blob: 6ab1aec38b863cade1c7195ab072ee3771f1fcb8 [file] [log] [blame]
use rustc::mir;
use rustc::ty::Ty;
use rustc_const_math::ConstFloat;
use syntax::ast::FloatTy;
use std::cmp::Ordering;
use super::{EvalContext, Place, Machine, ValTy};
use rustc::mir::interpret::{EvalResult, PrimVal, PrimValKind, Value, bytes_to_f32, bytes_to_f64};
impl<'a, 'tcx, M: Machine<'tcx>> EvalContext<'a, 'tcx, M> {
fn binop_with_overflow(
&mut self,
op: mir::BinOp,
left: ValTy<'tcx>,
right: ValTy<'tcx>,
) -> EvalResult<'tcx, (PrimVal, bool)> {
let left_val = self.value_to_primval(left)?;
let right_val = self.value_to_primval(right)?;
self.binary_op(op, left_val, left.ty, right_val, right.ty)
}
/// Applies the binary operation `op` to the two operands and writes a tuple of the result
/// and a boolean signifying the potential overflow to the destination.
pub fn intrinsic_with_overflow(
&mut self,
op: mir::BinOp,
left: ValTy<'tcx>,
right: ValTy<'tcx>,
dest: Place,
dest_ty: Ty<'tcx>,
) -> EvalResult<'tcx> {
let (val, overflowed) = self.binop_with_overflow(op, left, right)?;
let val = Value::ByValPair(val, PrimVal::from_bool(overflowed));
let valty = ValTy {
value: val,
ty: dest_ty,
};
self.write_value(valty, dest)
}
/// Applies the binary operation `op` to the arguments and writes the result to the
/// destination. Returns `true` if the operation overflowed.
pub fn intrinsic_overflowing(
&mut self,
op: mir::BinOp,
left: ValTy<'tcx>,
right: ValTy<'tcx>,
dest: Place,
dest_ty: Ty<'tcx>,
) -> EvalResult<'tcx, bool> {
let (val, overflowed) = self.binop_with_overflow(op, left, right)?;
self.write_primval(dest, val, dest_ty)?;
Ok(overflowed)
}
}
macro_rules! overflow {
($op:ident, $l:expr, $r:expr) => ({
let (val, overflowed) = $l.$op($r);
let primval = PrimVal::Bytes(val as u128);
Ok((primval, overflowed))
})
}
macro_rules! int_arithmetic {
($kind:expr, $int_op:ident, $l:expr, $r:expr) => ({
let l = $l;
let r = $r;
use rustc::mir::interpret::PrimValKind::*;
match $kind {
I8 => overflow!($int_op, l as i8, r as i8),
I16 => overflow!($int_op, l as i16, r as i16),
I32 => overflow!($int_op, l as i32, r as i32),
I64 => overflow!($int_op, l as i64, r as i64),
I128 => overflow!($int_op, l as i128, r as i128),
U8 => overflow!($int_op, l as u8, r as u8),
U16 => overflow!($int_op, l as u16, r as u16),
U32 => overflow!($int_op, l as u32, r as u32),
U64 => overflow!($int_op, l as u64, r as u64),
U128 => overflow!($int_op, l as u128, r as u128),
_ => bug!("int_arithmetic should only be called on int primvals"),
}
})
}
macro_rules! int_shift {
($kind:expr, $int_op:ident, $l:expr, $r:expr) => ({
let l = $l;
let r = $r;
let r_wrapped = r as u32;
match $kind {
I8 => overflow!($int_op, l as i8, r_wrapped),
I16 => overflow!($int_op, l as i16, r_wrapped),
I32 => overflow!($int_op, l as i32, r_wrapped),
I64 => overflow!($int_op, l as i64, r_wrapped),
I128 => overflow!($int_op, l as i128, r_wrapped),
U8 => overflow!($int_op, l as u8, r_wrapped),
U16 => overflow!($int_op, l as u16, r_wrapped),
U32 => overflow!($int_op, l as u32, r_wrapped),
U64 => overflow!($int_op, l as u64, r_wrapped),
U128 => overflow!($int_op, l as u128, r_wrapped),
_ => bug!("int_shift should only be called on int primvals"),
}.map(|(val, over)| (val, over || r != r_wrapped as u128))
})
}
impl<'a, 'tcx, M: Machine<'tcx>> EvalContext<'a, 'tcx, M> {
/// Returns the result of the specified operation and whether it overflowed.
pub fn binary_op(
&self,
bin_op: mir::BinOp,
left: PrimVal,
left_ty: Ty<'tcx>,
right: PrimVal,
right_ty: Ty<'tcx>,
) -> EvalResult<'tcx, (PrimVal, bool)> {
use rustc::mir::BinOp::*;
use rustc::mir::interpret::PrimValKind::*;
let left_kind = self.ty_to_primval_kind(left_ty)?;
let right_kind = self.ty_to_primval_kind(right_ty)?;
//trace!("Running binary op {:?}: {:?} ({:?}), {:?} ({:?})", bin_op, left, left_kind, right, right_kind);
// I: Handle operations that support pointers
if !left_kind.is_float() && !right_kind.is_float() {
if let Some(handled) = M::try_ptr_op(self, bin_op, left, left_ty, right, right_ty)? {
return Ok(handled);
}
}
// II: From now on, everything must be bytes, no pointers
let l = left.to_bytes()?;
let r = right.to_bytes()?;
// These ops can have an RHS with a different numeric type.
if right_kind.is_int() && (bin_op == Shl || bin_op == Shr) {
return match bin_op {
Shl => int_shift!(left_kind, overflowing_shl, l, r),
Shr => int_shift!(left_kind, overflowing_shr, l, r),
_ => bug!("it has already been checked that this is a shift op"),
};
}
if left_kind != right_kind {
let msg = format!(
"unimplemented binary op {:?}: {:?} ({:?}), {:?} ({:?})",
bin_op,
left,
left_kind,
right,
right_kind
);
return err!(Unimplemented(msg));
}
let float_op = |op, l, r, ty| {
let l = ConstFloat {
bits: l,
ty,
};
let r = ConstFloat {
bits: r,
ty,
};
match op {
Eq => PrimVal::from_bool(l.try_cmp(r).unwrap() == Ordering::Equal),
Ne => PrimVal::from_bool(l.try_cmp(r).unwrap() != Ordering::Equal),
Lt => PrimVal::from_bool(l.try_cmp(r).unwrap() == Ordering::Less),
Le => PrimVal::from_bool(l.try_cmp(r).unwrap() != Ordering::Greater),
Gt => PrimVal::from_bool(l.try_cmp(r).unwrap() == Ordering::Greater),
Ge => PrimVal::from_bool(l.try_cmp(r).unwrap() != Ordering::Less),
Add => PrimVal::Bytes((l + r).unwrap().bits),
Sub => PrimVal::Bytes((l - r).unwrap().bits),
Mul => PrimVal::Bytes((l * r).unwrap().bits),
Div => PrimVal::Bytes((l / r).unwrap().bits),
Rem => PrimVal::Bytes((l % r).unwrap().bits),
_ => bug!("invalid float op: `{:?}`", op),
}
};
let val = match (bin_op, left_kind) {
(_, F32) => float_op(bin_op, l, r, FloatTy::F32),
(_, F64) => float_op(bin_op, l, r, FloatTy::F64),
(Eq, _) => PrimVal::from_bool(l == r),
(Ne, _) => PrimVal::from_bool(l != r),
(Lt, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) < (r as i128)),
(Lt, _) => PrimVal::from_bool(l < r),
(Le, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) <= (r as i128)),
(Le, _) => PrimVal::from_bool(l <= r),
(Gt, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) > (r as i128)),
(Gt, _) => PrimVal::from_bool(l > r),
(Ge, k) if k.is_signed_int() => PrimVal::from_bool((l as i128) >= (r as i128)),
(Ge, _) => PrimVal::from_bool(l >= r),
(BitOr, _) => PrimVal::Bytes(l | r),
(BitAnd, _) => PrimVal::Bytes(l & r),
(BitXor, _) => PrimVal::Bytes(l ^ r),
(Add, k) if k.is_int() => return int_arithmetic!(k, overflowing_add, l, r),
(Sub, k) if k.is_int() => return int_arithmetic!(k, overflowing_sub, l, r),
(Mul, k) if k.is_int() => return int_arithmetic!(k, overflowing_mul, l, r),
(Div, k) if k.is_int() => return int_arithmetic!(k, overflowing_div, l, r),
(Rem, k) if k.is_int() => return int_arithmetic!(k, overflowing_rem, l, r),
_ => {
let msg = format!(
"unimplemented binary op {:?}: {:?} ({:?}), {:?} ({:?})",
bin_op,
left,
left_kind,
right,
right_kind
);
return err!(Unimplemented(msg));
}
};
Ok((val, false))
}
}
pub fn unary_op<'tcx>(
un_op: mir::UnOp,
val: PrimVal,
val_kind: PrimValKind,
) -> EvalResult<'tcx, PrimVal> {
use rustc::mir::UnOp::*;
use rustc::mir::interpret::PrimValKind::*;
let bytes = val.to_bytes()?;
let result_bytes = match (un_op, val_kind) {
(Not, Bool) => !val.to_bool()? as u128,
(Not, U8) => !(bytes as u8) as u128,
(Not, U16) => !(bytes as u16) as u128,
(Not, U32) => !(bytes as u32) as u128,
(Not, U64) => !(bytes as u64) as u128,
(Not, U128) => !bytes,
(Not, I8) => !(bytes as i8) as u128,
(Not, I16) => !(bytes as i16) as u128,
(Not, I32) => !(bytes as i32) as u128,
(Not, I64) => !(bytes as i64) as u128,
(Not, I128) => !(bytes as i128) as u128,
(Neg, I8) => -(bytes as i8) as u128,
(Neg, I16) => -(bytes as i16) as u128,
(Neg, I32) => -(bytes as i32) as u128,
(Neg, I64) => -(bytes as i64) as u128,
(Neg, I128) => -(bytes as i128) as u128,
(Neg, F32) => (-bytes_to_f32(bytes)).bits,
(Neg, F64) => (-bytes_to_f64(bytes)).bits,
_ => {
let msg = format!("unimplemented unary op: {:?}, {:?}", un_op, val);
return err!(Unimplemented(msg));
}
};
Ok(PrimVal::Bytes(result_bytes))
}