blob: fc50fa0c4e8290774b060beb3d8582b72a12b1cd [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "glsl/GrGLSLProgramBuilder.h"
#include "GrPipeline.h"
#include "GrTexturePriv.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLGeometryProcessor.h"
#include "glsl/GrGLSLVarying.h"
#include "glsl/GrGLSLXferProcessor.h"
const int GrGLSLProgramBuilder::kVarsPerBlock = 8;
GrGLSLProgramBuilder::GrGLSLProgramBuilder(const GrPipeline& pipeline,
const GrPrimitiveProcessor& primProc,
const GrProgramDesc& desc)
: fVS(this)
, fGS(this)
, fFS(this)
, fStageIndex(-1)
, fPipeline(pipeline)
, fPrimProc(primProc)
, fDesc(desc)
, fGeometryProcessor(nullptr)
, fXferProcessor(nullptr)
, fNumVertexSamplers(0)
, fNumGeometrySamplers(0)
, fNumFragmentSamplers(0) {
}
void GrGLSLProgramBuilder::addFeature(GrShaderFlags shaders,
uint32_t featureBit,
const char* extensionName) {
if (shaders & kVertex_GrShaderFlag) {
fVS.addFeature(featureBit, extensionName);
}
if (shaders & kGeometry_GrShaderFlag) {
SkASSERT(this->glslCaps()->geometryShaderSupport());
fGS.addFeature(featureBit, extensionName);
}
if (shaders & kFragment_GrShaderFlag) {
fFS.addFeature(featureBit, extensionName);
}
}
bool GrGLSLProgramBuilder::emitAndInstallProcs(GrGLSLExpr4* inputColor,
GrGLSLExpr4* inputCoverage) {
// First we loop over all of the installed processors and collect coord transforms. These will
// be sent to the GrGLSLPrimitiveProcessor in its emitCode function
const GrPrimitiveProcessor& primProc = this->primitiveProcessor();
this->emitAndInstallPrimProc(primProc, inputColor, inputCoverage);
this->emitAndInstallFragProcs(inputColor, inputCoverage);
if (primProc.getPixelLocalStorageState() !=
GrPixelLocalStorageState::kDraw_GrPixelLocalStorageState) {
this->emitAndInstallXferProc(this->pipeline().getXferProcessor(), *inputColor,
*inputCoverage, this->pipeline().ignoresCoverage(),
primProc.getPixelLocalStorageState());
this->emitFSOutputSwizzle(this->pipeline().getXferProcessor().hasSecondaryOutput());
}
return this->checkSamplerCounts();
}
void GrGLSLProgramBuilder::emitAndInstallPrimProc(const GrPrimitiveProcessor& proc,
GrGLSLExpr4* outputColor,
GrGLSLExpr4* outputCoverage) {
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
this->nameExpression(outputColor, "outputColor");
this->nameExpression(outputCoverage, "outputCoverage");
const char* distanceVectorName = nullptr;
if (this->fPipeline.usesDistanceVectorField() && proc.implementsDistanceVector()) {
// Each individual user (FP) of the distance vector must be able to handle having this
// variable be undeclared. There is no single default value that will yield a reasonable
// result for all users.
distanceVectorName = fFS.distanceVectorName();
fFS.codeAppend( "// Normalized vector to the closest geometric edge (in device space)\n");
fFS.codeAppend( "// Distance to the edge encoded in the z-component\n");
fFS.codeAppendf("vec4 %s;", distanceVectorName);
}
// Enclose custom code in a block to avoid namespace conflicts
SkString openBrace;
openBrace.printf("{ // Stage %d, %s\n", fStageIndex, proc.name());
fFS.codeAppend(openBrace.c_str());
fVS.codeAppendf("// Primitive Processor %s\n", proc.name());
SkASSERT(!fGeometryProcessor);
fGeometryProcessor = proc.createGLSLInstance(*this->glslCaps());
SkSTArray<4, SamplerHandle> texSamplers(proc.numTextureSamplers());
SkSTArray<2, SamplerHandle> bufferSamplers(proc.numBuffers());
this->emitSamplers(proc, &texSamplers, &bufferSamplers);
GrGLSLPrimitiveProcessor::FPCoordTransformHandler transformHandler(fPipeline,
&fTransformedCoordVars);
GrGLSLGeometryProcessor::EmitArgs args(&fVS,
&fFS,
this->varyingHandler(),
this->uniformHandler(),
this->glslCaps(),
proc,
outputColor->c_str(),
outputCoverage->c_str(),
distanceVectorName,
texSamplers.begin(),
bufferSamplers.begin(),
&transformHandler);
fGeometryProcessor->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
SkDEBUGCODE(verify(proc);)
fFS.codeAppend("}");
}
void GrGLSLProgramBuilder::emitAndInstallFragProcs(GrGLSLExpr4* color, GrGLSLExpr4* coverage) {
int transformedCoordVarsIdx = 0;
GrGLSLExpr4** inOut = &color;
for (int i = 0; i < this->pipeline().numFragmentProcessors(); ++i) {
if (i == this->pipeline().numColorFragmentProcessors()) {
inOut = &coverage;
}
GrGLSLExpr4 output;
const GrFragmentProcessor& fp = this->pipeline().getFragmentProcessor(i);
this->emitAndInstallFragProc(fp, i, transformedCoordVarsIdx, **inOut, &output);
GrFragmentProcessor::Iter iter(&fp);
while (const GrFragmentProcessor* fp = iter.next()) {
transformedCoordVarsIdx += fp->numCoordTransforms();
}
**inOut = output;
}
}
// TODO Processors cannot output zeros because an empty string is all 1s
// the fix is to allow effects to take the GrGLSLExpr4 directly
void GrGLSLProgramBuilder::emitAndInstallFragProc(const GrFragmentProcessor& fp,
int index,
int transformedCoordVarsIdx,
const GrGLSLExpr4& input,
GrGLSLExpr4* output) {
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
this->nameExpression(output, "output");
// Enclose custom code in a block to avoid namespace conflicts
SkString openBrace;
openBrace.printf("{ // Stage %d, %s\n", fStageIndex, fp.name());
fFS.codeAppend(openBrace.c_str());
GrGLSLFragmentProcessor* fragProc = fp.createGLSLInstance();
SkSTArray<4, SamplerHandle> textureSamplerArray(fp.numTextureSamplers());
SkSTArray<2, SamplerHandle> bufferSamplerArray(fp.numBuffers());
GrFragmentProcessor::Iter iter(&fp);
while (const GrFragmentProcessor* subFP = iter.next()) {
this->emitSamplers(*subFP, &textureSamplerArray, &bufferSamplerArray);
}
const GrShaderVar* coordVars = fTransformedCoordVars.begin() + transformedCoordVarsIdx;
GrGLSLFragmentProcessor::TransformedCoordVars coords(&fp, coordVars);
GrGLSLFragmentProcessor::TextureSamplers textureSamplers(&fp, textureSamplerArray.begin());
GrGLSLFragmentProcessor::BufferSamplers bufferSamplers(&fp, bufferSamplerArray.begin());
GrGLSLFragmentProcessor::EmitArgs args(&fFS,
this->uniformHandler(),
this->glslCaps(),
fp,
output->c_str(),
input.isOnes() ? nullptr : input.c_str(),
coords,
textureSamplers,
bufferSamplers,
this->primitiveProcessor().implementsDistanceVector());
fragProc->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
SkDEBUGCODE(verify(fp);)
fFragmentProcessors.push_back(fragProc);
fFS.codeAppend("}");
}
void GrGLSLProgramBuilder::emitAndInstallXferProc(const GrXferProcessor& xp,
const GrGLSLExpr4& colorIn,
const GrGLSLExpr4& coverageIn,
bool ignoresCoverage,
GrPixelLocalStorageState plsState) {
// Program builders have a bit of state we need to clear with each effect
AutoStageAdvance adv(this);
SkASSERT(!fXferProcessor);
fXferProcessor = xp.createGLSLInstance();
// Enable dual source secondary output if we have one
if (xp.hasSecondaryOutput()) {
fFS.enableSecondaryOutput();
}
if (this->glslCaps()->mustDeclareFragmentShaderOutput()) {
fFS.enableCustomOutput();
}
SkString openBrace;
openBrace.printf("{ // Xfer Processor: %s\n", xp.name());
fFS.codeAppend(openBrace.c_str());
SkSTArray<4, SamplerHandle> texSamplers(xp.numTextureSamplers());
SkSTArray<2, SamplerHandle> bufferSamplers(xp.numBuffers());
this->emitSamplers(xp, &texSamplers, &bufferSamplers);
bool usePLSDstRead = (plsState == GrPixelLocalStorageState::kFinish_GrPixelLocalStorageState);
GrGLSLXferProcessor::EmitArgs args(&fFS,
this->uniformHandler(),
this->glslCaps(),
xp, colorIn.c_str(),
ignoresCoverage ? nullptr : coverageIn.c_str(),
fFS.getPrimaryColorOutputName(),
fFS.getSecondaryColorOutputName(),
texSamplers.begin(),
bufferSamplers.begin(),
usePLSDstRead);
fXferProcessor->emitCode(args);
// We have to check that effects and the code they emit are consistent, ie if an effect
// asks for dst color, then the emit code needs to follow suit
SkDEBUGCODE(verify(xp);)
fFS.codeAppend("}");
}
void GrGLSLProgramBuilder::emitSamplers(const GrProcessor& processor,
SkTArray<SamplerHandle>* outTexSamplers,
SkTArray<SamplerHandle>* outBufferSamplers) {
SkString name;
int numTextureSamplers = processor.numTextureSamplers();
for (int t = 0; t < numTextureSamplers; ++t) {
const GrProcessor::TextureSampler& sampler = processor.textureSampler(t);
GrSLType samplerType = sampler.getTexture()->texturePriv().samplerType();
if (kTextureExternalSampler_GrSLType == samplerType) {
const char* externalFeatureString = this->glslCaps()->externalTextureExtensionString();
// We shouldn't ever create a GrGLTexture that requires external sampler type
SkASSERT(externalFeatureString);
this->addFeature(sampler.getVisibility(),
1 << GrGLSLShaderBuilder::kExternalTexture_GLSLPrivateFeature,
externalFeatureString);
}
name.printf("TextureSampler_%d", outTexSamplers->count());
this->emitSampler(samplerType, sampler.getTexture()->config(),
name.c_str(), sampler.getVisibility(), outTexSamplers);
}
if (int numBuffers = processor.numBuffers()) {
SkASSERT(this->glslCaps()->texelBufferSupport());
GrShaderFlags texelBufferVisibility = kNone_GrShaderFlags;
for (int b = 0; b < numBuffers; ++b) {
const GrBufferAccess& access = processor.bufferAccess(b);
name.printf("BufferSampler_%d", outBufferSamplers->count());
this->emitSampler(kBufferSampler_GrSLType, access.texelConfig(), name.c_str(),
access.visibility(), outBufferSamplers);
texelBufferVisibility |= access.visibility();
}
if (const char* extension = this->glslCaps()->texelBufferExtensionString()) {
this->addFeature(texelBufferVisibility,
1 << GrGLSLShaderBuilder::kTexelBuffer_GLSLPrivateFeature,
extension);
}
}
}
void GrGLSLProgramBuilder::emitSampler(GrSLType samplerType,
GrPixelConfig config,
const char* name,
GrShaderFlags visibility,
SkTArray<SamplerHandle>* outSamplers) {
if (visibility & kVertex_GrShaderFlag) {
++fNumVertexSamplers;
}
if (visibility & kGeometry_GrShaderFlag) {
SkASSERT(this->primitiveProcessor().willUseGeoShader());
++fNumGeometrySamplers;
}
if (visibility & kFragment_GrShaderFlag) {
++fNumFragmentSamplers;
}
GrSLPrecision precision = this->glslCaps()->samplerPrecision(config, visibility);
SamplerHandle handle = this->uniformHandler()->addSampler(visibility,
config,
samplerType,
precision,
name);
outSamplers->emplace_back(handle);
}
void GrGLSLProgramBuilder::emitFSOutputSwizzle(bool hasSecondaryOutput) {
// Swizzle the fragment shader outputs if necessary.
GrSwizzle swizzle;
swizzle.setFromKey(this->desc().header().fOutputSwizzle);
if (swizzle != GrSwizzle::RGBA()) {
fFS.codeAppendf("%s = %s.%s;", fFS.getPrimaryColorOutputName(),
fFS.getPrimaryColorOutputName(),
swizzle.c_str());
if (hasSecondaryOutput) {
fFS.codeAppendf("%s = %s.%s;", fFS.getSecondaryColorOutputName(),
fFS.getSecondaryColorOutputName(),
swizzle.c_str());
}
}
}
bool GrGLSLProgramBuilder::checkSamplerCounts() {
const GrGLSLCaps& glslCaps = *this->glslCaps();
if (fNumVertexSamplers > glslCaps.maxVertexSamplers()) {
GrCapsDebugf(this->caps(), "Program would use too many vertex samplers\n");
return false;
}
if (fNumGeometrySamplers > glslCaps.maxGeometrySamplers()) {
GrCapsDebugf(this->caps(), "Program would use too many geometry samplers\n");
return false;
}
if (fNumFragmentSamplers > glslCaps.maxFragmentSamplers()) {
GrCapsDebugf(this->caps(), "Program would use too many fragment samplers\n");
return false;
}
// If the same sampler is used in two different shaders, it counts as two combined samplers.
int numCombinedSamplers = fNumVertexSamplers + fNumGeometrySamplers + fNumFragmentSamplers;
if (numCombinedSamplers > glslCaps.maxCombinedSamplers()) {
GrCapsDebugf(this->caps(), "Program would use too many combined samplers\n");
return false;
}
return true;
}
#ifdef SK_DEBUG
void GrGLSLProgramBuilder::verify(const GrPrimitiveProcessor& gp) {
SkASSERT(fFS.usedProcessorFeatures() == gp.requiredFeatures());
}
void GrGLSLProgramBuilder::verify(const GrXferProcessor& xp) {
SkASSERT(fFS.usedProcessorFeatures() == xp.requiredFeatures());
SkASSERT(fFS.hasReadDstColor() == xp.willReadDstColor());
}
void GrGLSLProgramBuilder::verify(const GrFragmentProcessor& fp) {
SkASSERT(fFS.usedProcessorFeatures() == fp.requiredFeatures());
}
#endif
void GrGLSLProgramBuilder::nameVariable(SkString* out, char prefix, const char* name, bool mangle) {
if ('\0' == prefix) {
*out = name;
} else {
out->printf("%c%s", prefix, name);
}
if (mangle) {
if (out->endsWith('_')) {
// Names containing "__" are reserved.
out->append("x");
}
out->appendf("_Stage%d%s", fStageIndex, fFS.getMangleString().c_str());
}
}
void GrGLSLProgramBuilder::nameExpression(GrGLSLExpr4* output, const char* baseName) {
// create var to hold stage result. If we already have a valid output name, just use that
// otherwise create a new mangled one. This name is only valid if we are reordering stages
// and have to tell stage exactly where to put its output.
SkString outName;
if (output->isValid()) {
outName = output->c_str();
} else {
this->nameVariable(&outName, '\0', baseName);
}
fFS.codeAppendf("vec4 %s;", outName.c_str());
*output = outName;
}
void GrGLSLProgramBuilder::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
this->uniformHandler()->appendUniformDecls(visibility, out);
}
const GrGLSLSampler& GrGLSLProgramBuilder::getSampler(SamplerHandle handle) const {
return this->uniformHandler()->getSampler(handle);
}
void GrGLSLProgramBuilder::addRTAdjustmentUniform(GrSLPrecision precision,
const char* name,
const char** outName) {
SkASSERT(!fUniformHandles.fRTAdjustmentUni.isValid());
fUniformHandles.fRTAdjustmentUni =
this->uniformHandler()->addUniform(kVertex_GrShaderFlag,
kVec4f_GrSLType,
precision,
name,
outName);
}
void GrGLSLProgramBuilder::addRTHeightUniform(const char* name, const char** outName) {
SkASSERT(!fUniformHandles.fRTHeightUni.isValid());
GrGLSLUniformHandler* uniformHandler = this->uniformHandler();
fUniformHandles.fRTHeightUni =
uniformHandler->internalAddUniformArray(kFragment_GrShaderFlag,
kFloat_GrSLType, kDefault_GrSLPrecision,
name, false, 0, outName);
}
void GrGLSLProgramBuilder::cleanupFragmentProcessors() {
for (int i = 0; i < fFragmentProcessors.count(); ++i) {
delete fFragmentProcessors[i];
}
}
void GrGLSLProgramBuilder::finalizeShaders() {
this->varyingHandler()->finalize();
fVS.finalize(kVertex_GrShaderFlag);
fFS.finalize(kFragment_GrShaderFlag);
}