blob: 872c618db8318a89352f178eea62ee3011c494d1 [file] [log] [blame]
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrGLSL_DEFINED
#define GrGLSL_DEFINED
#include "GrTypesPriv.h"
#include "SkString.h"
class GrGLSLCaps;
// Limited set of GLSL versions we build shaders for. Caller should round
// down the GLSL version to one of these enums.
enum GrGLSLGeneration {
/**
* Desktop GLSL 1.10 and ES2 shading language (based on desktop GLSL 1.20)
*/
k110_GrGLSLGeneration,
/**
* Desktop GLSL 1.30
*/
k130_GrGLSLGeneration,
/**
* Desktop GLSL 1.40
*/
k140_GrGLSLGeneration,
/**
* Desktop GLSL 1.50
*/
k150_GrGLSLGeneration,
/**
* Desktop GLSL 3.30, and ES GLSL 3.00
*/
k330_GrGLSLGeneration,
/**
* Desktop GLSL 4.00
*/
k400_GrGLSLGeneration,
/**
* Desktop GLSL 4.20
*/
k420_GrGLSLGeneration,
/**
* ES GLSL 3.10 only TODO Make GLSLCap objects to make this more granular
*/
k310es_GrGLSLGeneration,
/**
* ES GLSL 3.20
*/
k320es_GrGLSLGeneration,
};
bool GrGLSLSupportsNamedFragmentShaderOutputs(GrGLSLGeneration);
/**
* Gets the name of the function that should be used to sample a 2D texture. Coord type is used
* to indicate whether the texture is sampled using projective textured (kVec3f) or not (kVec2f).
*/
inline const char* GrGLSLTexture2DFunctionName(GrSLType coordType, GrSLType samplerType,
GrGLSLGeneration glslGen) {
SkASSERT(GrSLTypeIs2DCombinedSamplerType(samplerType));
SkASSERT(kVec2f_GrSLType == coordType || kVec3f_GrSLType == coordType);
// GL_TEXTURE_RECTANGLE_ARB is written against OpenGL 2.0/GLSL 1.10. At that time there were
// separate texture*() functions. In OpenGL 3.0/GLSL 1.30 the different texture*() functions
// were deprecated in favor or the unified texture() function. RECTANGLE textures became
// standard in OpenGL 3.2/GLSL 1.50 and use texture(). It isn't completely clear what function
// should be used for RECTANGLE textures in GLSL versions >= 1.30 && < 1.50. We're going with
// using texture().
if (glslGen >= k130_GrGLSLGeneration) {
return (kVec2f_GrSLType == coordType) ? "texture" : "textureProj";
}
if (kVec2f_GrSLType == coordType) {
return (samplerType == kTexture2DRectSampler_GrSLType) ? "texture2DRect" : "texture2D";
} else {
return (samplerType == kTexture2DRectSampler_GrSLType) ? "texture2DRectProj"
: "texture2DProj";
}
}
/**
* Adds a line of GLSL code to declare the default precision for float types.
*/
void GrGLSLAppendDefaultFloatPrecisionDeclaration(GrSLPrecision,
const GrGLSLCaps& glslCaps,
SkString* out);
/**
* Converts a GrSLPrecision to its corresponding GLSL precision qualifier.
*/
static inline const char* GrGLSLPrecisionString(GrSLPrecision p) {
switch (p) {
case kLow_GrSLPrecision:
return "lowp";
case kMedium_GrSLPrecision:
return "mediump";
case kHigh_GrSLPrecision:
return "highp";
default:
SkFAIL("Unexpected precision type.");
return "";
}
}
/**
* Converts a GrSLType to a string containing the name of the equivalent GLSL type.
*/
static inline const char* GrGLSLTypeString(GrSLType t) {
switch (t) {
case kVoid_GrSLType:
return "void";
case kFloat_GrSLType:
return "float";
case kVec2f_GrSLType:
return "vec2";
case kVec3f_GrSLType:
return "vec3";
case kVec4f_GrSLType:
return "vec4";
case kMat22f_GrSLType:
return "mat2";
case kMat33f_GrSLType:
return "mat3";
case kMat44f_GrSLType:
return "mat4";
case kTexture2DSampler_GrSLType:
return "sampler2D";
case kITexture2DSampler_GrSLType:
return "isampler2D";
case kTextureExternalSampler_GrSLType:
return "samplerExternalOES";
case kTexture2DRectSampler_GrSLType:
return "sampler2DRect";
case kTextureBufferSampler_GrSLType:
return "samplerBuffer";
case kBool_GrSLType:
return "bool";
case kInt_GrSLType:
return "int";
case kUint_GrSLType:
return "uint";
case kTexture2D_GrSLType:
return "texture2D";
case kSampler_GrSLType:
return "sampler";
}
SkFAIL("Unknown shader var type.");
return ""; // suppress warning
}
/** A generic base-class representing a GLSL expression.
* The instance can be a variable name, expression or vecN(0) or vecN(1). Does simple constant
* folding with help of 1 and 0.
*
* Clients should not use this class, rather the specific instantiations defined
* later, for example GrGLSLExpr4.
*/
template <typename Self>
class GrGLSLExpr {
public:
bool isOnes() const { return kOnes_ExprType == fType; }
bool isZeros() const { return kZeros_ExprType == fType; }
const char* c_str() const {
if (kZeros_ExprType == fType) {
return Self::ZerosStr();
} else if (kOnes_ExprType == fType) {
return Self::OnesStr();
}
SkASSERT(!fExpr.isEmpty()); // Empty expressions should not be used.
return fExpr.c_str();
}
bool isValid() const {
return kFullExpr_ExprType != fType || !fExpr.isEmpty();
}
protected:
/** Constructs an invalid expression.
* Useful only as a return value from functions that never actually return
* this and instances that will be assigned to later. */
GrGLSLExpr()
: fType(kFullExpr_ExprType) {
// The only constructor that is allowed to build an empty expression.
SkASSERT(!this->isValid());
}
/** Constructs an expression with all components as value v */
explicit GrGLSLExpr(int v) {
if (v == 0) {
fType = kZeros_ExprType;
} else if (v == 1) {
fType = kOnes_ExprType;
} else {
fType = kFullExpr_ExprType;
fExpr.appendf(Self::CastIntStr(), v);
}
}
/** Constructs an expression from a string.
* Argument expr is a simple expression or a parenthesized expression. */
// TODO: make explicit once effects input Exprs.
GrGLSLExpr(const char expr[]) {
if (nullptr == expr) { // TODO: remove this once effects input Exprs.
fType = kOnes_ExprType;
} else {
fType = kFullExpr_ExprType;
fExpr = expr;
}
SkASSERT(this->isValid());
}
/** Constructs an expression from a string.
* Argument expr is a simple expression or a parenthesized expression. */
// TODO: make explicit once effects input Exprs.
GrGLSLExpr(const SkString& expr) {
if (expr.isEmpty()) { // TODO: remove this once effects input Exprs.
fType = kOnes_ExprType;
} else {
fType = kFullExpr_ExprType;
fExpr = expr;
}
SkASSERT(this->isValid());
}
/** Constructs an expression from a string with one substitution. */
GrGLSLExpr(const char format[], const char in0[])
: fType(kFullExpr_ExprType) {
fExpr.appendf(format, in0);
}
/** Constructs an expression from a string with two substitutions. */
GrGLSLExpr(const char format[], const char in0[], const char in1[])
: fType(kFullExpr_ExprType) {
fExpr.appendf(format, in0, in1);
}
/** Returns expression casted to another type.
* Generic implementation that is called for non-trivial cases of casts. */
template <typename T>
static Self VectorCastImpl(const T& other);
/** Returns a GLSL multiplication: component-wise or component-by-scalar.
* The multiplication will be component-wise or multiply each component by a scalar.
*
* The returned expression will compute the value of:
* vecN(in0.x * in1.x, ...) if dim(T0) == dim(T1) (component-wise)
* vecN(in0.x * in1, ...) if dim(T1) == 1 (vector by scalar)
* vecN(in0 * in1.x, ...) if dim(T0) == 1 (scalar by vector)
*/
template <typename T0, typename T1>
static Self Mul(T0 in0, T1 in1);
/** Returns a GLSL addition: component-wise or add a scalar to each component.
* Return value computes:
* vecN(in0.x + in1.x, ...) or vecN(in0.x + in1, ...) or vecN(in0 + in1.x, ...).
*/
template <typename T0, typename T1>
static Self Add(T0 in0, T1 in1);
/** Returns a GLSL subtraction: component-wise or subtract compoments by a scalar.
* Return value computes
* vecN(in0.x - in1.x, ...) or vecN(in0.x - in1, ...) or vecN(in0 - in1.x, ...).
*/
template <typename T0, typename T1>
static Self Sub(T0 in0, T1 in1);
/** Returns expression that accesses component(s) of the expression.
* format should be the form "%s.x" where 'x' is the component(s) to access.
* Caller is responsible for making sure the amount of components in the
* format string is equal to dim(T).
*/
template <typename T>
T extractComponents(const char format[]) const;
private:
enum ExprType {
kZeros_ExprType,
kOnes_ExprType,
kFullExpr_ExprType,
};
ExprType fType;
SkString fExpr;
};
class GrGLSLExpr1;
class GrGLSLExpr4;
/** Class representing a float GLSL expression. */
class GrGLSLExpr1 : public GrGLSLExpr<GrGLSLExpr1> {
public:
GrGLSLExpr1()
: INHERITED() {
}
explicit GrGLSLExpr1(int v)
: INHERITED(v) {
}
GrGLSLExpr1(const char* expr)
: INHERITED(expr) {
}
GrGLSLExpr1(const SkString& expr)
: INHERITED(expr) {
}
static GrGLSLExpr1 VectorCast(const GrGLSLExpr1& expr);
private:
GrGLSLExpr1(const char format[], const char in0[])
: INHERITED(format, in0) {
}
GrGLSLExpr1(const char format[], const char in0[], const char in1[])
: INHERITED(format, in0, in1) {
}
static const char* ZerosStr();
static const char* OnesStr();
static const char* CastStr();
static const char* CastIntStr();
friend GrGLSLExpr1 operator*(const GrGLSLExpr1& in0, const GrGLSLExpr1&in1);
friend GrGLSLExpr1 operator+(const GrGLSLExpr1& in0, const GrGLSLExpr1&in1);
friend GrGLSLExpr1 operator-(const GrGLSLExpr1& in0, const GrGLSLExpr1&in1);
friend class GrGLSLExpr<GrGLSLExpr1>;
friend class GrGLSLExpr<GrGLSLExpr4>;
typedef GrGLSLExpr<GrGLSLExpr1> INHERITED;
};
/** Class representing a float vector (vec4) GLSL expression. */
class GrGLSLExpr4 : public GrGLSLExpr<GrGLSLExpr4> {
public:
GrGLSLExpr4()
: INHERITED() {
}
explicit GrGLSLExpr4(int v)
: INHERITED(v) {
}
GrGLSLExpr4(const char* expr)
: INHERITED(expr) {
}
GrGLSLExpr4(const SkString& expr)
: INHERITED(expr) {
}
typedef GrGLSLExpr1 AExpr;
AExpr a() const;
/** GLSL vec4 cast / constructor, eg vec4(floatv) -> vec4(floatv, floatv, floatv, floatv) */
static GrGLSLExpr4 VectorCast(const GrGLSLExpr1& expr);
static GrGLSLExpr4 VectorCast(const GrGLSLExpr4& expr);
private:
GrGLSLExpr4(const char format[], const char in0[])
: INHERITED(format, in0) {
}
GrGLSLExpr4(const char format[], const char in0[], const char in1[])
: INHERITED(format, in0, in1) {
}
static const char* ZerosStr();
static const char* OnesStr();
static const char* CastStr();
static const char* CastIntStr();
// The vector-by-scalar and scalar-by-vector binary operations.
friend GrGLSLExpr4 operator*(const GrGLSLExpr1& in0, const GrGLSLExpr4&in1);
friend GrGLSLExpr4 operator+(const GrGLSLExpr1& in0, const GrGLSLExpr4&in1);
friend GrGLSLExpr4 operator-(const GrGLSLExpr1& in0, const GrGLSLExpr4&in1);
friend GrGLSLExpr4 operator*(const GrGLSLExpr4& in0, const GrGLSLExpr1&in1);
friend GrGLSLExpr4 operator+(const GrGLSLExpr4& in0, const GrGLSLExpr1&in1);
friend GrGLSLExpr4 operator-(const GrGLSLExpr4& in0, const GrGLSLExpr1&in1);
// The vector-by-vector, i.e. component-wise, binary operations.
friend GrGLSLExpr4 operator*(const GrGLSLExpr4& in0, const GrGLSLExpr4&in1);
friend GrGLSLExpr4 operator+(const GrGLSLExpr4& in0, const GrGLSLExpr4&in1);
friend GrGLSLExpr4 operator-(const GrGLSLExpr4& in0, const GrGLSLExpr4&in1);
friend class GrGLSLExpr<GrGLSLExpr4>;
typedef GrGLSLExpr<GrGLSLExpr4> INHERITED;
};
/**
* Does an inplace mul, *=, of vec4VarName by mulFactor.
* A semicolon is added after the assignment.
*/
void GrGLSLMulVarBy4f(SkString* outAppend, const char* vec4VarName, const GrGLSLExpr4& mulFactor);
#include "GrGLSL_impl.h"
#endif