blob: 024334f1c849c2f0464a560658a3b52d078fffb3 [file] [log] [blame]
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Walks the crate looking for items/impl-items/trait-items that have
//! either a `rustc_symbol_name` or `rustc_item_path` attribute and
//! generates an error giving, respectively, the symbol name or
//! item-path. This is used for unit testing the code that generates
//! paths etc in all kinds of annoying scenarios.
use monomorphize::Instance;
use rustc::hir;
use rustc::hir::def_id::DefId;
use rustc::session::config::OptLevel;
use rustc::ty::{self, Ty, TyCtxt};
use rustc::ty::subst::Substs;
use syntax::ast;
use syntax::attr::{self, InlineAttr};
use std::fmt::{self, Write};
use std::iter;
use rustc::mir::mono::Linkage;
use syntax_pos::symbol::Symbol;
pub use rustc::mir::mono::MonoItem;
pub fn linkage_by_name(name: &str) -> Option<Linkage> {
use rustc::mir::mono::Linkage::*;
// Use the names from src/llvm/docs/LangRef.rst here. Most types are only
// applicable to variable declarations and may not really make sense for
// Rust code in the first place but whitelist them anyway and trust that
// the user knows what s/he's doing. Who knows, unanticipated use cases
// may pop up in the future.
//
// ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
// and don't have to be, LLVM treats them as no-ops.
match name {
"appending" => Some(Appending),
"available_externally" => Some(AvailableExternally),
"common" => Some(Common),
"extern_weak" => Some(ExternalWeak),
"external" => Some(External),
"internal" => Some(Internal),
"linkonce" => Some(LinkOnceAny),
"linkonce_odr" => Some(LinkOnceODR),
"private" => Some(Private),
"weak" => Some(WeakAny),
"weak_odr" => Some(WeakODR),
_ => None,
}
}
/// Describes how a translation item will be instantiated in object files.
#[derive(PartialEq, Eq, Clone, Copy, Debug, Hash)]
pub enum InstantiationMode {
/// There will be exactly one instance of the given MonoItem. It will have
/// external linkage so that it can be linked to from other codegen units.
GloballyShared {
/// In some compilation scenarios we may decide to take functions that
/// are typically `LocalCopy` and instead move them to `GloballyShared`
/// to avoid translating them a bunch of times. In this situation,
/// however, our local copy may conflict with other crates also
/// inlining the same function.
///
/// This flag indicates that this situation is occuring, and informs
/// symbol name calculation that some extra mangling is needed to
/// avoid conflicts. Note that this may eventually go away entirely if
/// ThinLTO enables us to *always* have a globally shared instance of a
/// function within one crate's compilation.
may_conflict: bool,
},
/// Each codegen unit containing a reference to the given MonoItem will
/// have its own private copy of the function (with internal linkage).
LocalCopy,
}
pub trait MonoItemExt<'a, 'tcx>: fmt::Debug {
fn as_mono_item(&self) -> &MonoItem<'tcx>;
fn is_generic_fn(&self) -> bool {
match *self.as_mono_item() {
MonoItem::Fn(ref instance) => {
instance.substs.types().next().is_some()
}
MonoItem::Static(..) |
MonoItem::GlobalAsm(..) => false,
}
}
fn symbol_name(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> ty::SymbolName {
match *self.as_mono_item() {
MonoItem::Fn(instance) => tcx.symbol_name(instance),
MonoItem::Static(node_id) => {
let def_id = tcx.hir.local_def_id(node_id);
tcx.symbol_name(Instance::mono(tcx, def_id))
}
MonoItem::GlobalAsm(node_id) => {
let def_id = tcx.hir.local_def_id(node_id);
ty::SymbolName {
name: Symbol::intern(&format!("global_asm_{:?}", def_id)).as_str()
}
}
}
}
fn instantiation_mode(&self,
tcx: TyCtxt<'a, 'tcx, 'tcx>)
-> InstantiationMode {
let inline_in_all_cgus =
tcx.sess.opts.debugging_opts.inline_in_all_cgus.unwrap_or_else(|| {
tcx.sess.opts.optimize != OptLevel::No
}) && !tcx.sess.opts.cg.link_dead_code;
match *self.as_mono_item() {
MonoItem::Fn(ref instance) => {
// If this function isn't inlined or otherwise has explicit
// linkage, then we'll be creating a globally shared version.
if self.explicit_linkage(tcx).is_some() ||
!instance.def.requires_local(tcx)
{
return InstantiationMode::GloballyShared { may_conflict: false }
}
// At this point we don't have explicit linkage and we're an
// inlined function. If we're inlining into all CGUs then we'll
// be creating a local copy per CGU
if inline_in_all_cgus {
return InstantiationMode::LocalCopy
}
// Finally, if this is `#[inline(always)]` we're sure to respect
// that with an inline copy per CGU, but otherwise we'll be
// creating one copy of this `#[inline]` function which may
// conflict with upstream crates as it could be an exported
// symbol.
let attrs = instance.def.attrs(tcx);
match attr::find_inline_attr(Some(tcx.sess.diagnostic()), &attrs) {
InlineAttr::Always => InstantiationMode::LocalCopy,
_ => {
InstantiationMode::GloballyShared { may_conflict: true }
}
}
}
MonoItem::Static(..) => {
InstantiationMode::GloballyShared { may_conflict: false }
}
MonoItem::GlobalAsm(..) => {
InstantiationMode::GloballyShared { may_conflict: false }
}
}
}
fn explicit_linkage(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Option<Linkage> {
let def_id = match *self.as_mono_item() {
MonoItem::Fn(ref instance) => instance.def_id(),
MonoItem::Static(node_id) => tcx.hir.local_def_id(node_id),
MonoItem::GlobalAsm(..) => return None,
};
let attributes = tcx.get_attrs(def_id);
if let Some(name) = attr::first_attr_value_str_by_name(&attributes, "linkage") {
if let Some(linkage) = linkage_by_name(&name.as_str()) {
Some(linkage)
} else {
let span = tcx.hir.span_if_local(def_id);
if let Some(span) = span {
tcx.sess.span_fatal(span, "invalid linkage specified")
} else {
tcx.sess.fatal(&format!("invalid linkage specified: {}", name))
}
}
} else {
None
}
}
/// Returns whether this instance is instantiable - whether it has no unsatisfied
/// predicates.
///
/// In order to translate an item, all of its predicates must hold, because
/// otherwise the item does not make sense. Type-checking ensures that
/// the predicates of every item that is *used by* a valid item *do*
/// hold, so we can rely on that.
///
/// However, we translate collector roots (reachable items) and functions
/// in vtables when they are seen, even if they are not used, and so they
/// might not be instantiable. For example, a programmer can define this
/// public function:
///
/// pub fn foo<'a>(s: &'a mut ()) where &'a mut (): Clone {
/// <&mut () as Clone>::clone(&s);
/// }
///
/// That function can't be translated, because the method `<&mut () as Clone>::clone`
/// does not exist. Luckily for us, that function can't ever be used,
/// because that would require for `&'a mut (): Clone` to hold, so we
/// can just not emit any code, or even a linker reference for it.
///
/// Similarly, if a vtable method has such a signature, and therefore can't
/// be used, we can just not emit it and have a placeholder (a null pointer,
/// which will never be accessed) in its place.
fn is_instantiable(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> bool {
debug!("is_instantiable({:?})", self);
let (def_id, substs) = match *self.as_mono_item() {
MonoItem::Fn(ref instance) => (instance.def_id(), instance.substs),
MonoItem::Static(node_id) => (tcx.hir.local_def_id(node_id), Substs::empty()),
// global asm never has predicates
MonoItem::GlobalAsm(..) => return true
};
tcx.substitute_normalize_and_test_predicates((def_id, &substs))
}
fn to_string(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> String {
let hir_map = &tcx.hir;
return match *self.as_mono_item() {
MonoItem::Fn(instance) => {
to_string_internal(tcx, "fn ", instance)
},
MonoItem::Static(node_id) => {
let def_id = hir_map.local_def_id(node_id);
let instance = Instance::new(def_id, tcx.intern_substs(&[]));
to_string_internal(tcx, "static ", instance)
},
MonoItem::GlobalAsm(..) => {
"global_asm".to_string()
}
};
fn to_string_internal<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
prefix: &str,
instance: Instance<'tcx>)
-> String {
let mut result = String::with_capacity(32);
result.push_str(prefix);
let printer = DefPathBasedNames::new(tcx, false, false);
printer.push_instance_as_string(instance, &mut result);
result
}
}
}
impl<'a, 'tcx> MonoItemExt<'a, 'tcx> for MonoItem<'tcx> {
fn as_mono_item(&self) -> &MonoItem<'tcx> {
self
}
}
//=-----------------------------------------------------------------------------
// MonoItem String Keys
//=-----------------------------------------------------------------------------
// The code below allows for producing a unique string key for a trans item.
// These keys are used by the handwritten auto-tests, so they need to be
// predictable and human-readable.
//
// Note: A lot of this could looks very similar to what's already in the
// ppaux module. It would be good to refactor things so we only have one
// parameterizable implementation for printing types.
/// Same as `unique_type_name()` but with the result pushed onto the given
/// `output` parameter.
pub struct DefPathBasedNames<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
omit_disambiguators: bool,
omit_local_crate_name: bool,
}
impl<'a, 'tcx> DefPathBasedNames<'a, 'tcx> {
pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>,
omit_disambiguators: bool,
omit_local_crate_name: bool)
-> Self {
DefPathBasedNames {
tcx,
omit_disambiguators,
omit_local_crate_name,
}
}
pub fn push_type_name(&self, t: Ty<'tcx>, output: &mut String) {
match t.sty {
ty::TyBool => output.push_str("bool"),
ty::TyChar => output.push_str("char"),
ty::TyStr => output.push_str("str"),
ty::TyNever => output.push_str("!"),
ty::TyInt(ast::IntTy::Isize) => output.push_str("isize"),
ty::TyInt(ast::IntTy::I8) => output.push_str("i8"),
ty::TyInt(ast::IntTy::I16) => output.push_str("i16"),
ty::TyInt(ast::IntTy::I32) => output.push_str("i32"),
ty::TyInt(ast::IntTy::I64) => output.push_str("i64"),
ty::TyInt(ast::IntTy::I128) => output.push_str("i128"),
ty::TyUint(ast::UintTy::Usize) => output.push_str("usize"),
ty::TyUint(ast::UintTy::U8) => output.push_str("u8"),
ty::TyUint(ast::UintTy::U16) => output.push_str("u16"),
ty::TyUint(ast::UintTy::U32) => output.push_str("u32"),
ty::TyUint(ast::UintTy::U64) => output.push_str("u64"),
ty::TyUint(ast::UintTy::U128) => output.push_str("u128"),
ty::TyFloat(ast::FloatTy::F32) => output.push_str("f32"),
ty::TyFloat(ast::FloatTy::F64) => output.push_str("f64"),
ty::TyAdt(adt_def, substs) => {
self.push_def_path(adt_def.did, output);
self.push_type_params(substs, iter::empty(), output);
},
ty::TyTuple(component_types, _) => {
output.push('(');
for &component_type in component_types {
self.push_type_name(component_type, output);
output.push_str(", ");
}
if !component_types.is_empty() {
output.pop();
output.pop();
}
output.push(')');
},
ty::TyRawPtr(ty::TypeAndMut { ty: inner_type, mutbl } ) => {
output.push('*');
match mutbl {
hir::MutImmutable => output.push_str("const "),
hir::MutMutable => output.push_str("mut "),
}
self.push_type_name(inner_type, output);
},
ty::TyRef(_, ty::TypeAndMut { ty: inner_type, mutbl }) => {
output.push('&');
if mutbl == hir::MutMutable {
output.push_str("mut ");
}
self.push_type_name(inner_type, output);
},
ty::TyArray(inner_type, len) => {
output.push('[');
self.push_type_name(inner_type, output);
write!(output, "; {}",
len.val.to_const_int().unwrap().to_u64().unwrap()).unwrap();
output.push(']');
},
ty::TySlice(inner_type) => {
output.push('[');
self.push_type_name(inner_type, output);
output.push(']');
},
ty::TyDynamic(ref trait_data, ..) => {
if let Some(principal) = trait_data.principal() {
self.push_def_path(principal.def_id(), output);
self.push_type_params(principal.skip_binder().substs,
trait_data.projection_bounds(),
output);
}
},
ty::TyForeign(did) => self.push_def_path(did, output),
ty::TyFnDef(..) |
ty::TyFnPtr(_) => {
let sig = t.fn_sig(self.tcx);
if sig.unsafety() == hir::Unsafety::Unsafe {
output.push_str("unsafe ");
}
let abi = sig.abi();
if abi != ::syntax::abi::Abi::Rust {
output.push_str("extern \"");
output.push_str(abi.name());
output.push_str("\" ");
}
output.push_str("fn(");
let sig = self.tcx.erase_late_bound_regions_and_normalize(&sig);
if !sig.inputs().is_empty() {
for &parameter_type in sig.inputs() {
self.push_type_name(parameter_type, output);
output.push_str(", ");
}
output.pop();
output.pop();
}
if sig.variadic {
if !sig.inputs().is_empty() {
output.push_str(", ...");
} else {
output.push_str("...");
}
}
output.push(')');
if !sig.output().is_nil() {
output.push_str(" -> ");
self.push_type_name(sig.output(), output);
}
},
ty::TyGenerator(def_id, ref closure_substs, _) |
ty::TyClosure(def_id, ref closure_substs) => {
self.push_def_path(def_id, output);
let generics = self.tcx.generics_of(self.tcx.closure_base_def_id(def_id));
let substs = closure_substs.substs.truncate_to(self.tcx, generics);
self.push_type_params(substs, iter::empty(), output);
}
ty::TyError |
ty::TyInfer(_) |
ty::TyProjection(..) |
ty::TyParam(_) |
ty::TyAnon(..) => {
bug!("DefPathBasedNames: Trying to create type name for \
unexpected type: {:?}", t);
}
}
}
pub fn push_def_path(&self,
def_id: DefId,
output: &mut String) {
let def_path = self.tcx.def_path(def_id);
// some_crate::
if !(self.omit_local_crate_name && def_id.is_local()) {
output.push_str(&self.tcx.crate_name(def_path.krate).as_str());
output.push_str("::");
}
// foo::bar::ItemName::
for part in self.tcx.def_path(def_id).data {
if self.omit_disambiguators {
write!(output, "{}::", part.data.as_interned_str()).unwrap();
} else {
write!(output, "{}[{}]::",
part.data.as_interned_str(),
part.disambiguator).unwrap();
}
}
// remove final "::"
output.pop();
output.pop();
}
fn push_type_params<I>(&self,
substs: &Substs<'tcx>,
projections: I,
output: &mut String)
where I: Iterator<Item=ty::PolyExistentialProjection<'tcx>>
{
let mut projections = projections.peekable();
if substs.types().next().is_none() && projections.peek().is_none() {
return;
}
output.push('<');
for type_parameter in substs.types() {
self.push_type_name(type_parameter, output);
output.push_str(", ");
}
for projection in projections {
let projection = projection.skip_binder();
let name = &self.tcx.associated_item(projection.item_def_id).name.as_str();
output.push_str(name);
output.push_str("=");
self.push_type_name(projection.ty, output);
output.push_str(", ");
}
output.pop();
output.pop();
output.push('>');
}
pub fn push_instance_as_string(&self,
instance: Instance<'tcx>,
output: &mut String) {
self.push_def_path(instance.def_id(), output);
self.push_type_params(instance.substs, iter::empty(), output);
}
}