blob: 81f92cd8867407554fbac6abc47426a0a94fe1f0 [file] [log] [blame]
mod level;
mod stack;
pub(crate) use self::level::Expiration;
use self::level::Level;
pub(crate) use self::stack::Stack;
use std::borrow::Borrow;
use std::usize;
/// Timing wheel implementation.
///
/// This type provides the hashed timing wheel implementation that backs `Timer`
/// and `DelayQueue`.
///
/// The structure is generic over `T: Stack`. This allows handling timeout data
/// being stored on the heap or in a slab. In order to support the latter case,
/// the slab must be passed into each function allowing the implementation to
/// lookup timer entries.
///
/// See `Timer` documentation for some implementation notes.
#[derive(Debug)]
pub(crate) struct Wheel<T> {
/// The number of milliseconds elapsed since the wheel started.
elapsed: u64,
/// Timer wheel.
///
/// Levels:
///
/// * 1 ms slots / 64 ms range
/// * 64 ms slots / ~ 4 sec range
/// * ~ 4 sec slots / ~ 4 min range
/// * ~ 4 min slots / ~ 4 hr range
/// * ~ 4 hr slots / ~ 12 day range
/// * ~ 12 day slots / ~ 2 yr range
levels: Vec<Level<T>>,
}
/// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots
/// each, the timer is able to track time up to 2 years into the future with a
/// precision of 1 millisecond.
const NUM_LEVELS: usize = 6;
/// The maximum duration of a delay
const MAX_DURATION: u64 = 1 << (6 * NUM_LEVELS);
#[derive(Debug)]
pub(crate) enum InsertError {
Elapsed,
Invalid,
}
/// Poll expirations from the wheel
#[derive(Debug, Default)]
pub(crate) struct Poll {
now: u64,
expiration: Option<Expiration>,
}
impl<T> Wheel<T>
where
T: Stack,
{
/// Create a new timing wheel
pub fn new() -> Wheel<T> {
let levels = (0..NUM_LEVELS).map(Level::new).collect();
Wheel { elapsed: 0, levels }
}
/// Return the number of milliseconds that have elapsed since the timing
/// wheel's creation.
pub fn elapsed(&self) -> u64 {
self.elapsed
}
/// Insert an entry into the timing wheel.
///
/// # Arguments
///
/// * `when`: is the instant at which the entry should be fired. It is
/// represented as the number of milliseconds since the creation
/// of the timing wheel.
///
/// * `item`: The item to insert into the wheel.
///
/// * `store`: The slab or `()` when using heap storage.
///
/// # Return
///
/// Returns `Ok` when the item is successfully inserted, `Err` otherwise.
///
/// `Err(Elapsed)` indicates that `when` represents an instant that has
/// already passed. In this case, the caller should fire the timeout
/// immediately.
///
/// `Err(Invalid)` indicates an invalid `when` argument as been supplied.
pub fn insert(
&mut self,
when: u64,
item: T::Owned,
store: &mut T::Store,
) -> Result<(), (T::Owned, InsertError)> {
if when <= self.elapsed {
return Err((item, InsertError::Elapsed));
} else if when - self.elapsed > MAX_DURATION {
return Err((item, InsertError::Invalid));
}
// Get the level at which the entry should be stored
let level = self.level_for(when);
self.levels[level].add_entry(when, item, store);
debug_assert!({
self.levels[level]
.next_expiration(self.elapsed)
.map(|e| e.deadline >= self.elapsed)
.unwrap_or(true)
});
Ok(())
}
/// Remove `item` from thee timing wheel.
pub fn remove(&mut self, item: &T::Borrowed, store: &mut T::Store) {
let when = T::when(item, store);
let level = self.level_for(when);
self.levels[level].remove_entry(when, item, store);
}
/// Instant at which to poll
pub fn poll_at(&self) -> Option<u64> {
self.next_expiration().map(|expiration| expiration.deadline)
}
pub fn poll(&mut self, poll: &mut Poll, store: &mut T::Store) -> Option<T::Owned> {
loop {
if poll.expiration.is_none() {
poll.expiration = self.next_expiration().and_then(|expiration| {
if expiration.deadline > poll.now {
None
} else {
Some(expiration)
}
});
}
match poll.expiration {
Some(ref expiration) => {
if let Some(item) = self.poll_expiration(expiration, store) {
return Some(item);
}
self.set_elapsed(expiration.deadline);
}
None => {
self.set_elapsed(poll.now);
return None;
}
}
poll.expiration = None;
}
}
/// Returns the instant at which the next timeout expires.
fn next_expiration(&self) -> Option<Expiration> {
// Check all levels
for level in 0..NUM_LEVELS {
if let Some(expiration) = self.levels[level].next_expiration(self.elapsed) {
// There cannot be any expirations at a higher level that happen
// before this one.
debug_assert!({
let mut res = true;
for l2 in (level + 1)..NUM_LEVELS {
if let Some(e2) = self.levels[l2].next_expiration(self.elapsed) {
if e2.deadline < expiration.deadline {
res = false;
}
}
}
res
});
return Some(expiration);
}
}
None
}
pub fn poll_expiration(
&mut self,
expiration: &Expiration,
store: &mut T::Store,
) -> Option<T::Owned> {
while let Some(item) = self.pop_entry(expiration, store) {
if expiration.level == 0 {
debug_assert_eq!(T::when(item.borrow(), store), expiration.deadline);
return Some(item);
} else {
let when = T::when(item.borrow(), store);
let next_level = expiration.level - 1;
self.levels[next_level].add_entry(when, item, store);
}
}
None
}
fn set_elapsed(&mut self, when: u64) {
assert!(
self.elapsed <= when,
"elapsed={:?}; when={:?}",
self.elapsed,
when
);
if when > self.elapsed {
self.elapsed = when;
}
}
fn pop_entry(&mut self, expiration: &Expiration, store: &mut T::Store) -> Option<T::Owned> {
self.levels[expiration.level].pop_entry_slot(expiration.slot, store)
}
fn level_for(&self, when: u64) -> usize {
level_for(self.elapsed, when)
}
}
fn level_for(elapsed: u64, when: u64) -> usize {
let masked = elapsed ^ when;
assert!(masked != 0, "elapsed={}; when={}", elapsed, when);
let leading_zeros = masked.leading_zeros() as usize;
let significant = 63 - leading_zeros;
significant / 6
}
impl Poll {
pub fn new(now: u64) -> Poll {
Poll {
now,
expiration: None,
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_level_for() {
for pos in 1..64 {
assert_eq!(
0,
level_for(0, pos),
"level_for({}) -- binary = {:b}",
pos,
pos
);
}
for level in 1..5 {
for pos in level..64 {
let a = pos * 64_usize.pow(level as u32);
assert_eq!(
level,
level_for(0, a as u64),
"level_for({}) -- binary = {:b}",
a,
a
);
if pos > level {
let a = a - 1;
assert_eq!(
level,
level_for(0, a as u64),
"level_for({}) -- binary = {:b}",
a,
a
);
}
if pos < 64 {
let a = a + 1;
assert_eq!(
level,
level_for(0, a as u64),
"level_for({}) -- binary = {:b}",
a,
a
);
}
}
}
}
}