blob: 6b7887baed382ab73ced8adc4efe900534f443bb [file] [log] [blame]
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "aml-light.h"
#include <string.h>
#include <ddk/binding.h>
#include <ddk/metadata.h>
#include <ddk/metadata/lights.h>
#include <ddk/platform-defs.h>
#include <ddktl/fidl.h>
#include <ddktl/protocol/composite.h>
#include <fbl/alloc_checker.h>
namespace aml_light {
namespace {
constexpr uint8_t kMaxBrightness = 255;
constexpr uint8_t kMinBrightness = 0;
} // namespace
zx_status_t LightDevice::Init(bool init_on) {
zx_status_t status = ZX_OK;
if (pwm_.has_value() && ((status = pwm_->Enable()) != ZX_OK)) {
return status;
}
return SetSimpleValue(init_on ? kMaxBrightness : kMinBrightness);
}
bool LightDevice::HasCapability(Capability capability) const {
switch (capability) {
case Capability::BRIGHTNESS:
return pwm_.has_value();
case Capability::RGB:
default:
return false;
}
}
zx_status_t LightDevice::SetSimpleValue(uint8_t value) {
zx_status_t status = ZX_OK;
if (pwm_.has_value()) {
aml_pwm::mode_config regular = {aml_pwm::ON, {}};
pwm_config_t config = {
.polarity = false,
.period_ns = 1250,
.duty_cycle = static_cast<float>(value * 100.0 / (kMaxBrightness * 1.0)),
.mode_config_buffer = &regular,
.mode_config_size = sizeof(regular),
};
if ((status = pwm_->SetConfig(&config)) != ZX_OK) {
zxlogf(ERROR, "%s: PWM set config failed\n", __func__);
return status;
}
} else {
if ((status = gpio_.Write(value)) != ZX_OK) {
zxlogf(ERROR, "%s: GPIO write failed\n", __func__);
return status;
}
}
value_ = value;
return ZX_OK;
}
void AmlLight::GetName(uint32_t index, GetNameCompleter::Sync completer) {
if (index >= lights_.size()) {
return completer.Reply(ZX_ERR_OUT_OF_RANGE, ::fidl::StringView(nullptr, 0));
}
auto name = lights_[index].GetName();
return completer.Reply(ZX_OK, ::fidl::StringView(&name[0], name.size() + 1));
}
void AmlLight::GetCount(GetCountCompleter::Sync completer) {
return completer.Reply(static_cast<uint32_t>(lights_.size()));
}
void AmlLight::HasCapability(uint32_t index, Capability capability,
HasCapabilityCompleter::Sync completer) {
if (index >= lights_.size()) {
return completer.Reply(ZX_ERR_OUT_OF_RANGE, false);
}
return completer.Reply(ZX_OK, lights_[index].HasCapability(capability));
}
void AmlLight::GetSimpleValue(uint32_t index, GetSimpleValueCompleter::Sync completer) {
if (index >= lights_.size()) {
return completer.Reply(ZX_ERR_OUT_OF_RANGE, 0);
}
return completer.Reply(ZX_OK, lights_[index].GetSimpleValue());
}
void AmlLight::SetSimpleValue(uint32_t index, uint8_t value,
SetSimpleValueCompleter::Sync completer) {
if (index >= lights_.size()) {
return completer.Reply(ZX_ERR_OUT_OF_RANGE);
}
return completer.Reply(lights_[index].SetSimpleValue(value));
}
void AmlLight::GetRgbValue(uint32_t index, GetRgbValueCompleter::Sync completer) {
return completer.Reply(ZX_ERR_NOT_SUPPORTED, {});
}
void AmlLight::SetRgbValue(uint32_t index, Rgb value, SetRgbValueCompleter::Sync completer) {
return completer.Reply(ZX_ERR_NOT_SUPPORTED);
}
zx_status_t AmlLight::DdkMessage(fidl_msg_t* msg, fidl_txn_t* txn) {
DdkTransaction transaction(txn);
Light::Dispatch(this, msg, &transaction);
return transaction.Status();
}
void AmlLight::DdkRelease() { delete this; }
zx_status_t AmlLight::Create(void* ctx, zx_device_t* parent) {
fbl::AllocChecker ac;
auto dev = std::unique_ptr<AmlLight>(new (&ac) AmlLight(parent));
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
auto status = dev->Init();
if (status != ZX_OK) {
return status;
}
// devmgr is now in charge of the device.
__UNUSED auto* dummy = dev.release();
return ZX_OK;
}
zx_status_t AmlLight::Init() {
zx_status_t status = ZX_OK;
ddk::CompositeProtocolClient composite(parent());
if (!composite.is_valid()) {
zxlogf(ERROR, "%s: Could not get composite protocol\n", __func__);
return ZX_ERR_NOT_SUPPORTED;
}
auto component_count = composite.GetComponentCount();
if (component_count <= 0) {
return ZX_ERR_INTERNAL;
}
fbl::AllocChecker ac;
size_t metadata_size, actual;
if ((status = device_get_metadata_size(parent(), DEVICE_METADATA_NAME, &metadata_size)) !=
ZX_OK) {
zxlogf(ERROR, "%s: couldn't get metadata size\n", __func__);
return status;
}
auto names = fbl::Array<char>(new (&ac) char[metadata_size], metadata_size);
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
if ((status = device_get_metadata(parent(), DEVICE_METADATA_NAME, names.data(), metadata_size,
&actual)) != ZX_OK) {
return status;
}
if ((actual != metadata_size) || (actual % kNameLength != 0)) {
zxlogf(ERROR, "%s: wrong metadata size\n", __func__);
return ZX_ERR_INVALID_ARGS;
}
uint32_t led_count = static_cast<uint32_t>(metadata_size / kNameLength);
if (((status = device_get_metadata_size(parent(), DEVICE_METADATA_LIGHTS, &metadata_size)) !=
ZX_OK) ||
(metadata_size != led_count * sizeof(lights_config_t))) {
zxlogf(ERROR, "%s: get metdata size failed\n", __func__);
return status;
}
auto configs = fbl::Array<lights_config_t>(new (&ac) lights_config_t[led_count], led_count);
if (!ac.check()) {
return ZX_ERR_NO_MEMORY;
}
if ((status = device_get_metadata(parent(), DEVICE_METADATA_LIGHTS, configs.data(),
configs.size() * sizeof(lights_config_t), &actual)) != ZX_OK) {
return status;
}
if ((actual != metadata_size) || (actual % sizeof(lights_config_t) != 0)) {
zxlogf(ERROR, "%s: wrong metadata size\n", __func__);
return ZX_ERR_INVALID_ARGS;
}
zx_device_t* components[component_count];
composite.GetComponents(components, component_count, &actual);
if (actual != component_count) {
return ZX_ERR_INTERNAL;
}
uint32_t count = 1;
for (uint32_t i = 0; i < led_count; i++) {
auto* config = &configs[i];
ddk::GpioProtocolClient gpio(components[count]);
if (!gpio.is_valid()) {
zxlogf(ERROR, "%s: could not get gpio protocol: %d\n", __func__, status);
return status;
}
count++;
if (config->brightness) {
ddk::PwmProtocolClient pwm(components[count]);
if (!pwm.is_valid()) {
zxlogf(ERROR, "%s: could not get pwm protocol: %d\n", __func__, status);
return status;
}
count++;
if (i * kNameLength >= names.size()) {
zxlogf(ERROR, "%s: name buffer overflow!\n", __func__);
return ZX_ERR_BUFFER_TOO_SMALL;
}
lights_.emplace_back(&names[i * kNameLength], gpio, pwm);
} else {
if (i * kNameLength >= names.size()) {
zxlogf(ERROR, "%s: name buffer overflow!\n", __func__);
return ZX_ERR_BUFFER_TOO_SMALL;
}
lights_.emplace_back(&names[i * kNameLength], gpio, std::nullopt);
}
if ((status = lights_.back().Init(config->init_on)) != ZX_OK) {
zxlogf(ERROR, "%s: Could not initialize light\n", __func__);
return status;
}
// RGB not supported, so not implemented.
}
return DdkAdd("gpio-light", DEVICE_ADD_NON_BINDABLE);
}
static constexpr zx_driver_ops_t driver_ops = []() {
zx_driver_ops_t ops = {};
ops.version = DRIVER_OPS_VERSION;
ops.bind = AmlLight::Create;
return ops;
}();
} // namespace aml_light
// clang-format off
ZIRCON_DRIVER_BEGIN(aml_light, aml_light::driver_ops, "zircon", "0.1", 4)
BI_ABORT_IF(NE, BIND_PROTOCOL, ZX_PROTOCOL_COMPOSITE),
BI_ABORT_IF(NE, BIND_PLATFORM_DEV_VID, PDEV_VID_AMLOGIC),
BI_ABORT_IF(NE, BIND_PLATFORM_DEV_PID, PDEV_PID_GENERIC),
BI_MATCH_IF(EQ, BIND_PLATFORM_DEV_DID, PDEV_DID_GPIO_LIGHT),
ZIRCON_DRIVER_END(aml_light)
// clang-format on