos_ctrl = QosControl(0);
qos_ctrl.set_amsdu_present(true);
let mut amsdu_data_frame = make_data_hdr(None, qos_ctrl.0.to_le_bytes(), None);
#[rustfmt::skip]
amsdu_data_frame.extend(&[
// A-MSDU Subframe #1
0x78, 0x8a, 0x20, 0x0d, 0x67, 0x03, // dst_addr
0xb4, 0xf7, 0xa1, 0xbe, 0xb9, 0xab, // src_addr
0x00, 0x74, // MSDU length
]);
amsdu_data_frame.extend(MSDU_1_LLC_HDR);
amsdu_data_frame.extend(MSDU_1_PAYLOAD);
#[rustfmt::skip]
amsdu_data_frame.extend(&[
// Padding is shorter than needed (1 vs 2)
0x00,
// A-MSDU Subframe #2
0x78, 0x8a, 0x20, 0x0d, 0x67, 0x04, // dst_addr
0xb4, 0xf7, 0xa1, 0xbe, 0xb9, 0xac, // src_addr
0x00, 0x66, // MSDU length
]);
amsdu_data_frame.extend(MSDU_2_LLC_HDR);
amsdu_data_frame.extend(MSDU_2_PAYLOAD);
amsdu_data_frame
}
pub fn fake_wpa1_ie_body(enhanced: bool) -> Vec<u8> {
let cipher = if enhanced { 0x4 } else { 0x2 }; // unicast cipher is CCMP-128 or TKIP
vec![
0x01, 0x00, // WPA version
0x00, 0x50, 0xf2, 0x02, // multicast cipher: TKIP
0x01, 0x00, 0x00, 0x50, 0xf2, cipher, // 1 unicast cipher
0x01, 0x00, 0x00, 0x50, 0xf2, 0x02, // 1 AKM: PSK
]
}
pub fn fake_wpa1_ie(enhanced: bool) -> Vec<u8> {
let mut ie = vec![
0xdd, 0x16, 0x00, 0x50, 0xf2, // IE header
0x01, // MSFT specific IE type (WPA)
];
ie.append(&mut fake_wpa1_ie_body(enhanced));
ie
}
fn attach_rsne_header(rsne_body: &[u8]) -> Vec<u8> {
let mut ies = vec![48, rsne_body.len() as u8]; // Element Header
ies.extend_from_slice(&rsne_body[..]);
ies
}
pub fn fake_wpa2_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 4, // Group Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 4, // 1 Pairwise Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 2, // 1 AKM: PSK
])
}
pub fn fake_wpa2_mfpc_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 4, // Group Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 4, // 1 Pairwise Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 2, // 1 AKM: PSK
0x8C, 0x00, // RSN capabilities: MFP capable, 16 PTKSA replay counters
])
}
pub fn fake_wpa2_mfpr_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 4, // Group Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 4, // 1 Pairwise Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 2, // 1 AKM: PSK
0xCC, 0x00, // RSN capabilities: MFP capable + required, 16 PTKSA replay counters
])
}
pub fn fake_wpa2_tkip_only_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 2, // Group Cipher: TKIP
1, 0, 0x00, 0x0F, 0xAC, 2, // 1 Pairwise Cipher: TKIP
1, 0, 0x00, 0x0F, 0xAC, 2, // 1 AKM: PSK
])
}
pub fn fake_wpa2_tkip_ccmp_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 2, // Group Cipher: TKIP
2, 0, 0x00, 0x0F, 0xAC, 2, 0x00, 0x0F, 0xAC, 4, // 2 Pairwise Ciphers: TKIP, CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 2, // 1 AKM: PSK
])
}
pub fn fake_wpa2_wpa3_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 4, // Group Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 4, // 1 Pairwise Cipher: CCMP-128
2, 0, 0x00, 0x0F, 0xAC, 8, 0x00, 0x0F, 0xAC, 2, // 2 AKM: SAE, PSK
0x8C, 0x00, // RSN capabilities: MFP capable, 16 PTKSA replay counters
])
}
// Wpa2/Wpa3 with management frame protection (MFP) required flag set to true
pub fn fake_wpa2_wpa3_mfpr_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 4, // Group Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 4, // 1 Pairwise Cipher: CCMP-128
2, 0, 0x00, 0x0F, 0xAC, 8, 0x00, 0x0F, 0xAC, 2, // 2 AKM: SAE, PSK
0xCC, 0x00, // RSN capabilities: MFP capable + required, 16 PTKSA replay counters
])
}
// Wpa2/Wpa3 without any management frame protection flags set.
pub fn fake_wpa2_wpa3_no_mfp_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 4, // Group Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 4, // 1 Pairwise Cipher: CCMP-128
2, 0, 0x00, 0x0F, 0xAC, 8, 0x00, 0x0F, 0xAC, 2, // 2 AKM: SAE, PSK
])
}
pub fn fake_wpa3_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 4, // Group Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 4, // 1 Pairwise Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 8, // 1 AKM: SAE
0xCC, 0x00, // RSN capabilities: MFP capable + required, 16 PTKSA replay counters
])
}
pub fn fake_wpa3_transition_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 2, // Group Cipher: TKIP
1, 0, 0x00, 0x0F, 0xAC, 4, // Pairwise Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 8, // 1 AKM: SAE
0xCC, 0x00, // RSN capabilities: MFP capable + required, 16 PTKSA replay counters
])
}
// Valid except for management frame protection (MFP) required flag not being set
pub fn invalid_wpa3_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 4, // Group Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 4, // 1 Pairwise Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 8, // 1 AKM: SAE
0x8C, 0x00, // RSN capabilities: MFP capable, 16 PTKSA replay counters
])
}
pub fn fake_wpa2_enterprise_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 4, // Group Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 4, // 1 Pairwise Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 1, // 1 AKM: EAP (802.1X)
])
}
pub fn fake_wpa3_enterprise_192_bit_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 9, // Group Cipher: GCMP-256
1, 0, 0x00, 0x0F, 0xAC, 9, // 1 Pairwise Cipher: GCMP-256
1, 0, 0x00, 0x0F, 0xAC, 12, // 1 AKM: EAP-SUITEB-SHA384 (HMAC-SHA-384)
0xCC, 0x00, // RSN capabilities: MFP capable + required, 16 PTKSA replay counters
0x00, 0x00, // 0 PMKID
0x00, 0x0F, 0xAC, 12, // Group Management Cipher: BIP-Gfxbug.dev/12616 (BIP-GCMP-256)
])
}
// Invalid due to group management not being specified (thus defaulting to BIP-CMAC-128, which
// is not part of WPA3 Enterprise 192-bit)
pub fn invalid_wpa3_enterprise_192_bit_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 9, // Group Cipher: GCMP-256
1, 0, 0x00, 0x0F, 0xAC, 9, // 1 Pairwise Cipher: GCMP-256
1, 0, 0x00, 0x0F, 0xAC, 12, // 1 AKM: EAP-SUITEB-SHA384 (HMAC-SHA-384)
0xCC, 0x00, // RSN capabilities: MFP capable + required, 16 PTKSA replay counters
])
}
pub fn fake_eap_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 4, // Group Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 4, // 1 Pairwise Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 1, // 1 AKM: 802.1X
])
}
// RSNE with AKM that we can't classify into a protection type
pub fn fake_unknown_rsne() -> Vec<u8> {
attach_rsne_header(&[
1, 0, // Version
0x00, 0x0F, 0xAC, 4, // Group Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 4, // 1 Pairwise Cipher: CCMP-128
1, 0, 0x00, 0x0F, 0xAC, 7, // 1 AKM: TDLS
])
}
pub fn fake_wmm_param_header() -> Vec<u8> {
vec![
0xdd, 0x18, // Vendor IE header
0x00, 0x50, 0xf2, // MSFT OUI
0x02, 0x01, // WMM Type and WMM Parameter Subtype
0x01, // Version 1
]
}
pub fn fake_wmm_param_body() -> Vec<u8> {
vec![
0x80, // U-APSD enabled
0x00, // reserved
0x03, 0xa4, 0x00, 0x00, // AC_BE parameters
0x27, 0xa4, 0x00, 0x00, // AC_BK parameters
0x42, 0x43, 0x5e, 0x00, // AC_VI parameters
0x62, 0x32, 0x2f, 0x00, // AC_VO parameters
]
}