| // Copyright 2014-2015 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| use io::{self, Error, ErrorKind}; |
| use libc::{self, c_int, gid_t, pid_t, uid_t}; |
| use ptr; |
| |
| use sys::cvt; |
| use sys::process::process_common::*; |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Command |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| impl Command { |
| pub fn spawn(&mut self, default: Stdio, needs_stdin: bool) |
| -> io::Result<(Process, StdioPipes)> { |
| use sys; |
| |
| const CLOEXEC_MSG_FOOTER: &'static [u8] = b"NOEX"; |
| |
| let envp = self.capture_env(); |
| |
| if self.saw_nul() { |
| return Err(io::Error::new(ErrorKind::InvalidInput, |
| "nul byte found in provided data")); |
| } |
| |
| let (ours, theirs) = self.setup_io(default, needs_stdin)?; |
| let (input, output) = sys::pipe::anon_pipe()?; |
| |
| let pid = unsafe { |
| match cvt(libc::fork())? { |
| 0 => { |
| drop(input); |
| let err = self.do_exec(theirs, envp.as_ref()); |
| let errno = err.raw_os_error().unwrap_or(libc::EINVAL) as u32; |
| let bytes = [ |
| (errno >> 24) as u8, |
| (errno >> 16) as u8, |
| (errno >> 8) as u8, |
| (errno >> 0) as u8, |
| CLOEXEC_MSG_FOOTER[0], CLOEXEC_MSG_FOOTER[1], |
| CLOEXEC_MSG_FOOTER[2], CLOEXEC_MSG_FOOTER[3] |
| ]; |
| // pipe I/O up to PIPE_BUF bytes should be atomic, and then |
| // we want to be sure we *don't* run at_exit destructors as |
| // we're being torn down regardless |
| assert!(output.write(&bytes).is_ok()); |
| libc::_exit(1) |
| } |
| n => n, |
| } |
| }; |
| |
| let mut p = Process { pid: pid, status: None }; |
| drop(output); |
| let mut bytes = [0; 8]; |
| |
| // loop to handle EINTR |
| loop { |
| match input.read(&mut bytes) { |
| Ok(0) => return Ok((p, ours)), |
| Ok(8) => { |
| assert!(combine(CLOEXEC_MSG_FOOTER) == combine(&bytes[4.. 8]), |
| "Validation on the CLOEXEC pipe failed: {:?}", bytes); |
| let errno = combine(&bytes[0.. 4]); |
| assert!(p.wait().is_ok(), |
| "wait() should either return Ok or panic"); |
| return Err(Error::from_raw_os_error(errno)) |
| } |
| Err(ref e) if e.kind() == ErrorKind::Interrupted => {} |
| Err(e) => { |
| assert!(p.wait().is_ok(), |
| "wait() should either return Ok or panic"); |
| panic!("the CLOEXEC pipe failed: {:?}", e) |
| }, |
| Ok(..) => { // pipe I/O up to PIPE_BUF bytes should be atomic |
| assert!(p.wait().is_ok(), |
| "wait() should either return Ok or panic"); |
| panic!("short read on the CLOEXEC pipe") |
| } |
| } |
| } |
| |
| fn combine(arr: &[u8]) -> i32 { |
| let a = arr[0] as u32; |
| let b = arr[1] as u32; |
| let c = arr[2] as u32; |
| let d = arr[3] as u32; |
| |
| ((a << 24) | (b << 16) | (c << 8) | (d << 0)) as i32 |
| } |
| } |
| |
| pub fn exec(&mut self, default: Stdio) -> io::Error { |
| let envp = self.capture_env(); |
| |
| if self.saw_nul() { |
| return io::Error::new(ErrorKind::InvalidInput, |
| "nul byte found in provided data") |
| } |
| |
| match self.setup_io(default, true) { |
| Ok((_, theirs)) => unsafe { self.do_exec(theirs, envp.as_ref()) }, |
| Err(e) => e, |
| } |
| } |
| |
| // And at this point we've reached a special time in the life of the |
| // child. The child must now be considered hamstrung and unable to |
| // do anything other than syscalls really. Consider the following |
| // scenario: |
| // |
| // 1. Thread A of process 1 grabs the malloc() mutex |
| // 2. Thread B of process 1 forks(), creating thread C |
| // 3. Thread C of process 2 then attempts to malloc() |
| // 4. The memory of process 2 is the same as the memory of |
| // process 1, so the mutex is locked. |
| // |
| // This situation looks a lot like deadlock, right? It turns out |
| // that this is what pthread_atfork() takes care of, which is |
| // presumably implemented across platforms. The first thing that |
| // threads to *before* forking is to do things like grab the malloc |
| // mutex, and then after the fork they unlock it. |
| // |
| // Despite this information, libnative's spawn has been witnessed to |
| // deadlock on both macOS and FreeBSD. I'm not entirely sure why, but |
| // all collected backtraces point at malloc/free traffic in the |
| // child spawned process. |
| // |
| // For this reason, the block of code below should contain 0 |
| // invocations of either malloc of free (or their related friends). |
| // |
| // As an example of not having malloc/free traffic, we don't close |
| // this file descriptor by dropping the FileDesc (which contains an |
| // allocation). Instead we just close it manually. This will never |
| // have the drop glue anyway because this code never returns (the |
| // child will either exec() or invoke libc::exit) |
| unsafe fn do_exec( |
| &mut self, |
| stdio: ChildPipes, |
| maybe_envp: Option<&CStringArray> |
| ) -> io::Error { |
| use sys::{self, cvt_r}; |
| |
| macro_rules! t { |
| ($e:expr) => (match $e { |
| Ok(e) => e, |
| Err(e) => return e, |
| }) |
| } |
| |
| if let Some(fd) = stdio.stdin.fd() { |
| t!(cvt_r(|| libc::dup2(fd, libc::STDIN_FILENO))); |
| } |
| if let Some(fd) = stdio.stdout.fd() { |
| t!(cvt_r(|| libc::dup2(fd, libc::STDOUT_FILENO))); |
| } |
| if let Some(fd) = stdio.stderr.fd() { |
| t!(cvt_r(|| libc::dup2(fd, libc::STDERR_FILENO))); |
| } |
| |
| if cfg!(not(any(target_os = "l4re"))) { |
| if let Some(u) = self.get_gid() { |
| t!(cvt(libc::setgid(u as gid_t))); |
| } |
| if let Some(u) = self.get_uid() { |
| // When dropping privileges from root, the `setgroups` call |
| // will remove any extraneous groups. If we don't call this, |
| // then even though our uid has dropped, we may still have |
| // groups that enable us to do super-user things. This will |
| // fail if we aren't root, so don't bother checking the |
| // return value, this is just done as an optimistic |
| // privilege dropping function. |
| let _ = libc::setgroups(0, ptr::null()); |
| |
| t!(cvt(libc::setuid(u as uid_t))); |
| } |
| } |
| if let Some(ref cwd) = *self.get_cwd() { |
| t!(cvt(libc::chdir(cwd.as_ptr()))); |
| } |
| if let Some(envp) = maybe_envp { |
| *sys::os::environ() = envp.as_ptr(); |
| } |
| |
| // emscripten has no signal support. |
| #[cfg(not(any(target_os = "emscripten")))] |
| { |
| use mem; |
| // Reset signal handling so the child process starts in a |
| // standardized state. libstd ignores SIGPIPE, and signal-handling |
| // libraries often set a mask. Child processes inherit ignored |
| // signals and the signal mask from their parent, but most |
| // UNIX programs do not reset these things on their own, so we |
| // need to clean things up now to avoid confusing the program |
| // we're about to run. |
| let mut set: libc::sigset_t = mem::uninitialized(); |
| if cfg!(target_os = "android") { |
| // Implementing sigemptyset allow us to support older Android |
| // versions. See the comment about Android and sig* functions in |
| // process_common.rs |
| libc::memset(&mut set as *mut _ as *mut _, |
| 0, |
| mem::size_of::<libc::sigset_t>()); |
| } else { |
| t!(cvt(libc::sigemptyset(&mut set))); |
| } |
| t!(cvt(libc::pthread_sigmask(libc::SIG_SETMASK, &set, |
| ptr::null_mut()))); |
| let ret = sys::signal(libc::SIGPIPE, libc::SIG_DFL); |
| if ret == libc::SIG_ERR { |
| return io::Error::last_os_error() |
| } |
| } |
| |
| for callback in self.get_closures().iter_mut() { |
| t!(callback()); |
| } |
| |
| libc::execvp(self.get_argv()[0], self.get_argv().as_ptr()); |
| io::Error::last_os_error() |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Processes |
| //////////////////////////////////////////////////////////////////////////////// |
| |
| /// The unique id of the process (this should never be negative). |
| pub struct Process { |
| pid: pid_t, |
| status: Option<ExitStatus>, |
| } |
| |
| impl Process { |
| pub fn id(&self) -> u32 { |
| self.pid as u32 |
| } |
| |
| pub fn kill(&mut self) -> io::Result<()> { |
| // If we've already waited on this process then the pid can be recycled |
| // and used for another process, and we probably shouldn't be killing |
| // random processes, so just return an error. |
| if self.status.is_some() { |
| Err(Error::new(ErrorKind::InvalidInput, |
| "invalid argument: can't kill an exited process")) |
| } else { |
| cvt(unsafe { libc::kill(self.pid, libc::SIGKILL) }).map(|_| ()) |
| } |
| } |
| |
| pub fn wait(&mut self) -> io::Result<ExitStatus> { |
| use sys::cvt_r; |
| if let Some(status) = self.status { |
| return Ok(status) |
| } |
| let mut status = 0 as c_int; |
| cvt_r(|| unsafe { libc::waitpid(self.pid, &mut status, 0) })?; |
| self.status = Some(ExitStatus::new(status)); |
| Ok(ExitStatus::new(status)) |
| } |
| |
| pub fn try_wait(&mut self) -> io::Result<Option<ExitStatus>> { |
| if let Some(status) = self.status { |
| return Ok(Some(status)) |
| } |
| let mut status = 0 as c_int; |
| let pid = cvt(unsafe { |
| libc::waitpid(self.pid, &mut status, libc::WNOHANG) |
| })?; |
| if pid == 0 { |
| Ok(None) |
| } else { |
| self.status = Some(ExitStatus::new(status)); |
| Ok(Some(ExitStatus::new(status))) |
| } |
| } |
| } |