blob: 65d951c2a93fd6a713b336863c75f2a3d79c339c [file] [log] [blame]
/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Shader compilation performance tests.
*//*--------------------------------------------------------------------*/
#include "es3pShaderCompilationCases.hpp"
#include "tcuTestLog.hpp"
#include "tcuVector.hpp"
#include "tcuMatrix.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuPlatform.hpp"
#include "tcuCommandLine.hpp"
#include "tcuRenderTarget.hpp"
#include "tcuCPUWarmup.hpp"
#include "tcuStringTemplate.hpp"
#include "gluTexture.hpp"
#include "gluPixelTransfer.hpp"
#include "gluRenderContext.hpp"
#include "deStringUtil.hpp"
#include "deRandom.hpp"
#include "deClock.h"
#include "deMath.h"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
#include <map>
#include <algorithm>
#include <limits>
#include <iomanip>
using tcu::TestLog;
using tcu::Vec3;
using tcu::Vec4;
using tcu::Mat3;
using tcu::Mat4;
using std::string;
using std::vector;
using namespace glw; // GL types
namespace deqp
{
namespace gles3
{
namespace Performance
{
static const bool WARMUP_CPU_AT_BEGINNING_OF_CASE = false;
static const bool WARMUP_CPU_BEFORE_EACH_MEASUREMENT = true;
static const int MAX_VIEWPORT_WIDTH = 64;
static const int MAX_VIEWPORT_HEIGHT = 64;
static const int DEFAULT_MINIMUM_MEASUREMENT_COUNT = 15;
static const float RELATIVE_MEDIAN_ABSOLUTE_DEVIATION_THRESHOLD = 0.05f;
// Texture size for the light shader and texture lookup shader cases.
static const int TEXTURE_WIDTH = 64;
static const int TEXTURE_HEIGHT = 64;
template <typename T>
inline string toStringWithPadding (T value, int minLength)
{
std::ostringstream s;
s << std::setfill('0') << std::setw(minLength) << value;
return s.str();
}
// Add some whitespace and comments to str. They should depend on uniqueNumber.
static string strWithWhiteSpaceAndComments (const string& str, deUint32 uniqueNumber)
{
string res("");
// Find the first newline.
int firstLineEndNdx = 0;
while (firstLineEndNdx < (int)str.size() && str[firstLineEndNdx] != '\n')
{
res += str[firstLineEndNdx];
firstLineEndNdx++;
}
res += '\n';
DE_ASSERT(firstLineEndNdx < (int)str.size());
// Add the whitespaces and comments just after the first line.
de::Random rnd (uniqueNumber);
int numWS = rnd.getInt(10, 20);
for (int i = 0; i < numWS; i++)
res += " \t\n"[rnd.getInt(0, 2)];
res += "/* unique comment " + de::toString(uniqueNumber) + " */\n";
res += "// unique comment " + de::toString(uniqueNumber) + "\n";
for (int i = 0; i < numWS; i++)
res += " \t\n"[rnd.getInt(0, 2)];
// Add the rest of the string.
res.append(&str.c_str()[firstLineEndNdx + 1]);
return res;
}
//! Helper for computing relative magnitudes while avoiding division by zero.
static float hackySafeRelativeResult (float x, float y)
{
// \note A possible case is that x is standard deviation, and y is average
// (or similarly for median or some such). So, if y is 0, that
// probably means that x is also 0(ish) (because in practice we're
// dealing with non-negative values, in which case an average of 0
// implies that the samples are all 0 - note that the same isn't
// strictly true for things like median) so a relative result of 0
// wouldn't be that far from the truth.
return y == 0.0f ? 0.0f : x/y;
}
template <typename T>
static float vectorFloatAverage (const vector<T>& v)
{
DE_ASSERT(!v.empty());
float result = 0.0f;
for (int i = 0; i < (int)v.size(); i++)
result += (float)v[i];
return result / (float)v.size();
}
template <typename T>
static float vectorFloatMedian (const vector<T>& v)
{
DE_ASSERT(!v.empty());
vector<T> temp = v;
std::sort(temp.begin(), temp.end());
return temp.size() % 2 == 0
? 0.5f * ((float)temp[temp.size()/2-1] + (float)temp[temp.size()/2])
: (float)temp[temp.size()/2];
}
template <typename T>
static float vectorFloatMinimum (const vector<T>& v)
{
DE_ASSERT(!v.empty());
return (float)*std::min_element(v.begin(), v.end());
}
template <typename T>
static float vectorFloatMaximum (const vector<T>& v)
{
DE_ASSERT(!v.empty());
return (float)*std::max_element(v.begin(), v.end());
}
template <typename T>
static float vectorFloatStandardDeviation (const vector<T>& v)
{
float average = vectorFloatAverage(v);
float result = 0.0f;
for (int i = 0; i < (int)v.size(); i++)
{
float d = (float)v[i] - average;
result += d*d;
}
return deFloatSqrt(result/(float)v.size());
}
template <typename T>
static float vectorFloatRelativeStandardDeviation (const vector<T>& v)
{
return hackySafeRelativeResult(vectorFloatStandardDeviation(v), vectorFloatAverage(v));
}
template <typename T>
static float vectorFloatMedianAbsoluteDeviation (const vector<T>& v)
{
float median = vectorFloatMedian(v);
vector<float> absoluteDeviations (v.size());
for (int i = 0; i < (int)v.size(); i++)
absoluteDeviations[i] = deFloatAbs((float)v[i] - median);
return vectorFloatMedian(absoluteDeviations);
}
template <typename T>
static float vectorFloatRelativeMedianAbsoluteDeviation (const vector<T>& v)
{
return hackySafeRelativeResult(vectorFloatMedianAbsoluteDeviation(v), vectorFloatMedian(v));
}
template <typename T>
static float vectorFloatMaximumMinusMinimum (const vector<T>& v)
{
return vectorFloatMaximum(v) - vectorFloatMinimum(v);
}
template <typename T>
static float vectorFloatRelativeMaximumMinusMinimum (const vector<T>& v)
{
return hackySafeRelativeResult(vectorFloatMaximumMinusMinimum(v), vectorFloatMaximum(v));
}
template <typename T>
static vector<T> vectorLowestPercentage (const vector<T>& v, float factor)
{
DE_ASSERT(0.0f < factor && factor <= 1.0f);
int targetSize = (int)(deFloatCeil(factor*(float)v.size()));
vector<T> temp = v;
std::sort(temp.begin(), temp.end());
while ((int)temp.size() > targetSize)
temp.pop_back();
return temp;
}
template <typename T>
static float vectorFloatFirstQuartile (const vector<T>& v)
{
return vectorFloatMedian(vectorLowestPercentage(v, 0.5f));
}
// Helper function for combining 4 tcu::Vec4's into one tcu::Vector<float, 16>.
static tcu::Vector<float, 16> combineVec4ToVec16 (const Vec4& a0, const Vec4& a1, const Vec4& a2, const Vec4& a3)
{
tcu::Vector<float, 16> result;
for (int vecNdx = 0; vecNdx < 4; vecNdx++)
{
const Vec4& srcVec = vecNdx == 0 ? a0 : vecNdx == 1 ? a1 : vecNdx == 2 ? a2 : a3;
for (int i = 0; i < 4; i++)
result[vecNdx*4 + i] = srcVec[i];
}
return result;
}
// Helper function for extending an n-sized (n <= 16) vector to a 16-sized vector (padded with zeros).
template <int Size>
static tcu::Vector<float, 16> vecTo16 (const tcu::Vector<float, Size>& vec)
{
DE_STATIC_ASSERT(Size <= 16);
tcu::Vector<float, 16> res(0.0f);
for (int i = 0; i < Size; i++)
res[i] = vec[i];
return res;
}
// Helper function for extending an n-sized (n <= 16) array to a 16-sized vector (padded with zeros).
template <int Size>
static tcu::Vector<float, 16> arrTo16 (const tcu::Array<float, Size>& arr)
{
DE_STATIC_ASSERT(Size <= 16);
tcu::Vector<float, 16> res(0.0f);
for(int i = 0; i < Size; i++)
res[i] = arr[i];
return res;
}
static string getShaderInfoLog (const glw::Functions& gl, deUint32 shader)
{
string result;
int infoLogLen = 0;
vector<char> infoLogBuf;
gl.getShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLogLen);
infoLogBuf.resize(infoLogLen + 1);
gl.getShaderInfoLog(shader, infoLogLen + 1, DE_NULL, &infoLogBuf[0]);
result = &infoLogBuf[0];
return result;
}
static string getProgramInfoLog (const glw::Functions& gl, deUint32 program)
{
string result;
int infoLogLen = 0;
vector<char> infoLogBuf;
gl.getProgramiv(program, GL_INFO_LOG_LENGTH, &infoLogLen);
infoLogBuf.resize(infoLogLen + 1);
gl.getProgramInfoLog(program, infoLogLen + 1, DE_NULL, &infoLogBuf[0]);
result = &infoLogBuf[0];
return result;
}
enum LightType
{
LIGHT_DIRECTIONAL = 0,
LIGHT_POINT,
LIGHT_LAST,
};
enum LoopType
{
LOOP_TYPE_STATIC = 0,
LOOP_TYPE_UNIFORM,
LOOP_TYPE_DYNAMIC,
LOOP_LAST
};
// For texture lookup cases: which texture lookups are inside a conditional statement.
enum ConditionalUsage
{
CONDITIONAL_USAGE_NONE = 0, // No conditional statements.
CONDITIONAL_USAGE_FIRST_HALF, // First numLookUps/2 lookups are inside a conditional statement.
CONDITIONAL_USAGE_EVERY_OTHER, // First, third etc. lookups are inside conditional statements.
CONDITIONAL_USAGE_LAST
};
enum ConditionalType
{
CONDITIONAL_TYPE_STATIC = 0,
CONDITIONAL_TYPE_UNIFORM,
CONDITIONAL_TYPE_DYNAMIC,
CONDITIONAL_TYPE_LAST
};
// For the invalid shader compilation tests; what kind of invalidity a shader shall contain.
enum ShaderValidity
{
SHADER_VALIDITY_VALID = 0,
SHADER_VALIDITY_INVALID_CHAR,
SHADER_VALIDITY_SEMANTIC_ERROR,
SHADER_VALIDITY_LAST
};
class ShaderCompilerCase : public TestCase
{
public:
struct AttribSpec
{
string name;
tcu::Vector<float, 16> value;
AttribSpec (const string& n, const tcu::Vector<float, 16>& v) : name(n), value(v) {}
};
struct UniformSpec
{
enum Type
{
TYPE_FLOAT = 0,
TYPE_VEC2,
TYPE_VEC3,
TYPE_VEC4,
TYPE_MAT3,
TYPE_MAT4,
TYPE_TEXTURE_UNIT,
TYPE_LAST
};
string name;
Type type;
tcu::Vector<float, 16> value;
UniformSpec (const string& n, Type t, float v) : name(n), type(t), value(v) {}
UniformSpec (const string& n, Type t, const tcu::Vector<float, 16>& v) : name(n), type(t), value(v) {}
};
ShaderCompilerCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments);
~ShaderCompilerCase (void);
void init (void);
IterateResult iterate (void);
protected:
struct ProgramContext
{
string vertShaderSource;
string fragShaderSource;
vector<AttribSpec> vertexAttributes;
vector<UniformSpec> uniforms;
};
deUint32 getSpecializationID (int measurementNdx) const; // Return an ID that depends on the case ID, current measurement index and time; used to specialize attribute names etc. (avoid shader caching).
virtual ProgramContext generateShaderData (int measurementNdx) const = 0; // Generate shader sources and inputs. Attribute etc. names depend on above name specialization.
private:
struct Measurement
{
// \note All times in microseconds. 32-bit integers would probably suffice (would need over an hour of test case runtime to overflow), but better safe than sorry.
deInt64 sourceSetTime;
deInt64 vertexCompileTime;
deInt64 fragmentCompileTime;
deInt64 programLinkTime;
deInt64 firstInputSetTime;
deInt64 firstDrawTime;
deInt64 secondInputSetTime;
deInt64 secondDrawTime;
deInt64 firstPhase (void) const { return sourceSetTime + vertexCompileTime + fragmentCompileTime + programLinkTime + firstInputSetTime + firstDrawTime; }
deInt64 secondPhase (void) const { return secondInputSetTime + secondDrawTime; }
deInt64 totalTimeWithoutDraw (void) const { return firstPhase() - de::min(secondPhase(), firstInputSetTime + firstDrawTime); }
Measurement (deInt64 sourceSetTime_,
deInt64 vertexCompileTime_,
deInt64 fragmentCompileTime_,
deInt64 programLinkTime_,
deInt64 firstInputSetTime_,
deInt64 firstDrawTime_,
deInt64 secondInputSetTime_,
deInt64 secondDrawTime_)
: sourceSetTime (sourceSetTime_)
, vertexCompileTime (vertexCompileTime_)
, fragmentCompileTime (fragmentCompileTime_)
, programLinkTime (programLinkTime_)
, firstInputSetTime (firstInputSetTime_)
, firstDrawTime (firstDrawTime_)
, secondInputSetTime (secondInputSetTime_)
, secondDrawTime (secondDrawTime_)
{
}
};
struct ShadersAndProgram
{
deUint32 vertShader;
deUint32 fragShader;
deUint32 program;
};
struct Logs
{
string vert;
string frag;
string link;
};
struct BuildInfo
{
bool vertCompileSuccess;
bool fragCompileSuccess;
bool linkSuccess;
Logs logs;
};
ShadersAndProgram createShadersAndProgram (void) const;
void setShaderSources (deUint32 vertShader, deUint32 fragShader, const ProgramContext&) const;
bool compileShader (deUint32 shader) const;
bool linkAndUseProgram (deUint32 program) const;
void setShaderInputs (deUint32 program, const ProgramContext&) const; // Set attribute pointers and uniforms.
void draw (void) const; // Clear, draw and finish.
void cleanup (const ShadersAndProgram&, const ProgramContext&, bool linkSuccess) const; // Do GL deinitializations.
Logs getLogs (const ShadersAndProgram&) const;
void logProgramData (const BuildInfo&, const ProgramContext&) const;
bool goodEnoughMeasurements (const vector<Measurement>& measurements) const;
int m_viewportWidth;
int m_viewportHeight;
bool m_avoidCache; // If true, avoid caching between measurements as well (and not only between test cases).
bool m_addWhitespaceAndComments; // If true, add random whitespace and comments to the source (good caching should ignore those).
deUint32 m_startHash; // A hash from case id and time, at the time of construction.
int m_minimumMeasurementCount;
int m_maximumMeasurementCount;
};
class ShaderCompilerLightCase : public ShaderCompilerCase
{
public:
ShaderCompilerLightCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, bool isVertexCase, int numLights, LightType lightType);
~ShaderCompilerLightCase (void);
void init (void);
void deinit (void);
protected:
ProgramContext generateShaderData (int measurementNdx) const;
private:
int m_numLights;
bool m_isVertexCase;
LightType m_lightType;
glu::Texture2D* m_texture;
};
class ShaderCompilerTextureCase : public ShaderCompilerCase
{
public:
ShaderCompilerTextureCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, int numLookups, ConditionalUsage conditionalUsage, ConditionalType conditionalType);
~ShaderCompilerTextureCase (void);
void init (void);
void deinit (void);
protected:
ProgramContext generateShaderData (int measurementNdx) const;
private:
int m_numLookups;
vector<glu::Texture2D*> m_textures;
ConditionalUsage m_conditionalUsage;
ConditionalType m_conditionalType;
};
class ShaderCompilerLoopCase : public ShaderCompilerCase
{
public:
ShaderCompilerLoopCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, bool isVertexCase, LoopType type, int numLoopIterations, int nestingDepth);
~ShaderCompilerLoopCase (void);
protected:
ProgramContext generateShaderData (int measurementNdx) const;
private:
int m_numLoopIterations;
int m_nestingDepth;
bool m_isVertexCase;
LoopType m_type;
};
class ShaderCompilerOperCase : public ShaderCompilerCase
{
public:
ShaderCompilerOperCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, bool isVertexCase, const char* oper, int numOperations);
~ShaderCompilerOperCase (void);
protected:
ProgramContext generateShaderData (int measurementNdx) const;
private:
string m_oper;
int m_numOperations;
bool m_isVertexCase;
};
class ShaderCompilerMandelbrotCase : public ShaderCompilerCase
{
public:
ShaderCompilerMandelbrotCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, int numFractalIterations);
~ShaderCompilerMandelbrotCase (void);
protected:
ProgramContext generateShaderData (int measurementNdx) const;
private:
int m_numFractalIterations;
};
class InvalidShaderCompilerCase : public TestCase
{
public:
// \note Similar to the ShaderValidity enum, but doesn't have a VALID type.
enum InvalidityType
{
INVALIDITY_INVALID_CHAR = 0,
INVALIDITY_SEMANTIC_ERROR,
INVALIDITY_LAST
};
InvalidShaderCompilerCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType);
~InvalidShaderCompilerCase (void);
IterateResult iterate (void);
protected:
struct ProgramContext
{
string vertShaderSource;
string fragShaderSource;
};
deUint32 getSpecializationID (int measurementNdx) const; // Return an ID that depends on the case ID, current measurement index and time; used to specialize attribute names etc. (avoid shader caching).
virtual ProgramContext generateShaderSources (int measurementNdx) const = 0; // Generate shader sources. Attribute etc. names depend on above name specialization.
InvalidityType m_invalidityType;
private:
struct Measurement
{
// \note All times in microseconds. 32-bit integers would probably suffice (would need over an hour of test case runtime to overflow), but better safe than sorry.
deInt64 sourceSetTime;
deInt64 vertexCompileTime;
deInt64 fragmentCompileTime;
deInt64 totalTime (void) const { return sourceSetTime + vertexCompileTime + fragmentCompileTime; }
Measurement (deInt64 sourceSetTime_,
deInt64 vertexCompileTime_,
deInt64 fragmentCompileTime_)
: sourceSetTime (sourceSetTime_)
, vertexCompileTime (vertexCompileTime_)
, fragmentCompileTime (fragmentCompileTime_)
{
}
};
struct Shaders
{
deUint32 vertShader;
deUint32 fragShader;
};
struct Logs
{
string vert;
string frag;
};
struct BuildInfo
{
bool vertCompileSuccess;
bool fragCompileSuccess;
Logs logs;
};
Shaders createShaders (void) const;
void setShaderSources (const Shaders&, const ProgramContext&) const;
bool compileShader (deUint32 shader) const;
void cleanup (const Shaders&) const;
Logs getLogs (const Shaders&) const;
void logProgramData (const BuildInfo&, const ProgramContext&) const;
bool goodEnoughMeasurements (const vector<Measurement>& measurements) const;
deUint32 m_startHash; // A hash from case id and time, at the time of construction.
int m_minimumMeasurementCount;
int m_maximumMeasurementCount;
};
class InvalidShaderCompilerLightCase : public InvalidShaderCompilerCase
{
public:
InvalidShaderCompilerLightCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, bool isVertexCase, int numLights, LightType lightType);
~InvalidShaderCompilerLightCase (void);
protected:
ProgramContext generateShaderSources (int measurementNdx) const;
private:
bool m_isVertexCase;
int m_numLights;
LightType m_lightType;
};
class InvalidShaderCompilerTextureCase : public InvalidShaderCompilerCase
{
public:
InvalidShaderCompilerTextureCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, int numLookups, ConditionalUsage conditionalUsage, ConditionalType conditionalType);
~InvalidShaderCompilerTextureCase (void);
protected:
ProgramContext generateShaderSources (int measurementNdx) const;
private:
int m_numLookups;
ConditionalUsage m_conditionalUsage;
ConditionalType m_conditionalType;
};
class InvalidShaderCompilerLoopCase : public InvalidShaderCompilerCase
{
public:
InvalidShaderCompilerLoopCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, bool , LoopType type, int numLoopIterations, int nestingDepth);
~InvalidShaderCompilerLoopCase (void);
protected:
ProgramContext generateShaderSources (int measurementNdx) const;
private:
bool m_isVertexCase;
int m_numLoopIterations;
int m_nestingDepth;
LoopType m_type;
};
class InvalidShaderCompilerOperCase : public InvalidShaderCompilerCase
{
public:
InvalidShaderCompilerOperCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, bool isVertexCase, const char* oper, int numOperations);
~InvalidShaderCompilerOperCase (void);
protected:
ProgramContext generateShaderSources (int measurementNdx) const;
private:
bool m_isVertexCase;
string m_oper;
int m_numOperations;
};
class InvalidShaderCompilerMandelbrotCase : public InvalidShaderCompilerCase
{
public:
InvalidShaderCompilerMandelbrotCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType, int numFractalIterations);
~InvalidShaderCompilerMandelbrotCase (void);
protected:
ProgramContext generateShaderSources (int measurementNdx) const;
private:
int m_numFractalIterations;
};
static string getNameSpecialization (deUint32 id)
{
return "_" + toStringWithPadding(id, 10);
}
// Substitute StringTemplate parameters for attribute/uniform/varying name and constant expression specialization as well as possible shader compilation error causes.
static string specializeShaderSource (const string& shaderSourceTemplate, deUint32 cacheAvoidanceID, ShaderValidity validity)
{
std::map<string, string> params;
params["NAME_SPEC"] = getNameSpecialization(cacheAvoidanceID);
params["FLOAT01"] = de::floatToString((float)cacheAvoidanceID / (float)(std::numeric_limits<deUint32>::max()), 6);
params["SEMANTIC_ERROR"] = validity != SHADER_VALIDITY_SEMANTIC_ERROR ? "" : "\tfloat invalid = sin(1.0, 2.0);\n";
params["INVALID_CHAR"] = validity != SHADER_VALIDITY_INVALID_CHAR ? "" : "@\n"; // \note Some implementations crash when the invalid character is the last character in the source, so use newline.
return tcu::StringTemplate(shaderSourceTemplate).specialize(params);
}
// Function for generating the vertex shader of a (directional or point) light case.
static string lightVertexTemplate (int numLights, bool isVertexCase, LightType lightType)
{
string resultTemplate;
resultTemplate +=
"#version 300 es\n"
"in highp vec4 a_position${NAME_SPEC};\n"
"in mediump vec3 a_normal${NAME_SPEC};\n"
"in mediump vec4 a_texCoord0${NAME_SPEC};\n"
"uniform mediump vec3 u_material_ambientColor${NAME_SPEC};\n"
"uniform mediump vec4 u_material_diffuseColor${NAME_SPEC};\n"
"uniform mediump vec3 u_material_emissiveColor${NAME_SPEC};\n"
"uniform mediump vec3 u_material_specularColor${NAME_SPEC};\n"
"uniform mediump float u_material_shininess${NAME_SPEC};\n";
for (int lightNdx = 0; lightNdx < numLights; lightNdx++)
{
string ndxStr = de::toString(lightNdx);
resultTemplate +=
"uniform mediump vec3 u_light" + ndxStr + "_color${NAME_SPEC};\n"
"uniform mediump vec3 u_light" + ndxStr + "_direction${NAME_SPEC};\n";
if (lightType == LIGHT_POINT)
resultTemplate +=
"uniform mediump vec4 u_light" + ndxStr + "_position${NAME_SPEC};\n"
"uniform mediump float u_light" + ndxStr + "_constantAttenuation${NAME_SPEC};\n"
"uniform mediump float u_light" + ndxStr + "_linearAttenuation${NAME_SPEC};\n"
"uniform mediump float u_light" + ndxStr + "_quadraticAttenuation${NAME_SPEC};\n";
}
resultTemplate +=
"uniform highp mat4 u_mvpMatrix${NAME_SPEC};\n"
"uniform highp mat4 u_modelViewMatrix${NAME_SPEC};\n"
"uniform mediump mat3 u_normalMatrix${NAME_SPEC};\n"
"uniform mediump mat4 u_texCoordMatrix0${NAME_SPEC};\n"
"out mediump vec4 v_color${NAME_SPEC};\n"
"out mediump vec2 v_texCoord0${NAME_SPEC};\n";
if (!isVertexCase)
{
resultTemplate += "out mediump vec3 v_eyeNormal${NAME_SPEC};\n";
if (lightType == LIGHT_POINT)
resultTemplate +=
"out mediump vec3 v_directionToLight${NAME_SPEC}[" + de::toString(numLights) + "];\n"
"out mediump float v_distanceToLight${NAME_SPEC}[" + de::toString(numLights) + "];\n";
}
resultTemplate +=
"mediump vec3 direction (mediump vec4 from, mediump vec4 to)\n"
"{\n"
" return vec3(to.xyz * from.w - from.xyz * to.w);\n"
"}\n"
"\n"
"mediump vec3 computeLighting (\n"
" mediump vec3 directionToLight,\n"
" mediump vec3 halfVector,\n"
" mediump vec3 normal,\n"
" mediump vec3 lightColor,\n"
" mediump vec3 diffuseColor,\n"
" mediump vec3 specularColor,\n"
" mediump float shininess)\n"
"{\n"
" mediump float normalDotDirection = max(dot(normal, directionToLight), 0.0);\n"
" mediump vec3 color = normalDotDirection * diffuseColor * lightColor;\n"
"\n"
" if (normalDotDirection != 0.0)\n"
" color += pow(max(dot(normal, halfVector), 0.0), shininess) * specularColor * lightColor;\n"
"\n"
" return color;\n"
"}\n"
"\n";
if (lightType == LIGHT_POINT)
resultTemplate +=
"mediump float computeDistanceAttenuation (mediump float distToLight, mediump float constAtt, mediump float linearAtt, mediump float quadraticAtt)\n"
"{\n"
" return 1.0 / (constAtt + linearAtt * distToLight + quadraticAtt * distToLight * distToLight);\n"
"}\n"
"\n";
resultTemplate +=
"void main (void)\n"
"{\n"
" highp vec4 position = a_position${NAME_SPEC};\n"
" highp vec3 normal = a_normal${NAME_SPEC};\n"
" gl_Position = u_mvpMatrix${NAME_SPEC} * position * (0.95 + 0.05*${FLOAT01});\n"
" v_texCoord0${NAME_SPEC} = (u_texCoordMatrix0${NAME_SPEC} * a_texCoord0${NAME_SPEC}).xy;\n"
" mediump vec4 color = vec4(u_material_emissiveColor${NAME_SPEC}, u_material_diffuseColor${NAME_SPEC}.a);\n"
"\n"
" highp vec4 eyePosition = u_modelViewMatrix${NAME_SPEC} * position;\n"
" mediump vec3 eyeNormal = normalize(u_normalMatrix${NAME_SPEC} * normal);\n";
if (!isVertexCase)
resultTemplate += "\tv_eyeNormal${NAME_SPEC} = eyeNormal;\n";
resultTemplate += "\n";
for (int lightNdx = 0; lightNdx < numLights; lightNdx++)
{
string ndxStr = de::toString(lightNdx);
resultTemplate +=
" /* Light " + ndxStr + " */\n";
if (lightType == LIGHT_POINT)
{
resultTemplate +=
" mediump float distanceToLight" + ndxStr + " = distance(eyePosition, u_light" + ndxStr + "_position${NAME_SPEC});\n"
" mediump vec3 directionToLight" + ndxStr + " = normalize(direction(eyePosition, u_light" + ndxStr + "_position${NAME_SPEC}));\n";
if (isVertexCase)
resultTemplate +=
" mediump vec3 halfVector" + ndxStr + " = normalize(directionToLight" + ndxStr + " + vec3(0.0, 0.0, 1.0));\n"
" color.rgb += computeLighting(directionToLight" + ndxStr + ", halfVector" + ndxStr + ", eyeNormal, u_light" + ndxStr + "_color${NAME_SPEC}, u_material_diffuseColor${NAME_SPEC}.rgb, "
"u_material_specularColor${NAME_SPEC}, u_material_shininess${NAME_SPEC}) * computeDistanceAttenuation(distanceToLight" + ndxStr + ", u_light" + ndxStr + "_constantAttenuation${NAME_SPEC}, "
"u_light" + ndxStr + "_linearAttenuation${NAME_SPEC}, u_light" + ndxStr + "_quadraticAttenuation${NAME_SPEC});\n";
else
resultTemplate +=
" v_directionToLight${NAME_SPEC}[" + ndxStr + "] = directionToLight" + ndxStr + ";\n"
" v_distanceToLight${NAME_SPEC}[" + ndxStr + "] = distanceToLight" + ndxStr + ";\n";
}
else if (lightType == LIGHT_DIRECTIONAL)
{
if (isVertexCase)
resultTemplate +=
" mediump vec3 directionToLight" + ndxStr + " = -u_light" + ndxStr + "_direction${NAME_SPEC};\n"
" mediump vec3 halfVector" + ndxStr + " = normalize(directionToLight" + ndxStr + " + vec3(0.0, 0.0, 1.0));\n"
" color.rgb += computeLighting(directionToLight" + ndxStr + ", halfVector" + ndxStr + ", eyeNormal, u_light" + ndxStr + "_color${NAME_SPEC}, u_material_diffuseColor${NAME_SPEC}.rgb, u_material_specularColor${NAME_SPEC}, u_material_shininess${NAME_SPEC});\n";
}
else
DE_ASSERT(DE_FALSE);
resultTemplate += "\n";
}
resultTemplate +=
" v_color${NAME_SPEC} = color;\n"
"${SEMANTIC_ERROR}"
"}\n"
"${INVALID_CHAR}";
return resultTemplate;
}
// Function for generating the fragment shader of a (directional or point) light case.
static string lightFragmentTemplate (int numLights, bool isVertexCase, LightType lightType)
{
string resultTemplate;
resultTemplate +=
"#version 300 es\n"
"layout(location = 0) out mediump vec4 o_color;\n";
if (!isVertexCase)
{
resultTemplate +=
"uniform mediump vec3 u_material_ambientColor${NAME_SPEC};\n"
"uniform mediump vec4 u_material_diffuseColor${NAME_SPEC};\n"
"uniform mediump vec3 u_material_emissiveColor${NAME_SPEC};\n"
"uniform mediump vec3 u_material_specularColor${NAME_SPEC};\n"
"uniform mediump float u_material_shininess${NAME_SPEC};\n";
for (int lightNdx = 0; lightNdx < numLights; lightNdx++)
{
string ndxStr = de::toString(lightNdx);
resultTemplate +=
"uniform mediump vec3 u_light" + ndxStr + "_color${NAME_SPEC};\n"
"uniform mediump vec3 u_light" + ndxStr + "_direction${NAME_SPEC};\n";
if (lightType == LIGHT_POINT)
resultTemplate +=
"uniform mediump vec4 u_light" + ndxStr + "_position${NAME_SPEC};\n"
"uniform mediump float u_light" + ndxStr + "_constantAttenuation${NAME_SPEC};\n"
"uniform mediump float u_light" + ndxStr + "_linearAttenuation${NAME_SPEC};\n"
"uniform mediump float u_light" + ndxStr + "_quadraticAttenuation${NAME_SPEC};\n";
}
}
resultTemplate +=
"uniform sampler2D u_sampler0${NAME_SPEC};\n"
"in mediump vec4 v_color${NAME_SPEC};\n"
"in mediump vec2 v_texCoord0${NAME_SPEC};\n";
if (!isVertexCase)
{
resultTemplate +=
"in mediump vec3 v_eyeNormal${NAME_SPEC};\n";
if (lightType == LIGHT_POINT)
resultTemplate +=
"in mediump vec3 v_directionToLight${NAME_SPEC}[" + de::toString(numLights) + "];\n"
"in mediump float v_distanceToLight${NAME_SPEC}[" + de::toString(numLights) + "];\n";
resultTemplate +=
"mediump vec3 direction (mediump vec4 from, mediump vec4 to)\n"
"{\n"
" return vec3(to.xyz * from.w - from.xyz * to.w);\n"
"}\n"
"\n";
resultTemplate +=
"mediump vec3 computeLighting (\n"
" mediump vec3 directionToLight,\n"
" mediump vec3 halfVector,\n"
" mediump vec3 normal,\n"
" mediump vec3 lightColor,\n"
" mediump vec3 diffuseColor,\n"
" mediump vec3 specularColor,\n"
" mediump float shininess)\n"
"{\n"
" mediump float normalDotDirection = max(dot(normal, directionToLight), 0.0);\n"
" mediump vec3 color = normalDotDirection * diffuseColor * lightColor;\n"
"\n"
" if (normalDotDirection != 0.0)\n"
" color += pow(max(dot(normal, halfVector), 0.0), shininess) * specularColor * lightColor;\n"
"\n"
" return color;\n"
"}\n"
"\n";
if (lightType == LIGHT_POINT)
resultTemplate +=
"mediump float computeDistanceAttenuation (mediump float distToLight, mediump float constAtt, mediump float linearAtt, mediump float quadraticAtt)\n"
"{\n"
" return 1.0 / (constAtt + linearAtt * distToLight + quadraticAtt * distToLight * distToLight);\n"
"}\n"
"\n";
}
resultTemplate +=
"void main (void)\n"
"{\n"
" mediump vec2 texCoord0 = v_texCoord0${NAME_SPEC}.xy;\n"
" mediump vec4 color = v_color${NAME_SPEC};\n";
if (!isVertexCase)
{
resultTemplate +=
" mediump vec3 eyeNormal = normalize(v_eyeNormal${NAME_SPEC});\n"
"\n";
for (int lightNdx = 0; lightNdx < numLights; lightNdx++)
{
string ndxStr = de::toString(lightNdx);
resultTemplate +=
" /* Light " + ndxStr + " */\n";
if (lightType == LIGHT_POINT)
resultTemplate +=
" mediump vec3 directionToLight" + ndxStr + " = normalize(v_directionToLight${NAME_SPEC}[" + ndxStr + "]);\n"
" mediump float distanceToLight" + ndxStr + " = v_distanceToLight${NAME_SPEC}[" + ndxStr + "];\n"
" mediump vec3 halfVector" + ndxStr + " = normalize(directionToLight" + ndxStr + " + vec3(0.0, 0.0, 1.0));\n"
" color.rgb += computeLighting(directionToLight" + ndxStr + ", halfVector" + ndxStr + ", eyeNormal, u_light" + ndxStr + "_color${NAME_SPEC}, u_material_diffuseColor${NAME_SPEC}.rgb, "
"u_material_specularColor${NAME_SPEC}, u_material_shininess${NAME_SPEC}) * computeDistanceAttenuation(distanceToLight" + ndxStr + ", u_light" + ndxStr + "_constantAttenuation${NAME_SPEC}, "
"u_light" + ndxStr + "_linearAttenuation${NAME_SPEC}, u_light" + ndxStr + "_quadraticAttenuation${NAME_SPEC});\n"
"\n";
else if (lightType == LIGHT_DIRECTIONAL)
resultTemplate +=
" mediump vec3 directionToLight" + ndxStr + " = -u_light" + ndxStr + "_direction${NAME_SPEC};\n"
" mediump vec3 halfVector" + ndxStr + " = normalize(directionToLight" + ndxStr + " + vec3(0.0, 0.0, 1.0));\n"
" color.rgb += computeLighting(directionToLight" + ndxStr + ", halfVector" + ndxStr + ", eyeNormal, u_light" + ndxStr + "_color${NAME_SPEC}, u_material_diffuseColor${NAME_SPEC}.rgb, u_material_specularColor${NAME_SPEC}, u_material_shininess${NAME_SPEC});\n"
"\n";
else
DE_ASSERT(DE_FALSE);
}
}
resultTemplate +=
" color *= texture(u_sampler0${NAME_SPEC}, texCoord0);\n"
" o_color = color + ${FLOAT01};\n"
"${SEMANTIC_ERROR}"
"}\n"
"${INVALID_CHAR}";
return resultTemplate;
}
// Function for generating the shader attributes of a (directional or point) light case.
static vector<ShaderCompilerCase::AttribSpec> lightShaderAttributes (const string& nameSpecialization)
{
vector<ShaderCompilerCase::AttribSpec> result;
result.push_back(ShaderCompilerCase::AttribSpec("a_position" + nameSpecialization,
combineVec4ToVec16(Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
Vec4(-1.0f, 1.0f, 0.0f, 1.0f),
Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
Vec4( 1.0f, 1.0f, 0.0f, 1.0f))));
result.push_back(ShaderCompilerCase::AttribSpec("a_normal" + nameSpecialization,
combineVec4ToVec16(Vec4(0.0f, 0.0f, -1.0f, 0.0f),
Vec4(0.0f, 0.0f, -1.0f, 0.0f),
Vec4(0.0f, 0.0f, -1.0f, 0.0f),
Vec4(0.0f, 0.0f, -1.0f, 0.0f))));
result.push_back(ShaderCompilerCase::AttribSpec("a_texCoord0" + nameSpecialization,
combineVec4ToVec16(Vec4(0.0f, 0.0f, 0.0f, 0.0f),
Vec4(1.0f, 0.0f, 0.0f, 0.0f),
Vec4(0.0f, 1.0f, 0.0f, 0.0f),
Vec4(1.0f, 1.0f, 0.0f, 0.0f))));
return result;
}
// Function for generating the shader uniforms of a (directional or point) light case.
static vector<ShaderCompilerCase::UniformSpec> lightShaderUniforms (const string& nameSpecialization, int numLights, LightType lightType)
{
vector<ShaderCompilerCase::UniformSpec> result;
result.push_back(ShaderCompilerCase::UniformSpec("u_material_ambientColor" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_VEC3,
vecTo16(Vec3(0.5f, 0.7f, 0.9f))));
result.push_back(ShaderCompilerCase::UniformSpec("u_material_diffuseColor" + nameSpecialization,
ShaderCompilerCase:: UniformSpec::TYPE_VEC4,
vecTo16(Vec4(0.3f, 0.4f, 0.5f, 1.0f))));
result.push_back(ShaderCompilerCase::UniformSpec("u_material_emissiveColor" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_VEC3,
vecTo16(Vec3(0.7f, 0.2f, 0.2f))));
result.push_back(ShaderCompilerCase::UniformSpec("u_material_specularColor" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_VEC3,
vecTo16(Vec3(0.2f, 0.6f, 1.0f))));
result.push_back(ShaderCompilerCase::UniformSpec("u_material_shininess" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_FLOAT,
0.8f));
for (int lightNdx = 0; lightNdx < numLights; lightNdx++)
{
string ndxStr = de::toString(lightNdx);
result.push_back(ShaderCompilerCase::UniformSpec("u_light" + ndxStr + "_color" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_VEC3,
vecTo16(Vec3(0.8f, 0.6f, 0.3f))));
result.push_back(ShaderCompilerCase::UniformSpec("u_light" + ndxStr + "_direction" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_VEC3,
vecTo16(Vec3(0.2f, 0.3f, 0.4f))));
if (lightType == LIGHT_POINT)
{
result.push_back(ShaderCompilerCase::UniformSpec("u_light" + ndxStr + "_position" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_VEC4,
vecTo16(Vec4(1.0f, 0.6f, 0.3f, 0.2f))));
result.push_back(ShaderCompilerCase::UniformSpec("u_light" + ndxStr + "_constantAttenuation" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_FLOAT,
0.6f));
result.push_back(ShaderCompilerCase::UniformSpec("u_light" + ndxStr + "_linearAttenuation" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_FLOAT,
0.5f));
result.push_back(ShaderCompilerCase::UniformSpec("u_light" + ndxStr + "_quadraticAttenuation" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_FLOAT,
0.4f));
}
}
result.push_back(ShaderCompilerCase::UniformSpec("u_mvpMatrix" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_MAT4,
arrTo16(Mat4(1.0f).getColumnMajorData())));
result.push_back(ShaderCompilerCase::UniformSpec("u_modelViewMatrix" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_MAT4,
arrTo16(Mat4(1.0f).getColumnMajorData())));
result.push_back(ShaderCompilerCase::UniformSpec("u_normalMatrix" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_MAT3,
arrTo16(Mat3(1.0f).getColumnMajorData())));
result.push_back(ShaderCompilerCase::UniformSpec("u_texCoordMatrix0" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_MAT4,
arrTo16(Mat4(1.0f).getColumnMajorData())));
result.push_back(ShaderCompilerCase::UniformSpec("u_sampler0" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_TEXTURE_UNIT,
0.0f));
return result;
}
// Function for generating a vertex shader with a for loop.
static string loopVertexTemplate (LoopType type, bool isVertexCase, int numLoopIterations, int nestingDepth)
{
string resultTemplate;
string loopBound = type == LOOP_TYPE_STATIC ? de::toString(numLoopIterations)
: type == LOOP_TYPE_UNIFORM ? "int(u_loopBound${NAME_SPEC})"
: type == LOOP_TYPE_DYNAMIC ? "int(a_loopBound${NAME_SPEC})"
: "";
DE_ASSERT(!loopBound.empty());
resultTemplate +=
"#version 300 es\n"
"in highp vec4 a_position${NAME_SPEC};\n";
if (type == LOOP_TYPE_DYNAMIC)
resultTemplate +=
"in mediump float a_loopBound${NAME_SPEC};\n";
resultTemplate +=
"in mediump vec4 a_value${NAME_SPEC};\n"
"out mediump vec4 v_value${NAME_SPEC};\n";
if (isVertexCase)
{
if (type == LOOP_TYPE_UNIFORM)
resultTemplate += "uniform mediump float u_loopBound${NAME_SPEC};\n";
resultTemplate +=
"\n"
"void main()\n"
"{\n"
" gl_Position = a_position${NAME_SPEC} * (0.95 + 0.05*${FLOAT01});\n"
" mediump vec4 value = a_value${NAME_SPEC};\n";
for (int i = 0; i < nestingDepth; i++)
{
string iterName = "i" + de::toString(i);
resultTemplate += string(i + 1, '\t') + "for (int " + iterName + " = 0; " + iterName + " < " + loopBound + "; " + iterName + "++)\n";
}
resultTemplate += string(nestingDepth + 1, '\t') + "value *= a_value${NAME_SPEC};\n";
resultTemplate +=
" v_value${NAME_SPEC} = value;\n";
}
else
{
if (type == LOOP_TYPE_DYNAMIC)
resultTemplate +=
"out mediump float v_loopBound${NAME_SPEC};\n";
resultTemplate +=
"\n"
"void main()\n"
"{\n"
" gl_Position = a_position${NAME_SPEC} * (0.95 + 0.05*${FLOAT01});\n"
" v_value${NAME_SPEC} = a_value${NAME_SPEC};\n";
if (type == LOOP_TYPE_DYNAMIC)
resultTemplate +=
" v_loopBound${NAME_SPEC} = a_loopBound${NAME_SPEC};\n";
}
resultTemplate +=
"${SEMANTIC_ERROR}"
"}\n"
"${INVALID_CHAR}";
return resultTemplate;
}
// Function for generating a fragment shader with a for loop.
static string loopFragmentTemplate (LoopType type, bool isVertexCase, int numLoopIterations, int nestingDepth)
{
string resultTemplate;
string loopBound = type == LOOP_TYPE_STATIC ? de::toString(numLoopIterations)
: type == LOOP_TYPE_UNIFORM ? "int(u_loopBound${NAME_SPEC})"
: type == LOOP_TYPE_DYNAMIC ? "int(v_loopBound${NAME_SPEC})"
: "";
DE_ASSERT(!loopBound.empty());
resultTemplate +=
"#version 300 es\n"
"layout(location = 0) out mediump vec4 o_color;\n"
"in mediump vec4 v_value${NAME_SPEC};\n";
if (!isVertexCase)
{
if (type == LOOP_TYPE_DYNAMIC)
resultTemplate +=
"in mediump float v_loopBound${NAME_SPEC};\n";
else if (type == LOOP_TYPE_UNIFORM)
resultTemplate +=
"uniform mediump float u_loopBound${NAME_SPEC};\n";
resultTemplate +=
"\n"
"void main()\n"
"{\n"
" mediump vec4 value = v_value${NAME_SPEC};\n";
for (int i = 0; i < nestingDepth; i++)
{
string iterName = "i" + de::toString(i);
resultTemplate += string(i + 1, '\t') + "for (int " + iterName + " = 0; " + iterName + " < " + loopBound + "; " + iterName + "++)\n";
}
resultTemplate += string(nestingDepth + 1, '\t') + "value *= v_value${NAME_SPEC};\n";
resultTemplate +=
" o_color = value + ${FLOAT01};\n";
}
else
resultTemplate +=
"\n"
"void main()\n"
"{\n"
" o_color = v_value${NAME_SPEC} + ${FLOAT01};\n";
resultTemplate +=
"${SEMANTIC_ERROR}"
"}\n"
"${INVALID_CHAR}";
return resultTemplate;
}
// Function for generating the shader attributes for a loop case.
static vector<ShaderCompilerCase::AttribSpec> loopShaderAttributes (const string& nameSpecialization, LoopType type, int numLoopIterations)
{
vector<ShaderCompilerCase::AttribSpec> result;
result.push_back(ShaderCompilerCase::AttribSpec("a_position" + nameSpecialization,
combineVec4ToVec16(Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
Vec4(-1.0f, 1.0f, 0.0f, 1.0f),
Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
Vec4( 1.0f, 1.0f, 0.0f, 1.0f))));
result.push_back(ShaderCompilerCase::AttribSpec("a_value" + nameSpecialization,
combineVec4ToVec16(Vec4( 1.0f, 1.0f, 1.0f, 1.0f),
Vec4( 1.0f, 1.0f, 1.0f, 1.0f),
Vec4( 1.0f, 1.0f, 1.0f, 1.0f),
Vec4( 1.0f, 1.0f, 1.0f, 1.0f))));
if (type == LOOP_TYPE_DYNAMIC)
result.push_back(ShaderCompilerCase::AttribSpec("a_loopBound" + nameSpecialization,
combineVec4ToVec16(Vec4((float)numLoopIterations, 0.0f, 0.0f, 0.0f),
Vec4((float)numLoopIterations, 0.0f, 0.0f, 0.0f),
Vec4((float)numLoopIterations, 0.0f, 0.0f, 0.0f),
Vec4((float)numLoopIterations, 0.0f, 0.0f, 0.0f))));
return result;
}
static vector<ShaderCompilerCase::UniformSpec> loopShaderUniforms (const string& nameSpecialization, LoopType type, int numLoopIterations)
{
vector<ShaderCompilerCase::UniformSpec> result;
if (type == LOOP_TYPE_UNIFORM)
result.push_back(ShaderCompilerCase::UniformSpec("u_loopBound" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_FLOAT,
(float)numLoopIterations));
return result;
}
// Function for generating the shader attributes for a case with only one attribute value in addition to the position attribute.
static vector<ShaderCompilerCase::AttribSpec> singleValueShaderAttributes (const string& nameSpecialization)
{
vector<ShaderCompilerCase::AttribSpec> result;
result.push_back(ShaderCompilerCase::AttribSpec("a_position" + nameSpecialization,
combineVec4ToVec16(Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
Vec4(-1.0f, 1.0f, 0.0f, 1.0f),
Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
Vec4( 1.0f, 1.0f, 0.0f, 1.0f))));
result.push_back(ShaderCompilerCase::AttribSpec("a_value" + nameSpecialization,
combineVec4ToVec16(Vec4( 1.0f, 1.0f, 1.0f, 1.0f),
Vec4( 1.0f, 1.0f, 1.0f, 1.0f),
Vec4( 1.0f, 1.0f, 1.0f, 1.0f),
Vec4( 1.0f, 1.0f, 1.0f, 1.0f))));
return result;
}
// Function for generating a vertex shader with a binary operation chain.
static string binaryOpVertexTemplate (int numOperations, const char* op)
{
string resultTemplate;
resultTemplate +=
"#version 300 es\n"
"in highp vec4 a_position${NAME_SPEC};\n"
"in mediump vec4 a_value${NAME_SPEC};\n"
"out mediump vec4 v_value${NAME_SPEC};\n"
"\n"
"void main()\n"
"{\n"
" gl_Position = a_position${NAME_SPEC} * (0.95 + 0.05*${FLOAT01});\n"
" mediump vec4 value = ";
for (int i = 0; i < numOperations; i++)
resultTemplate += string(i > 0 ? op : "") + "a_value${NAME_SPEC}";
resultTemplate +=
";\n"
" v_value${NAME_SPEC} = value;\n"
"${SEMANTIC_ERROR}"
"}\n"
"${INVALID_CHAR}";
return resultTemplate;
}
// Function for generating a fragment shader with a binary operation chain.
static string binaryOpFragmentTemplate (int numOperations, const char* op)
{
string resultTemplate;
resultTemplate +=
"#version 300 es\n"
"layout(location = 0) out mediump vec4 o_color;\n"
"in mediump vec4 v_value${NAME_SPEC};\n"
"\n"
"void main()\n"
"{\n"
" mediump vec4 value = ";
for (int i = 0; i < numOperations; i++)
resultTemplate += string(i > 0 ? op : "") + "v_value${NAME_SPEC}";
resultTemplate +=
";\n"
" o_color = value + ${FLOAT01};\n"
"${SEMANTIC_ERROR}"
"}\n"
"${INVALID_CHAR}";
return resultTemplate;
}
// Function for generating a vertex that takes one attribute in addition to position and just passes it to the fragment shader as a varying.
static string singleVaryingVertexTemplate (void)
{
const char* resultTemplate =
"#version 300 es\n"
"in highp vec4 a_position${NAME_SPEC};\n"
"in mediump vec4 a_value${NAME_SPEC};\n"
"out mediump vec4 v_value${NAME_SPEC};\n"
"\n"
"void main()\n"
"{\n"
" gl_Position = a_position${NAME_SPEC} * (0.95 + 0.05*${FLOAT01});\n"
" v_value${NAME_SPEC} = a_value${NAME_SPEC};\n"
"${SEMANTIC_ERROR}"
"}\n"
"${INVALID_CHAR}";
return resultTemplate;
}
// Function for generating a fragment shader that takes a single varying and uses it as the color.
static string singleVaryingFragmentTemplate (void)
{
const char* resultTemplate =
"#version 300 es\n"
"layout(location = 0) out mediump vec4 o_color;\n"
"in mediump vec4 v_value${NAME_SPEC};\n"
"\n"
"void main()\n"
"{\n"
" o_color = v_value${NAME_SPEC} + ${FLOAT01};\n"
"${SEMANTIC_ERROR}"
"}\n"
"${INVALID_CHAR}";
return resultTemplate;
}
// Function for generating the vertex shader of a texture lookup case.
static string textureLookupVertexTemplate (ConditionalUsage conditionalUsage, ConditionalType conditionalType)
{
string resultTemplate;
bool conditionVaryingNeeded = conditionalUsage != CONDITIONAL_USAGE_NONE && conditionalType == CONDITIONAL_TYPE_DYNAMIC;
resultTemplate +=
"#version 300 es\n"
"in highp vec4 a_position${NAME_SPEC};\n"
"in mediump vec2 a_coords${NAME_SPEC};\n"
"out mediump vec2 v_coords${NAME_SPEC};\n";
if (conditionVaryingNeeded)
resultTemplate +=
"in mediump float a_condition${NAME_SPEC};\n"
"out mediump float v_condition${NAME_SPEC};\n";
resultTemplate +=
"\n"
"void main()\n"
"{\n"
" gl_Position = a_position${NAME_SPEC} * (0.95 + 0.05*${FLOAT01});\n"
" v_coords${NAME_SPEC} = a_coords${NAME_SPEC};\n";
if (conditionVaryingNeeded)
resultTemplate +=
" v_condition${NAME_SPEC} = a_condition${NAME_SPEC};\n";
resultTemplate +=
"${SEMANTIC_ERROR}"
"}\n"
"${INVALID_CHAR}";
return resultTemplate;
}
// Function for generating the fragment shader of a texture lookup case.
static string textureLookupFragmentTemplate (int numLookups, ConditionalUsage conditionalUsage, ConditionalType conditionalType)
{
string resultTemplate;
resultTemplate +=
"#version 300 es\n"
"layout(location = 0) out mediump vec4 o_color;\n"
"in mediump vec2 v_coords${NAME_SPEC};\n";
if (conditionalUsage != CONDITIONAL_USAGE_NONE && conditionalType == CONDITIONAL_TYPE_DYNAMIC)
resultTemplate +=
"in mediump float v_condition${NAME_SPEC};\n";
for (int i = 0; i < numLookups; i++)
resultTemplate +=
"uniform sampler2D u_sampler" + de::toString(i) + "${NAME_SPEC};\n";
if (conditionalUsage != CONDITIONAL_USAGE_NONE && conditionalType == CONDITIONAL_TYPE_UNIFORM)
resultTemplate +=
"uniform mediump float u_condition${NAME_SPEC};\n";
resultTemplate +=
"\n"
"void main()\n"
"{\n"
" mediump vec4 color = vec4(0.0);\n";
const char* conditionalTerm = conditionalType == CONDITIONAL_TYPE_STATIC ? "1.0 > 0.0"
: conditionalType == CONDITIONAL_TYPE_UNIFORM ? "u_condition${NAME_SPEC} > 0.0"
: conditionalType == CONDITIONAL_TYPE_DYNAMIC ? "v_condition${NAME_SPEC} > 0.0"
: DE_NULL;
DE_ASSERT(conditionalTerm != DE_NULL);
if (conditionalUsage == CONDITIONAL_USAGE_FIRST_HALF)
resultTemplate += string("") +
" if (" + conditionalTerm + ")\n"
" {\n";
for (int i = 0; i < numLookups; i++)
{
if (conditionalUsage == CONDITIONAL_USAGE_FIRST_HALF)
{
if (i < (numLookups + 1) / 2)
resultTemplate += "\t";
}
else if (conditionalUsage == CONDITIONAL_USAGE_EVERY_OTHER)
{
if (i % 2 == 0)
resultTemplate += string("") +
" if (" + conditionalTerm + ")\n"
"\t";
}
resultTemplate +=
" color += texture(u_sampler" + de::toString(i) + "${NAME_SPEC}, v_coords${NAME_SPEC});\n";
if (conditionalUsage == CONDITIONAL_USAGE_FIRST_HALF && i == (numLookups - 1) / 2)
resultTemplate += "\t}\n";
}
resultTemplate +=
" o_color = color/" + de::toString(numLookups) + ".0 + ${FLOAT01};\n" +
"${SEMANTIC_ERROR}"
"}\n"
"${INVALID_CHAR}";
return resultTemplate;
}
// Function for generating the shader attributes of a texture lookup case.
static vector<ShaderCompilerCase::AttribSpec> textureLookupShaderAttributes (const string& nameSpecialization, ConditionalUsage conditionalUsage, ConditionalType conditionalType)
{
vector<ShaderCompilerCase::AttribSpec> result;
result.push_back(ShaderCompilerCase::AttribSpec("a_position" + nameSpecialization,
combineVec4ToVec16(Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
Vec4(-1.0f, 1.0f, 0.0f, 1.0f),
Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
Vec4( 1.0f, 1.0f, 0.0f, 1.0f))));
result.push_back(ShaderCompilerCase::AttribSpec("a_coords" + nameSpecialization,
combineVec4ToVec16(Vec4(0.0f, 0.0f, 0.0f, 0.0f),
Vec4(0.0f, 1.0f, 0.0f, 0.0f),
Vec4(1.0f, 0.0f, 0.0f, 0.0f),
Vec4(1.0f, 1.0f, 0.0f, 0.0f))));
if (conditionalUsage != CONDITIONAL_USAGE_NONE && conditionalType == CONDITIONAL_TYPE_DYNAMIC)
result.push_back(ShaderCompilerCase::AttribSpec("a_condition" + nameSpecialization,
combineVec4ToVec16(Vec4(1.0f), Vec4(1.0f), Vec4(1.0f), Vec4(1.0f))));
return result;
}
// Function for generating the shader uniforms of a texture lookup case.
static vector<ShaderCompilerCase::UniformSpec> textureLookupShaderUniforms (const string& nameSpecialization, int numLookups, ConditionalUsage conditionalUsage, ConditionalType conditionalType)
{
vector<ShaderCompilerCase::UniformSpec> result;
for (int i = 0; i < numLookups; i++)
result.push_back(ShaderCompilerCase::UniformSpec("u_sampler" + de::toString(i) + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_TEXTURE_UNIT,
(float)i));
if (conditionalUsage != CONDITIONAL_USAGE_NONE && conditionalType == CONDITIONAL_TYPE_UNIFORM)
result.push_back(ShaderCompilerCase::UniformSpec("u_condition" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_FLOAT,
1.0f));
return result;
}
static string mandelbrotVertexTemplate (void)
{
const char* resultTemplate =
"#version 300 es\n"
"uniform highp mat4 u_mvp${NAME_SPEC};\n"
"\n"
"in highp vec4 a_vertex${NAME_SPEC};\n"
"in highp vec4 a_coord${NAME_SPEC};\n"
"\n"
"out mediump vec2 v_coord${NAME_SPEC};\n"
"\n"
"void main(void)\n"
"{\n"
" gl_Position = u_mvp${NAME_SPEC} * a_vertex${NAME_SPEC} * (0.95 + 0.05*${FLOAT01});\n"
"\n"
" float xMin = -2.0;\n"
" float xMax = +0.5;\n"
" float yMin = -1.5;\n"
" float yMax = +1.5;\n"
"\n"
" v_coord${NAME_SPEC}.x = a_coord${NAME_SPEC}.x * (xMax - xMin) + xMin;\n"
" v_coord${NAME_SPEC}.y = a_coord${NAME_SPEC}.y * (yMax - yMin) + yMin;\n"
"${SEMANTIC_ERROR}"
"}\n"
"${INVALID_CHAR}";
return resultTemplate;
}
static string mandelbrotFragmentTemplate (int numFractalIterations)
{
string resultTemplate =
"#version 300 es\n"
"layout(location = 0) out mediump vec4 o_color;\n"
"in mediump vec2 v_coord${NAME_SPEC};\n"
"\n"
"precision mediump float;\n"
"\n"
"#define NUM_ITERS " + de::toString(numFractalIterations) + "\n"
"\n"
"void main (void)\n"
"{\n"
" vec2 coords = v_coord${NAME_SPEC};\n"
" float u_limit = 2.0 * 2.0;\n"
" vec2 tmp = vec2(0, 0);\n"
" int iter;\n"
"\n"
" for (iter = 0; iter < NUM_ITERS; iter++)\n"
" {\n"
" tmp = vec2((tmp.x + tmp.y) * (tmp.x - tmp.y), 2.0 * (tmp.x * tmp.y)) + coords;\n"
"\n"
" if (dot(tmp, tmp) > u_limit)\n"
" break;\n"
" }\n"
"\n"
" vec3 color = vec3(float(iter) * (1.0 / float(NUM_ITERS)));\n"
"\n"
" o_color = vec4(color, 1.0) + ${FLOAT01};\n"
"${SEMANTIC_ERROR}"
"}\n"
"${INVALID_CHAR}";
return resultTemplate;
}
static vector<ShaderCompilerCase::AttribSpec> mandelbrotShaderAttributes (const string& nameSpecialization)
{
vector<ShaderCompilerCase::AttribSpec> result;
result.push_back(ShaderCompilerCase::AttribSpec("a_vertex" + nameSpecialization,
combineVec4ToVec16(Vec4(-1.0f, -1.0f, 0.0f, 1.0f),
Vec4(-1.0f, 1.0f, 0.0f, 1.0f),
Vec4( 1.0f, -1.0f, 0.0f, 1.0f),
Vec4( 1.0f, 1.0f, 0.0f, 1.0f))));
result.push_back(ShaderCompilerCase::AttribSpec("a_coord" + nameSpecialization,
combineVec4ToVec16(Vec4(0.0f, 0.0f, 0.0f, 1.0f),
Vec4(0.0f, 1.0f, 0.0f, 1.0f),
Vec4(1.0f, 0.0f, 0.0f, 1.0f),
Vec4(1.0f, 1.0f, 0.0f, 1.0f))));
return result;
}
static vector<ShaderCompilerCase::UniformSpec> mandelbrotShaderUniforms (const string& nameSpecialization)
{
vector<ShaderCompilerCase::UniformSpec> result;
result.push_back(ShaderCompilerCase::UniformSpec("u_mvp" + nameSpecialization,
ShaderCompilerCase::UniformSpec::TYPE_MAT4,
arrTo16(Mat4(1.0f).getColumnMajorData())));
return result;
}
ShaderCompilerCase::ShaderCompilerCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments)
: TestCase (context, tcu::NODETYPE_PERFORMANCE, name, description)
, m_viewportWidth (0)
, m_viewportHeight (0)
, m_avoidCache (avoidCache)
, m_addWhitespaceAndComments (addWhitespaceAndComments)
, m_startHash ((deUint32)(deUint64Hash(deGetTime()) ^ deUint64Hash(deGetMicroseconds()) ^ deInt32Hash(caseID)))
{
int cmdLineIterCount = context.getTestContext().getCommandLine().getTestIterationCount();
m_minimumMeasurementCount = cmdLineIterCount > 0 ? cmdLineIterCount : DEFAULT_MINIMUM_MEASUREMENT_COUNT;
m_maximumMeasurementCount = m_minimumMeasurementCount*3;
}
ShaderCompilerCase::~ShaderCompilerCase (void)
{
}
deUint32 ShaderCompilerCase::getSpecializationID (int measurementNdx) const
{
if (m_avoidCache)
return m_startHash ^ (deUint32)deInt32Hash((deInt32)measurementNdx);
else
return m_startHash;
}
void ShaderCompilerCase::init (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const tcu::RenderTarget& renderTarget = m_context.getRenderContext().getRenderTarget();
m_viewportWidth = deMin32(MAX_VIEWPORT_WIDTH, renderTarget.getWidth());
m_viewportHeight = deMin32(MAX_VIEWPORT_HEIGHT, renderTarget.getHeight());
gl.viewport(0, 0, m_viewportWidth, m_viewportHeight);
}
ShaderCompilerCase::ShadersAndProgram ShaderCompilerCase::createShadersAndProgram (void) const
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
ShadersAndProgram result;
result.vertShader = gl.createShader(GL_VERTEX_SHADER);
result.fragShader = gl.createShader(GL_FRAGMENT_SHADER);
result.program = gl.createProgram();
gl.attachShader(result.program, result.vertShader);
gl.attachShader(result.program, result.fragShader);
return result;
}
void ShaderCompilerCase::setShaderSources (deUint32 vertShader, deUint32 fragShader, const ProgramContext& progCtx) const
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const char* vertShaderSourceCStr = progCtx.vertShaderSource.c_str();
const char* fragShaderSourceCStr = progCtx.fragShaderSource.c_str();
gl.shaderSource(vertShader, 1, &vertShaderSourceCStr, DE_NULL);
gl.shaderSource(fragShader, 1, &fragShaderSourceCStr, DE_NULL);
}
bool ShaderCompilerCase::compileShader (deUint32 shader) const
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
GLint status = 0;
gl.compileShader(shader);
gl.getShaderiv(shader, GL_COMPILE_STATUS, &status);
return status != 0;
}
bool ShaderCompilerCase::linkAndUseProgram (deUint32 program) const
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
GLint linkStatus = 0;
gl.linkProgram(program);
gl.getProgramiv(program, GL_LINK_STATUS, &linkStatus);
if (linkStatus != 0)
gl.useProgram(program);
return linkStatus != 0;
}
void ShaderCompilerCase::setShaderInputs (deUint32 program, const ProgramContext& progCtx) const
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
// Setup attributes.
for (int attribNdx = 0; attribNdx < (int)progCtx.vertexAttributes.size(); attribNdx++)
{
int location = gl.getAttribLocation(program, progCtx.vertexAttributes[attribNdx].name.c_str());
if (location >= 0)
{
gl.enableVertexAttribArray(location);
gl.vertexAttribPointer(location, 4, GL_FLOAT, GL_FALSE, 0, progCtx.vertexAttributes[attribNdx].value.getPtr());
}
}
// Setup uniforms.
for (int uniformNdx = 0; uniformNdx < (int)progCtx.uniforms.size(); uniformNdx++)
{
int location = gl.getUniformLocation(program, progCtx.uniforms[uniformNdx].name.c_str());
if (location >= 0)
{
const float* floatPtr = progCtx.uniforms[uniformNdx].value.getPtr();
switch (progCtx.uniforms[uniformNdx].type)
{
case UniformSpec::TYPE_FLOAT: gl.uniform1fv(location, 1, floatPtr); break;
case UniformSpec::TYPE_VEC2: gl.uniform2fv(location, 1, floatPtr); break;
case UniformSpec::TYPE_VEC3: gl.uniform3fv(location, 1, floatPtr); break;
case UniformSpec::TYPE_VEC4: gl.uniform4fv(location, 1, floatPtr); break;
case UniformSpec::TYPE_MAT3: gl.uniformMatrix3fv(location, 1, GL_FALSE, floatPtr); break;
case UniformSpec::TYPE_MAT4: gl.uniformMatrix4fv(location, 1, GL_FALSE, floatPtr); break;
case UniformSpec::TYPE_TEXTURE_UNIT: gl.uniform1i(location, (GLint)deRoundFloatToInt32(*floatPtr)); break;
default:
DE_ASSERT(DE_FALSE);
}
}
}
}
void ShaderCompilerCase::draw (void) const
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
static const deUint8 indices[] =
{
0, 1, 2,
2, 1, 3
};
gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
gl.drawElements(GL_TRIANGLES, DE_LENGTH_OF_ARRAY(indices), GL_UNSIGNED_BYTE, indices);
// \note Read one pixel to force compilation.
deUint32 pixel;
gl.readPixels(0, 0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, &pixel);
}
void ShaderCompilerCase::cleanup (const ShadersAndProgram& shadersAndProgram, const ProgramContext& progCtx, bool linkSuccess) const
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
if (linkSuccess)
{
for (int attribNdx = 0; attribNdx < (int)progCtx.vertexAttributes.size(); attribNdx++)
{
int location = gl.getAttribLocation(shadersAndProgram.program, progCtx.vertexAttributes[attribNdx].name.c_str());
if (location >= 0)
gl.disableVertexAttribArray(location);
}
}
gl.useProgram(0);
gl.detachShader(shadersAndProgram.program, shadersAndProgram.vertShader);
gl.detachShader(shadersAndProgram.program, shadersAndProgram.fragShader);
gl.deleteShader(shadersAndProgram.vertShader);
gl.deleteShader(shadersAndProgram.fragShader);
gl.deleteProgram(shadersAndProgram.program);
}
void ShaderCompilerCase::logProgramData (const BuildInfo& buildInfo, const ProgramContext& progCtx) const
{
m_testCtx.getLog() << TestLog::ShaderProgram(buildInfo.linkSuccess, buildInfo.logs.link)
<< TestLog::Shader(QP_SHADER_TYPE_VERTEX, progCtx.vertShaderSource, buildInfo.vertCompileSuccess, buildInfo.logs.vert)
<< TestLog::Shader(QP_SHADER_TYPE_FRAGMENT, progCtx.fragShaderSource, buildInfo.fragCompileSuccess, buildInfo.logs.frag)
<< TestLog::EndShaderProgram;
}
ShaderCompilerCase::Logs ShaderCompilerCase::getLogs (const ShadersAndProgram& shadersAndProgram) const
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
Logs result;
result.vert = getShaderInfoLog(gl, shadersAndProgram.vertShader);
result.frag = getShaderInfoLog(gl, shadersAndProgram.fragShader);
result.link = getProgramInfoLog(gl, shadersAndProgram.program);
return result;
}
bool ShaderCompilerCase::goodEnoughMeasurements (const vector<Measurement>& measurements) const
{
if ((int)measurements.size() < m_minimumMeasurementCount)
return false;
else
{
if ((int)measurements.size() >= m_maximumMeasurementCount)
return true;
else
{
vector<deInt64> totalTimesWithoutDraw;
for (int i = 0; i < (int)measurements.size(); i++)
totalTimesWithoutDraw.push_back(measurements[i].totalTimeWithoutDraw());
return vectorFloatRelativeMedianAbsoluteDeviation(vectorLowestPercentage(totalTimesWithoutDraw, 0.5f)) < RELATIVE_MEDIAN_ABSOLUTE_DEVIATION_THRESHOLD;
}
}
}
ShaderCompilerCase::IterateResult ShaderCompilerCase::iterate (void)
{
// Before actual measurements, compile and draw with a minimal shader to avoid possible initial slowdowns in the actual test.
{
deUint32 specID = getSpecializationID(0);
ProgramContext progCtx;
progCtx.vertShaderSource = specializeShaderSource(singleVaryingVertexTemplate(), specID, SHADER_VALIDITY_VALID);
progCtx.fragShaderSource = specializeShaderSource(singleVaryingFragmentTemplate(), specID, SHADER_VALIDITY_VALID);
progCtx.vertexAttributes = singleValueShaderAttributes(getNameSpecialization(specID));
ShadersAndProgram shadersAndProgram = createShadersAndProgram();
setShaderSources(shadersAndProgram.vertShader, shadersAndProgram.fragShader, progCtx);
BuildInfo buildInfo;
buildInfo.vertCompileSuccess = compileShader(shadersAndProgram.vertShader);
buildInfo.fragCompileSuccess = compileShader(shadersAndProgram.fragShader);
buildInfo.linkSuccess = linkAndUseProgram(shadersAndProgram.program);
if (!(buildInfo.vertCompileSuccess && buildInfo.fragCompileSuccess && buildInfo.linkSuccess))
{
buildInfo.logs = getLogs(shadersAndProgram);
logProgramData(buildInfo, progCtx);
cleanup(shadersAndProgram, progCtx, buildInfo.linkSuccess);
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Compilation failed");
return STOP;
}
setShaderInputs(shadersAndProgram.program, progCtx);
draw();
cleanup(shadersAndProgram, progCtx, buildInfo.linkSuccess);
}
vector<Measurement> measurements;
// \note These are logged after measurements are done.
ProgramContext latestProgramContext;
BuildInfo latestBuildInfo;
if (WARMUP_CPU_AT_BEGINNING_OF_CASE)
tcu::warmupCPU();
// Actual test measurements.
while (!goodEnoughMeasurements(measurements))
{
// Create shaders, compile & link, set shader inputs and draw. Time measurement is done at relevant points.
// \note Setting inputs and drawing are done twice in order to find out the time for actual compiling.
// \note Shader data (sources and inputs) are generated and GL shader and program objects are created before any time measurements.
ProgramContext progCtx = generateShaderData((int)measurements.size());
ShadersAndProgram shadersAndProgram = createShadersAndProgram();
BuildInfo buildInfo;
if (m_addWhitespaceAndComments)
{
const deUint32 hash = m_startHash ^ (deUint32)deInt32Hash((deInt32)measurements.size());
progCtx.vertShaderSource = strWithWhiteSpaceAndComments(progCtx.vertShaderSource, hash);
progCtx.fragShaderSource = strWithWhiteSpaceAndComments(progCtx.fragShaderSource, hash);
}
if (WARMUP_CPU_BEFORE_EACH_MEASUREMENT)
tcu::warmupCPU();
// \note Do NOT do anything too hefty between the first and last deGetMicroseconds() here (other than the gl calls); it would disturb the measurement.
deUint64 startTime = deGetMicroseconds();
setShaderSources(shadersAndProgram.vertShader, shadersAndProgram.fragShader, progCtx);
deUint64 shaderSourceSetEndTime = deGetMicroseconds();
buildInfo.vertCompileSuccess = compileShader(shadersAndProgram.vertShader);
deUint64 vertexShaderCompileEndTime = deGetMicroseconds();
buildInfo.fragCompileSuccess = compileShader(shadersAndProgram.fragShader);
deUint64 fragmentShaderCompileEndTime = deGetMicroseconds();
buildInfo.linkSuccess = linkAndUseProgram(shadersAndProgram.program);
deUint64 programLinkEndTime = deGetMicroseconds();
// Check compilation and linking status here, after all compilation and linking gl calls are made.
if (!(buildInfo.vertCompileSuccess && buildInfo.fragCompileSuccess && buildInfo.linkSuccess))
{
buildInfo.logs = getLogs(shadersAndProgram);
logProgramData(buildInfo, progCtx);
cleanup(shadersAndProgram, progCtx, buildInfo.linkSuccess);
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Compilation failed");
return STOP;
}
setShaderInputs(shadersAndProgram.program, progCtx);
deUint64 firstShaderInputSetEndTime = deGetMicroseconds();
// Draw for the first time.
draw();
deUint64 firstDrawEndTime = deGetMicroseconds();
// Set inputs and draw again.
setShaderInputs(shadersAndProgram.program, progCtx);
deUint64 secondShaderInputSetEndTime = deGetMicroseconds();
draw();
deUint64 secondDrawEndTime = deGetMicroseconds();
// De-initializations (detach shaders etc.).
buildInfo.logs = getLogs(shadersAndProgram);
cleanup(shadersAndProgram, progCtx, buildInfo.linkSuccess);
// Output measurement log later (after last measurement).
measurements.push_back(Measurement((deInt64)(shaderSourceSetEndTime - startTime),
(deInt64)(vertexShaderCompileEndTime - shaderSourceSetEndTime),
(deInt64)(fragmentShaderCompileEndTime - vertexShaderCompileEndTime),
(deInt64)(programLinkEndTime - fragmentShaderCompileEndTime),
(deInt64)(firstShaderInputSetEndTime - programLinkEndTime),
(deInt64)(firstDrawEndTime - firstShaderInputSetEndTime),
(deInt64)(secondShaderInputSetEndTime - firstDrawEndTime),
(deInt64)(secondDrawEndTime - secondShaderInputSetEndTime)));
latestBuildInfo = buildInfo;
latestProgramContext = progCtx;
m_testCtx.touchWatchdog(); // \note Measurements may take a while in a bad case.
}
// End of test case, log information about measurements.
{
TestLog& log = m_testCtx.getLog();
vector<deInt64> sourceSetTimes;
vector<deInt64> vertexCompileTimes;
vector<deInt64> fragmentCompileTimes;
vector<deInt64> programLinkTimes;
vector<deInt64> firstInputSetTimes;
vector<deInt64> firstDrawTimes;
vector<deInt64> secondInputTimes;
vector<deInt64> secondDrawTimes;
vector<deInt64> firstPhaseTimes;
vector<deInt64> secondPhaseTimes;
vector<deInt64> totalTimesWithoutDraw;
vector<deInt64> specializationTimes;
if (!m_avoidCache)
log << TestLog::Message << "Note: Testing cache hits, so the medians and averages exclude the first iteration." << TestLog::EndMessage;
log << TestLog::Message << "Note: \"Specialization time\" means first draw time minus second draw time." << TestLog::EndMessage
<< TestLog::Message << "Note: \"Compilation time\" means the time up to (and including) linking, plus specialization time." << TestLog::EndMessage;
log << TestLog::Section("IterationMeasurements", "Iteration measurements of compilation and linking times");
DE_ASSERT((int)measurements.size() > (m_avoidCache ? 0 : 1));
for (int ndx = 0; ndx < (int)measurements.size(); ndx++)
{
const Measurement& curMeas = measurements[ndx];
// Subtract time of second phase (second input setup and draw) from first (from start to end of first draw).
// \note Cap if second phase seems unreasonably high (higher than first input set and draw).
deInt64 timeWithoutDraw = curMeas.totalTimeWithoutDraw();
// Specialization time = first draw - second draw time. Again, cap at 0 if second draw was longer than first draw.
deInt64 specializationTime = de::max<deInt64>(0, curMeas.firstDrawTime - curMeas.secondDrawTime);
if (ndx > 0 || m_avoidCache) // \note When allowing cache hits, don't account for the first measurement when calculating median or average.
{
sourceSetTimes.push_back (curMeas.sourceSetTime);
vertexCompileTimes.push_back (curMeas.vertexCompileTime);
fragmentCompileTimes.push_back (curMeas.fragmentCompileTime);
programLinkTimes.push_back (curMeas.programLinkTime);
firstInputSetTimes.push_back (curMeas.firstInputSetTime);
firstDrawTimes.push_back (curMeas.firstDrawTime);
firstPhaseTimes.push_back (curMeas.firstPhase());
secondDrawTimes.push_back (curMeas.secondDrawTime);
secondInputTimes.push_back (curMeas.secondInputSetTime);
secondPhaseTimes.push_back (curMeas.secondPhase());
totalTimesWithoutDraw.push_back (timeWithoutDraw);
specializationTimes.push_back (specializationTime);
}
// Log this measurement.
log << TestLog::Float("Measurement" + de::toString(ndx) + "CompilationTime",
"Measurement " + de::toString(ndx) + " compilation time",
"ms", QP_KEY_TAG_TIME, (float)timeWithoutDraw / 1000.0f)
<< TestLog::Float("Measurement" + de::toString(ndx) + "SpecializationTime",
"Measurement " + de::toString(ndx) + " specialization time",
"ms", QP_KEY_TAG_TIME, (float)specializationTime / 1000.0f);
}
// Log some statistics.
for (int entireRangeOrLowestHalf = 0; entireRangeOrLowestHalf < 2; entireRangeOrLowestHalf++)
{
bool isEntireRange = entireRangeOrLowestHalf == 0;
string statNamePrefix = isEntireRange ? "" : "LowestHalf";
vector<deInt64> rangeTotalTimes = isEntireRange ? totalTimesWithoutDraw : vectorLowestPercentage(totalTimesWithoutDraw, 0.5f);
vector<deInt64> rangeSpecializationTimes = isEntireRange ? specializationTimes : vectorLowestPercentage(specializationTimes, 0.5f);
#define LOG_COMPILE_SPECIALIZE_TIME_STAT(NAME, DESC, FUNC) \
log << TestLog::Float(statNamePrefix + "CompilationTime" + (NAME), (DESC) + string(" of compilation time"), "ms", QP_KEY_TAG_TIME, (FUNC)(rangeTotalTimes)/1000.0f) \
<< TestLog::Float(statNamePrefix + "SpecializationTime" + (NAME), (DESC) + string(" of specialization time"), "ms", QP_KEY_TAG_TIME, (FUNC)(rangeSpecializationTimes)/1000.0f)
#define LOG_COMPILE_SPECIALIZE_RELATIVE_STAT(NAME, DESC, FUNC) \
log << TestLog::Float(statNamePrefix + "CompilationTime" + (NAME), (DESC) + string(" of compilation time"), "", QP_KEY_TAG_NONE, (FUNC)(rangeTotalTimes)) \
<< TestLog::Float(statNamePrefix + "SpecializationTime" + (NAME), (DESC) + string(" of specialization time"), "", QP_KEY_TAG_NONE, (FUNC)(rangeSpecializationTimes))
log << TestLog::Message << "\nStatistics computed from "
<< (isEntireRange ? "all" : "only the lowest 50%")
<< " of the above measurements:"
<< TestLog::EndMessage;
LOG_COMPILE_SPECIALIZE_TIME_STAT ("Median", "Median", vectorFloatMedian);
LOG_COMPILE_SPECIALIZE_TIME_STAT ("Average", "Average", vectorFloatAverage);
LOG_COMPILE_SPECIALIZE_TIME_STAT ("Minimum", "Minimum", vectorFloatMinimum);
LOG_COMPILE_SPECIALIZE_TIME_STAT ("Maximum", "Maximum", vectorFloatMaximum);
LOG_COMPILE_SPECIALIZE_TIME_STAT ("MedianAbsoluteDeviation", "Median absolute deviation", vectorFloatMedianAbsoluteDeviation);
LOG_COMPILE_SPECIALIZE_RELATIVE_STAT ("RelativeMedianAbsoluteDeviation", "Relative median absolute deviation", vectorFloatRelativeMedianAbsoluteDeviation);
LOG_COMPILE_SPECIALIZE_TIME_STAT ("StandardDeviation", "Standard deviation", vectorFloatStandardDeviation);
LOG_COMPILE_SPECIALIZE_RELATIVE_STAT ("RelativeStandardDeviation", "Relative standard deviation", vectorFloatRelativeStandardDeviation);
LOG_COMPILE_SPECIALIZE_TIME_STAT ("MaxMinusMin", "Max-min", vectorFloatMaximumMinusMinimum);
LOG_COMPILE_SPECIALIZE_RELATIVE_STAT ("RelativeMaxMinusMin", "Relative max-min", vectorFloatRelativeMaximumMinusMinimum);
#undef LOG_COMPILE_SPECIALIZE_RELATIVE_STAT
#undef LOG_COMPILE_SPECIALIZE_TIME_STAT
if (!isEntireRange && vectorFloatRelativeMedianAbsoluteDeviation(rangeTotalTimes) > RELATIVE_MEDIAN_ABSOLUTE_DEVIATION_THRESHOLD)
log << TestLog::Message << "\nWARNING: couldn't achieve relative median absolute deviation under threshold value "
<< RELATIVE_MEDIAN_ABSOLUTE_DEVIATION_THRESHOLD
<< " for compilation time of the lowest 50% of measurements" << TestLog::EndMessage;
}
log << TestLog::EndSection; // End section IterationMeasurements
for (int medianOrAverage = 0; medianOrAverage < 2; medianOrAverage++)
{
typedef float (*VecFunc)(const vector<deInt64>&);
bool isMedian = medianOrAverage == 0;
string singular = isMedian ? "Median" : "Average";
string plural = singular + "s";
VecFunc func = isMedian ? (VecFunc) vectorFloatMedian<deInt64> : (VecFunc) vectorFloatAverage<deInt64>;
log << TestLog::Section(plural + "PerPhase", plural + " per phase");
for (int entireRangeOrLowestHalf = 0; entireRangeOrLowestHalf < 2; entireRangeOrLowestHalf++)
{
bool isEntireRange = entireRangeOrLowestHalf == 0;
string statNamePrefix = isEntireRange ? "" : "LowestHalf";
float rangeSizeRatio = isEntireRange ? 1.0f : 0.5f;
#define LOG_TIME(NAME, DESC, DATA) log << TestLog::Float(statNamePrefix + (NAME) + singular, singular + " of " + (DESC), "ms", QP_KEY_TAG_TIME, func(vectorLowestPercentage((DATA), rangeSizeRatio))/1000.0f);
log << TestLog::Message << (isEntireRange ? "For all measurements:" : "\nFor only the lowest 50% of the measurements:") << TestLog::EndMessage;
LOG_TIME("ShaderSourceSetTime", "shader source set time", sourceSetTimes);
LOG_TIME("VertexShaderCompileTime", "vertex shader compile time", vertexCompileTimes);
LOG_TIME("FragmentShaderCompileTime", "fragment shader compile time", fragmentCompileTimes);
LOG_TIME("ProgramLinkTime", "program link time", programLinkTimes);
LOG_TIME("FirstShaderInputSetTime", "first shader input set time", firstInputSetTimes);
LOG_TIME("FirstDrawTime", "first draw time", firstDrawTimes);
LOG_TIME("SecondShaderInputSetTime", "second shader input set time", secondInputTimes);
LOG_TIME("SecondDrawTime", "second draw time", secondDrawTimes);
#undef LOG_TIME
}
log << TestLog::EndSection;
}
// Set result.
{
log << TestLog::Message << "Note: test result is the first quartile (i.e. median of the lowest half of measurements) of compilation times" << TestLog::EndMessage;
float result = vectorFloatFirstQuartile(totalTimesWithoutDraw) / 1000.0f;
m_testCtx.setTestResult(QP_TEST_RESULT_PASS, de::floatToString(result, 2).c_str());
}
// Log shaders.
if (m_avoidCache || m_addWhitespaceAndComments)
{
string msg = "Note: the following shaders are the ones from the last iteration; ";
if (m_avoidCache)
msg += "variables' names and some constant expressions";
if (m_addWhitespaceAndComments)
msg += string(m_avoidCache ? " as well as " : "") + "whitespace and comments";
msg += " differ between iterations.";
log << TestLog::Message << msg.c_str() << TestLog::EndMessage;
}
logProgramData(latestBuildInfo, latestProgramContext);
return STOP;
}
}
ShaderCompilerLightCase::ShaderCompilerLightCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, bool isVertexCase, int numLights, LightType lightType)
: ShaderCompilerCase (context, name, description, caseID, avoidCache, addWhitespaceAndComments)
, m_numLights (numLights)
, m_isVertexCase (isVertexCase)
, m_lightType (lightType)
, m_texture (DE_NULL)
{
}
ShaderCompilerLightCase::~ShaderCompilerLightCase (void)
{
ShaderCompilerLightCase::deinit();
}
void ShaderCompilerLightCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
}
void ShaderCompilerLightCase::init (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
// Setup texture.
DE_ASSERT(m_texture == DE_NULL);
m_texture = new glu::Texture2D(m_context.getRenderContext(), GL_RGB, GL_UNSIGNED_BYTE, TEXTURE_WIDTH, TEXTURE_HEIGHT);
tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat());
m_texture->getRefTexture().allocLevel(0);
tcu::fillWithComponentGradients(m_texture->getRefTexture().getLevel(0), fmtInfo.valueMin, fmtInfo.valueMax);
gl.activeTexture(GL_TEXTURE0);
gl.bindTexture(GL_TEXTURE_2D, m_texture->getGLTexture());
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
m_texture->upload();
ShaderCompilerCase::init();
}
ShaderCompilerCase::ProgramContext ShaderCompilerLightCase::generateShaderData (int measurementNdx) const
{
deUint32 specID = getSpecializationID(measurementNdx);
string nameSpec = getNameSpecialization(specID);
ProgramContext result;
result.vertShaderSource = specializeShaderSource(lightVertexTemplate(m_numLights, m_isVertexCase, m_lightType), specID, SHADER_VALIDITY_VALID);
result.fragShaderSource = specializeShaderSource(lightFragmentTemplate(m_numLights, m_isVertexCase, m_lightType), specID, SHADER_VALIDITY_VALID);
result.vertexAttributes = lightShaderAttributes(nameSpec);
result.uniforms = lightShaderUniforms(nameSpec, m_numLights, m_lightType);
return result;
}
ShaderCompilerTextureCase::ShaderCompilerTextureCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, int numLookups, ConditionalUsage conditionalUsage, ConditionalType conditionalType)
: ShaderCompilerCase (context, name, description, caseID, avoidCache, addWhitespaceAndComments)
, m_numLookups (numLookups)
, m_conditionalUsage (conditionalUsage)
, m_conditionalType (conditionalType)
{
}
ShaderCompilerTextureCase::~ShaderCompilerTextureCase (void)
{
ShaderCompilerTextureCase::deinit();
}
void ShaderCompilerTextureCase::deinit (void)
{
for (vector<glu::Texture2D*>::iterator i = m_textures.begin(); i != m_textures.end(); i++)
delete *i;
m_textures.clear();
}
void ShaderCompilerTextureCase::init (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
// Setup texture.
DE_ASSERT(m_textures.empty());
m_textures.reserve(m_numLookups);
for (int i = 0; i < m_numLookups; i++)
{
glu::Texture2D* tex = new glu::Texture2D(m_context.getRenderContext(), GL_RGB, GL_UNSIGNED_BYTE, TEXTURE_WIDTH, TEXTURE_HEIGHT);
tcu::TextureFormatInfo fmtInfo = tcu::getTextureFormatInfo(tex->getRefTexture().getFormat());
tex->getRefTexture().allocLevel(0);
tcu::fillWithComponentGradients(tex->getRefTexture().getLevel(0), fmtInfo.valueMin, fmtInfo.valueMax);
gl.activeTexture(GL_TEXTURE0 + i);
gl.bindTexture(GL_TEXTURE_2D, tex->getGLTexture());
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
tex->upload();
m_textures.push_back(tex);
}
ShaderCompilerCase::init();
}
ShaderCompilerCase::ProgramContext ShaderCompilerTextureCase::generateShaderData (int measurementNdx) const
{
deUint32 specID = getSpecializationID(measurementNdx);
string nameSpec = getNameSpecialization(specID);
ProgramContext result;
result.vertShaderSource = specializeShaderSource(textureLookupVertexTemplate(m_conditionalUsage, m_conditionalType), specID, SHADER_VALIDITY_VALID);
result.fragShaderSource = specializeShaderSource(textureLookupFragmentTemplate(m_numLookups, m_conditionalUsage, m_conditionalType), specID, SHADER_VALIDITY_VALID);
result.vertexAttributes = textureLookupShaderAttributes(nameSpec, m_conditionalUsage, m_conditionalType);
result.uniforms = textureLookupShaderUniforms(nameSpec, m_numLookups, m_conditionalUsage, m_conditionalType);
return result;
}
ShaderCompilerLoopCase::ShaderCompilerLoopCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, bool isVertexCase, LoopType type, int numLoopIterations, int nestingDepth)
: ShaderCompilerCase (context, name, description, caseID, avoidCache, addWhitespaceAndComments)
, m_numLoopIterations (numLoopIterations)
, m_nestingDepth (nestingDepth)
, m_isVertexCase (isVertexCase)
, m_type (type)
{
}
ShaderCompilerLoopCase::~ShaderCompilerLoopCase (void)
{
}
ShaderCompilerCase::ProgramContext ShaderCompilerLoopCase::generateShaderData (int measurementNdx) const
{
deUint32 specID = getSpecializationID(measurementNdx);
string nameSpec = getNameSpecialization(specID);
ProgramContext result;
result.vertShaderSource = specializeShaderSource(loopVertexTemplate(m_type, m_isVertexCase, m_numLoopIterations, m_nestingDepth), specID, SHADER_VALIDITY_VALID);
result.fragShaderSource = specializeShaderSource(loopFragmentTemplate(m_type, m_isVertexCase, m_numLoopIterations, m_nestingDepth), specID, SHADER_VALIDITY_VALID);
result.vertexAttributes = loopShaderAttributes(nameSpec, m_type, m_numLoopIterations);
result.uniforms = loopShaderUniforms(nameSpec, m_type, m_numLoopIterations);
return result;
}
ShaderCompilerOperCase::ShaderCompilerOperCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, bool isVertexCase, const char* oper, int numOperations)
: ShaderCompilerCase (context, name, description, caseID, avoidCache, addWhitespaceAndComments)
, m_oper (oper)
, m_numOperations (numOperations)
, m_isVertexCase (isVertexCase)
{
}
ShaderCompilerOperCase::~ShaderCompilerOperCase (void)
{
}
ShaderCompilerCase::ProgramContext ShaderCompilerOperCase::generateShaderData (int measurementNdx) const
{
deUint32 specID = getSpecializationID(measurementNdx);
string nameSpec = getNameSpecialization(specID);
ProgramContext result;
if (m_isVertexCase)
{
result.vertShaderSource = specializeShaderSource(binaryOpVertexTemplate(m_numOperations, m_oper.c_str()), specID, SHADER_VALIDITY_VALID);
result.fragShaderSource = specializeShaderSource(singleVaryingFragmentTemplate(), specID, SHADER_VALIDITY_VALID);
}
else
{
result.vertShaderSource = specializeShaderSource(singleVaryingVertexTemplate(), specID, SHADER_VALIDITY_VALID);
result.fragShaderSource = specializeShaderSource(binaryOpFragmentTemplate(m_numOperations, m_oper.c_str()), specID, SHADER_VALIDITY_VALID);
}
result.vertexAttributes = singleValueShaderAttributes(nameSpec);
result.uniforms.clear(); // No uniforms used.
return result;
}
ShaderCompilerMandelbrotCase::ShaderCompilerMandelbrotCase (Context& context, const char* name, const char* description, int caseID, bool avoidCache, bool addWhitespaceAndComments, int numFractalIterations)
: ShaderCompilerCase (context, name, description, caseID, avoidCache, addWhitespaceAndComments)
, m_numFractalIterations (numFractalIterations)
{
}
ShaderCompilerMandelbrotCase::~ShaderCompilerMandelbrotCase (void)
{
}
ShaderCompilerCase::ProgramContext ShaderCompilerMandelbrotCase::generateShaderData (int measurementNdx) const
{
deUint32 specID = getSpecializationID(measurementNdx);
string nameSpec = getNameSpecialization(specID);
ProgramContext result;
result.vertShaderSource = specializeShaderSource(mandelbrotVertexTemplate(), specID, SHADER_VALIDITY_VALID);
result.fragShaderSource = specializeShaderSource(mandelbrotFragmentTemplate(m_numFractalIterations), specID, SHADER_VALIDITY_VALID);
result.vertexAttributes = mandelbrotShaderAttributes(nameSpec);
result.uniforms = mandelbrotShaderUniforms(nameSpec);
return result;
}
InvalidShaderCompilerCase::InvalidShaderCompilerCase (Context& context, const char* name, const char* description, int caseID, InvalidityType invalidityType)
: TestCase (context, tcu::NODETYPE_PERFORMANCE, name, description)
, m_invalidityType (invalidityType)
, m_startHash ((deUint32)(deUint64Hash(deGetTime()) ^ deUint64Hash(deGetMicroseconds()) ^ deInt32Hash(caseID)))
{
int cmdLineIterCount = context.getTestContext().getCommandLine().getTestIterationCount();
m_minimumMeasurementCount = cmdLineIterCount > 0 ? cmdLineIterCount : DEFAULT_MINIMUM_MEASUREMENT_COUNT;
m_maximumMeasurementCount = 3*m_minimumMeasurementCount;
}
InvalidShaderCompilerCase::~InvalidShaderCompilerCase (void)
{
}
deUint32 InvalidShaderCompilerCase::getSpecializationID (int measurementNdx) const
{
return m_startHash ^ (deUint32)deInt32Hash((deInt32)measurementNdx);
}
InvalidShaderCompilerCase::Shaders InvalidShaderCompilerCase::createShaders (void) const
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
Shaders result;
result.vertShader = gl.createShader(GL_VERTEX_SHADER);
result.fragShader = gl.createShader(GL_FRAGMENT_SHADER);
return result;
}
void InvalidShaderCompilerCase::setShaderSources (const Shaders& shaders, const ProgramContext& progCtx) const
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const char* vertShaderSourceCStr = progCtx.vertShaderSource.c_str();
const char* fragShaderSourceCStr = progCtx.fragShaderSource.c_str();
gl.shaderSource(shaders.vertShader, 1, &vertShaderSourceCStr, DE_NULL);
gl.shaderSource(shaders.fragShader, 1, &fragShaderSourceCStr, DE_NULL);
}
bool InvalidShaderCompilerCase::compileShader (deUint32 shader) const
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
GLint status;
gl.compileShader(shader);
gl.getShaderiv(shader, GL_COMPILE_STATUS, &status);
return status != 0;
}
void InvalidShaderCompilerCase::logProgramData (const BuildInfo& buildInfo, const ProgramContext& progCtx) const
{
m_testCtx.getLog() << TestLog::ShaderProgram(false, "(No linking done)")
<< TestLog::Shader(QP_SHADER_TYPE_VERTEX, progCtx.vertShaderSource, buildInfo.vertCompileSuccess, buildInfo.logs.vert)
<< TestLog::Shader(QP_SHADER_TYPE_FRAGMENT, progCtx.fragShaderSource, buildInfo.fragCompileSuccess, buildInfo.logs.frag)
<< TestLog::EndShaderProgram;
}
InvalidShaderCompilerCase::Logs InvalidShaderCompilerCase::getLogs (const Shaders& shaders) const
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
Logs result;
result.vert = getShaderInfoLog(gl, shaders.vertShader);
result.frag = getShaderInfoLog(gl, shaders.fragShader);
return result;
}
void InvalidShaderCompilerCase::cleanup (const Shaders& shaders) const
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
gl.deleteShader(shaders.vertShader);
gl.deleteShader(shaders.fragShader);
}
bool InvalidShaderCompilerCase::goodEnoughMeasurements (const vector<Measurement>& measurements) const
{
if ((int)measurements.size() < m_minimumMeasurementCount)
return false;
else
{
if ((int)measurements.size() >= m_maximumMeasurementCount)
return true;
else
{
vector<deInt64> totalTimes;
for (int i = 0; i < (int)measurements.size(); i++)
totalTimes.push_back(measurements[i].totalTime());
return vectorFloatRelativeMedianAbsoluteDeviation(vectorLowestPercentage(totalTimes, 0.5f)) < RELATIVE_MEDIAN_ABSOLUTE_DEVIATION_THRESHOLD;
}
}
}
InvalidShaderCompilerCase::IterateResult InvalidShaderCompilerCase::iterate (void)
{
ShaderValidity shaderValidity = m_invalidityType == INVALIDITY_INVALID_CHAR ? SHADER_VALIDITY_INVALID_CHAR
: m_invalidityType == INVALIDITY_SEMANTIC_ERROR ? SHADER_VALIDITY_SEMANTIC_ERROR
: SHADER_VALIDITY_LAST;
DE_ASSERT(shaderValidity != SHADER_VALIDITY_LAST);
// Before actual measurements, compile a minimal shader to avoid possible initial slowdowns in the actual test.
{
deUint32 specID = getSpecializationID(0);
ProgramContext progCtx;
progCtx.vertShaderSource = specializeShaderSource(singleVaryingVertexTemplate(), specID, shaderValidity);
progCtx.fragShaderSource = specializeShaderSource(singleVaryingFragmentTemplate(), specID, shaderValidity);
Shaders shaders = createShaders();
setShaderSources(shaders, progCtx);
BuildInfo buildInfo;
buildInfo.vertCompileSuccess = compileShader(shaders.vertShader);
buildInfo.fragCompileSuccess = compileShader(shaders.fragShader);
if (buildInfo.vertCompileSuccess || buildInfo.fragCompileSuccess)
{
buildInfo.logs = getLogs(shaders);
logProgramData(buildInfo, progCtx);
cleanup(shaders);
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Compilation of a shader erroneously succeeded");
return STOP;
}
cleanup(shaders);
}
vector<Measurement> measurements;
// \note These are logged after measurements are done.
ProgramContext latestProgramContext;
BuildInfo latestBuildInfo;
if (WARMUP_CPU_AT_BEGINNING_OF_CASE)
tcu::warmupCPU();
// Actual test measurements.
while (!goodEnoughMeasurements(measurements))
{
// Create shader and compile. Measure time.
// \note Shader sources are generated and GL shader objects are created before any time measurements.
ProgramContext progCtx = generateShaderSources((int)measurements.size());
Shaders shaders = createShaders();
BuildInfo buildInfo;
if (WARMUP_CPU_BEFORE_EACH_MEASUREMENT)
tcu::warmupCPU();
// \note Do NOT do anything too hefty between the first and last deGetMicroseconds() here (other than the gl calls); it would disturb the measurement.
deUint64 startTime = deGetMicroseconds();
setShaderSources(shaders, progCtx);
deUint64 shaderSourceSetEndTime = deGetMicroseconds();
buildInfo.vertCompileSuccess = compileShader(shaders.vertShader);
deUint64 vertexShaderCompileEndTime = deGetMicroseconds();
buildInfo.fragCompileSuccess = compileShader(shaders.fragShader);
deUint64 fragmentShaderCompileEndTime = deGetMicroseconds();
buildInfo.logs = getLogs(shaders);
// Both shader compilations should have failed.
if (buildInfo.vertCompileSuccess || buildInfo.fragCompileSuccess)
{
logProgramData(buildInfo, progCtx);
cleanup(shaders);
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Compilation of a shader erroneously succeeded");
return STOP;
}
// De-initializations (delete shaders).
cleanup(shaders);
// Output measurement log later (after last measurement).
measurements.push_back(Measurement((deInt64)(shaderSourceSetEndTime - startTime),
(deInt64)(vertexShaderCompileEndTime - shaderSourceSetEndTime),
(deInt64)(fragmentShaderCompileEndTime - vertexShaderCompileEndTime)));
latestBuildInfo = buildInfo;
latestProgramContext = progCtx;
m_testCtx.touchWatchdog(); // \note Measurements may take a while in a bad case.
}
// End of test case, log information about measurements.
{
TestLog& log = m_testCtx.getLog();
vector<deInt64> sourceSetTimes;
vector<deInt64> vertexCompileTimes;
vector<deInt64> fragmentCompileTimes;
vector<deInt64> totalTimes;
log << TestLog::Section("IterationMeasurements", "Iteration measurements of compilation times");
for (int ndx = 0; ndx < (int)measurements.size(); ndx++)
{
sourceSetTimes.push_back (measurements[ndx].sourceSetTime);
vertexCompileTimes.push_back (measurements[ndx].vertexCompileTime);
fragmentCompileTimes.push_back (measurements[ndx].fragmentCompileTime);
totalTimes.push_back (measurements[ndx].totalTime());
// Log this measurement.
log << TestLog::Float("Measurement" + de::toString(ndx) + "Time",
"Measurement " + de::toString(ndx) + " time",
"ms", QP_KEY_TAG_TIME, (float)measurements[ndx].totalTime()/1000.0f);
}
// Log some statistics.
for (int entireRangeOrLowestHalf = 0; entireRangeOrLowestHalf < 2;