blob: 3a28eae2d1c49e502773a5d8e505a7137ff1cb76 [file] [log] [blame]
use byteorder::{ReadBytesExt, WriteBytesExt, LittleEndian, BigEndian};
use std::collections::{btree_map, BTreeMap, HashMap, HashSet, VecDeque};
use std::{ptr, mem, io};
use rustc::ty::{Instance, TyCtxt};
use rustc::ty::layout::{self, Align, TargetDataLayout};
use syntax::ast::Mutability;
use rustc::mir::interpret::{MemoryPointer, AllocId, Allocation, AccessKind, UndefMask, Value, Pointer,
EvalResult, PrimVal, EvalErrorKind};
use super::{EvalContext, Machine};
////////////////////////////////////////////////////////////////////////////////
// Allocations and pointers
////////////////////////////////////////////////////////////////////////////////
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum MemoryKind<T> {
/// Error if deallocated except during a stack pop
Stack,
/// A mutable Static. All the others are interned in the tcx
MutableStatic, // FIXME: move me into the machine, rustc const eval doesn't need them
/// Additional memory kinds a machine wishes to distinguish from the builtin ones
Machine(T),
}
////////////////////////////////////////////////////////////////////////////////
// Top-level interpreter memory
////////////////////////////////////////////////////////////////////////////////
pub struct Memory<'a, 'tcx: 'a, M: Machine<'tcx>> {
/// Additional data required by the Machine
pub data: M::MemoryData,
/// Helps guarantee that stack allocations aren't deallocated via `rust_deallocate`
alloc_kind: HashMap<AllocId, MemoryKind<M::MemoryKinds>>,
/// Actual memory allocations (arbitrary bytes, may contain pointers into other allocations).
alloc_map: HashMap<AllocId, Allocation>,
/// Actual memory allocations (arbitrary bytes, may contain pointers into other allocations).
///
/// Stores statics while they are being processed, before they are interned and thus frozen
uninitialized_statics: HashMap<AllocId, Allocation>,
/// Number of virtual bytes allocated.
memory_usage: u64,
/// Maximum number of virtual bytes that may be allocated.
memory_size: u64,
/// The current stack frame. Used to check accesses against locks.
pub cur_frame: usize,
pub tcx: TyCtxt<'a, 'tcx, 'tcx>,
}
impl<'a, 'tcx, M: Machine<'tcx>> Memory<'a, 'tcx, M> {
pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>, max_memory: u64, data: M::MemoryData) -> Self {
Memory {
data,
alloc_kind: HashMap::new(),
alloc_map: HashMap::new(),
uninitialized_statics: HashMap::new(),
tcx,
memory_size: max_memory,
memory_usage: 0,
cur_frame: usize::max_value(),
}
}
pub fn allocations<'x>(
&'x self,
) -> impl Iterator<Item = (AllocId, &'x Allocation)> {
self.alloc_map.iter().map(|(&id, alloc)| (id, alloc))
}
pub fn create_fn_alloc(&mut self, instance: Instance<'tcx>) -> MemoryPointer {
let id = self.tcx.interpret_interner.borrow_mut().create_fn_alloc(instance);
MemoryPointer::new(id, 0)
}
pub fn allocate_cached(&mut self, bytes: &[u8]) -> MemoryPointer {
let id = self.tcx.allocate_cached(bytes);
MemoryPointer::new(id, 0)
}
/// kind is `None` for statics
pub fn allocate(
&mut self,
size: u64,
align: Align,
kind: Option<MemoryKind<M::MemoryKinds>>,
) -> EvalResult<'tcx, MemoryPointer> {
if self.memory_size - self.memory_usage < size {
return err!(OutOfMemory {
allocation_size: size,
memory_size: self.memory_size,
memory_usage: self.memory_usage,
});
}
self.memory_usage += size;
assert_eq!(size as usize as u64, size);
let alloc = Allocation {
bytes: vec![0; size as usize],
relocations: BTreeMap::new(),
undef_mask: UndefMask::new(size),
align,
};
let id = self.tcx.interpret_interner.borrow_mut().reserve();
M::add_lock(self, id);
match kind {
Some(kind @ MemoryKind::Stack) |
Some(kind @ MemoryKind::Machine(_)) => {
self.alloc_map.insert(id, alloc);
self.alloc_kind.insert(id, kind);
},
None => {
self.uninitialized_statics.insert(id, alloc);
},
Some(MemoryKind::MutableStatic) => bug!("don't allocate mutable statics directly")
}
Ok(MemoryPointer::new(id, 0))
}
pub fn reallocate(
&mut self,
ptr: MemoryPointer,
old_size: u64,
old_align: Align,
new_size: u64,
new_align: Align,
kind: MemoryKind<M::MemoryKinds>,
) -> EvalResult<'tcx, MemoryPointer> {
if ptr.offset != 0 {
return err!(ReallocateNonBasePtr);
}
if self.alloc_map.contains_key(&ptr.alloc_id) {
let alloc_kind = self.alloc_kind[&ptr.alloc_id];
if alloc_kind != kind {
return err!(ReallocatedWrongMemoryKind(
format!("{:?}", alloc_kind),
format!("{:?}", kind),
));
}
}
// For simplicities' sake, we implement reallocate as "alloc, copy, dealloc"
let new_ptr = self.allocate(new_size, new_align, Some(kind))?;
self.copy(
ptr.into(),
old_align,
new_ptr.into(),
new_align,
old_size.min(new_size),
/*nonoverlapping*/
true,
)?;
self.deallocate(ptr, Some((old_size, old_align)), kind)?;
Ok(new_ptr)
}
pub fn deallocate_local(&mut self, ptr: MemoryPointer) -> EvalResult<'tcx> {
match self.alloc_kind.get(&ptr.alloc_id).cloned() {
// for a constant like `const FOO: &i32 = &1;` the local containing
// the `1` is referred to by the global. We transitively marked everything
// the global refers to as static itself, so we don't free it here
Some(MemoryKind::MutableStatic) => Ok(()),
Some(MemoryKind::Stack) => self.deallocate(ptr, None, MemoryKind::Stack),
// Happens if the memory was interned into immutable memory
None => Ok(()),
other => bug!("local contained non-stack memory: {:?}", other),
}
}
pub fn deallocate(
&mut self,
ptr: MemoryPointer,
size_and_align: Option<(u64, Align)>,
kind: MemoryKind<M::MemoryKinds>,
) -> EvalResult<'tcx> {
if ptr.offset != 0 {
return err!(DeallocateNonBasePtr);
}
let alloc = match self.alloc_map.remove(&ptr.alloc_id) {
Some(alloc) => alloc,
None => if self.uninitialized_statics.contains_key(&ptr.alloc_id) {
return err!(DeallocatedWrongMemoryKind(
"uninitializedstatic".to_string(),
format!("{:?}", kind),
))
} else if self.tcx.interpret_interner.borrow().get_fn(ptr.alloc_id).is_some() {
return err!(DeallocatedWrongMemoryKind(
"function".to_string(),
format!("{:?}", kind),
))
} else if self.tcx.interpret_interner.borrow().get_alloc(ptr.alloc_id).is_some() {
return err!(DeallocatedWrongMemoryKind(
"static".to_string(),
format!("{:?}", kind),
))
} else {
return err!(DoubleFree)
},
};
let alloc_kind = self.alloc_kind.remove(&ptr.alloc_id).expect("alloc_map out of sync with alloc_kind");
// It is okay for us to still holds locks on deallocation -- for example, we could store data we own
// in a local, and the local could be deallocated (from StorageDead) before the function returns.
// However, we should check *something*. For now, we make sure that there is no conflicting write
// lock by another frame. We *have* to permit deallocation if we hold a read lock.
// TODO: Figure out the exact rules here.
M::free_lock(self, ptr.alloc_id, alloc.bytes.len() as u64)?;
if alloc_kind != kind {
return err!(DeallocatedWrongMemoryKind(
format!("{:?}", alloc_kind),
format!("{:?}", kind),
));
}
if let Some((size, align)) = size_and_align {
if size != alloc.bytes.len() as u64 || align != alloc.align {
return err!(IncorrectAllocationInformation(size, alloc.bytes.len(), align.abi(), alloc.align.abi()));
}
}
self.memory_usage -= alloc.bytes.len() as u64;
debug!("deallocated : {}", ptr.alloc_id);
Ok(())
}
pub fn pointer_size(&self) -> u64 {
self.tcx.data_layout.pointer_size.bytes()
}
pub fn endianess(&self) -> layout::Endian {
self.tcx.data_layout.endian
}
/// Check that the pointer is aligned AND non-NULL.
pub fn check_align(&self, ptr: Pointer, required_align: Align) -> EvalResult<'tcx> {
// Check non-NULL/Undef, extract offset
let (offset, alloc_align) = match ptr.into_inner_primval() {
PrimVal::Ptr(ptr) => {
let alloc = self.get(ptr.alloc_id)?;
(ptr.offset, alloc.align)
}
PrimVal::Bytes(bytes) => {
let v = ((bytes as u128) % (1 << self.pointer_size())) as u64;
if v == 0 {
return err!(InvalidNullPointerUsage);
}
// the base address if the "integer allocation" is 0 and hence always aligned
(v, required_align)
}
PrimVal::Undef => return err!(ReadUndefBytes),
};
// Check alignment
if alloc_align.abi() < required_align.abi() {
return err!(AlignmentCheckFailed {
has: alloc_align.abi(),
required: required_align.abi(),
});
}
if offset % required_align.abi() == 0 {
Ok(())
} else {
err!(AlignmentCheckFailed {
has: offset % required_align.abi(),
required: required_align.abi(),
})
}
}
pub fn check_bounds(&self, ptr: MemoryPointer, access: bool) -> EvalResult<'tcx> {
let alloc = self.get(ptr.alloc_id)?;
let allocation_size = alloc.bytes.len() as u64;
if ptr.offset > allocation_size {
return err!(PointerOutOfBounds {
ptr,
access,
allocation_size,
});
}
Ok(())
}
}
/// Allocation accessors
impl<'a, 'tcx, M: Machine<'tcx>> Memory<'a, 'tcx, M> {
pub fn get(&self, id: AllocId) -> EvalResult<'tcx, &Allocation> {
// normal alloc?
match self.alloc_map.get(&id) {
Some(alloc) => Ok(alloc),
// uninitialized static alloc?
None => match self.uninitialized_statics.get(&id) {
Some(alloc) => Ok(alloc),
None => {
let int = self.tcx.interpret_interner.borrow();
// static alloc?
int.get_alloc(id)
// no alloc? produce an error
.ok_or_else(|| if int.get_fn(id).is_some() {
EvalErrorKind::DerefFunctionPointer.into()
} else {
EvalErrorKind::DanglingPointerDeref.into()
})
},
},
}
}
fn get_mut(
&mut self,
id: AllocId,
) -> EvalResult<'tcx, &mut Allocation> {
// normal alloc?
match self.alloc_map.get_mut(&id) {
Some(alloc) => Ok(alloc),
// uninitialized static alloc?
None => match self.uninitialized_statics.get_mut(&id) {
Some(alloc) => Ok(alloc),
None => {
let int = self.tcx.interpret_interner.borrow();
// no alloc or immutable alloc? produce an error
if int.get_alloc(id).is_some() {
err!(ModifiedConstantMemory)
} else if int.get_fn(id).is_some() {
err!(DerefFunctionPointer)
} else {
err!(DanglingPointerDeref)
}
},
},
}
}
pub fn get_fn(&self, ptr: MemoryPointer) -> EvalResult<'tcx, Instance<'tcx>> {
if ptr.offset != 0 {
return err!(InvalidFunctionPointer);
}
debug!("reading fn ptr: {}", ptr.alloc_id);
self.tcx
.interpret_interner
.borrow()
.get_fn(ptr.alloc_id)
.ok_or(EvalErrorKind::ExecuteMemory.into())
}
/// For debugging, print an allocation and all allocations it points to, recursively.
pub fn dump_alloc(&self, id: AllocId) {
self.dump_allocs(vec![id]);
}
/// For debugging, print a list of allocations and all allocations they point to, recursively.
pub fn dump_allocs(&self, mut allocs: Vec<AllocId>) {
use std::fmt::Write;
allocs.sort();
allocs.dedup();
let mut allocs_to_print = VecDeque::from(allocs);
let mut allocs_seen = HashSet::new();
while let Some(id) = allocs_to_print.pop_front() {
let mut msg = format!("Alloc {:<5} ", format!("{}:", id));
let prefix_len = msg.len();
let mut relocations = vec![];
let (alloc, immutable) =
// normal alloc?
match self.alloc_map.get(&id) {
Some(a) => (a, match self.alloc_kind[&id] {
MemoryKind::Stack => " (stack)".to_owned(),
MemoryKind::Machine(m) => format!(" ({:?})", m),
MemoryKind::MutableStatic => " (static mut)".to_owned(),
}),
// uninitialized static alloc?
None => match self.uninitialized_statics.get(&id) {
Some(a) => (a, " (static in the process of initialization)".to_owned()),
None => {
let int = self.tcx.interpret_interner.borrow();
// static alloc?
match int.get_alloc(id) {
Some(a) => (a, "(immutable)".to_owned()),
None => if let Some(func) = int.get_fn(id) {
trace!("{} {}", msg, func);
continue;
} else {
trace!("{} (deallocated)", msg);
continue;
},
}
},
},
};
for i in 0..(alloc.bytes.len() as u64) {
if let Some(&target_id) = alloc.relocations.get(&i) {
if allocs_seen.insert(target_id) {
allocs_to_print.push_back(target_id);
}
relocations.push((i, target_id));
}
if alloc.undef_mask.is_range_defined(i, i + 1) {
// this `as usize` is fine, since `i` came from a `usize`
write!(msg, "{:02x} ", alloc.bytes[i as usize]).unwrap();
} else {
msg.push_str("__ ");
}
}
trace!(
"{}({} bytes, alignment {}){}",
msg,
alloc.bytes.len(),
alloc.align.abi(),
immutable
);
if !relocations.is_empty() {
msg.clear();
write!(msg, "{:1$}", "", prefix_len).unwrap(); // Print spaces.
let mut pos = 0;
let relocation_width = (self.pointer_size() - 1) * 3;
for (i, target_id) in relocations {
// this `as usize` is fine, since we can't print more chars than `usize::MAX`
write!(msg, "{:1$}", "", ((i - pos) * 3) as usize).unwrap();
let target = format!("({})", target_id);
// this `as usize` is fine, since we can't print more chars than `usize::MAX`
write!(msg, "└{0:─^1$}┘ ", target, relocation_width as usize).unwrap();
pos = i + self.pointer_size();
}
trace!("{}", msg);
}
}
}
pub fn leak_report(&self) -> usize {
trace!("### LEAK REPORT ###");
let kinds = &self.alloc_kind;
let leaks: Vec<_> = self.alloc_map
.keys()
.filter_map(|key| if kinds[key] != MemoryKind::MutableStatic {
Some(*key)
} else {
None
})
.collect();
let n = leaks.len();
self.dump_allocs(leaks);
n
}
}
/// Byte accessors
impl<'a, 'tcx, M: Machine<'tcx>> Memory<'a, 'tcx, M> {
fn get_bytes_unchecked(
&self,
ptr: MemoryPointer,
size: u64,
align: Align,
) -> EvalResult<'tcx, &[u8]> {
// Zero-sized accesses can use dangling pointers, but they still have to be aligned and non-NULL
self.check_align(ptr.into(), align)?;
if size == 0 {
return Ok(&[]);
}
M::check_locks(self, ptr, size, AccessKind::Read)?;
self.check_bounds(ptr.offset(size, self)?, true)?; // if ptr.offset is in bounds, then so is ptr (because offset checks for overflow)
let alloc = self.get(ptr.alloc_id)?;
assert_eq!(ptr.offset as usize as u64, ptr.offset);
assert_eq!(size as usize as u64, size);
let offset = ptr.offset as usize;
Ok(&alloc.bytes[offset..offset + size as usize])
}
fn get_bytes_unchecked_mut(
&mut self,
ptr: MemoryPointer,
size: u64,
align: Align,
) -> EvalResult<'tcx, &mut [u8]> {
// Zero-sized accesses can use dangling pointers, but they still have to be aligned and non-NULL
self.check_align(ptr.into(), align)?;
if size == 0 {
return Ok(&mut []);
}
M::check_locks(self, ptr, size, AccessKind::Write)?;
self.check_bounds(ptr.offset(size, &*self)?, true)?; // if ptr.offset is in bounds, then so is ptr (because offset checks for overflow)
let alloc = self.get_mut(ptr.alloc_id)?;
assert_eq!(ptr.offset as usize as u64, ptr.offset);
assert_eq!(size as usize as u64, size);
let offset = ptr.offset as usize;
Ok(&mut alloc.bytes[offset..offset + size as usize])
}
fn get_bytes(&self, ptr: MemoryPointer, size: u64, align: Align) -> EvalResult<'tcx, &[u8]> {
assert_ne!(size, 0);
if self.relocations(ptr, size)?.count() != 0 {
return err!(ReadPointerAsBytes);
}
self.check_defined(ptr, size)?;
self.get_bytes_unchecked(ptr, size, align)
}
fn get_bytes_mut(
&mut self,
ptr: MemoryPointer,
size: u64,
align: Align,
) -> EvalResult<'tcx, &mut [u8]> {
assert_ne!(size, 0);
self.clear_relocations(ptr, size)?;
self.mark_definedness(ptr.into(), size, true)?;
self.get_bytes_unchecked_mut(ptr, size, align)
}
}
/// Reading and writing
impl<'a, 'tcx, M: Machine<'tcx>> Memory<'a, 'tcx, M> {
/// mark an allocation pointed to by a static as static and initialized
fn mark_inner_allocation_initialized(
&mut self,
alloc: AllocId,
mutability: Mutability,
) -> EvalResult<'tcx> {
match self.alloc_kind.get(&alloc) {
// do not go into immutable statics
None |
// or mutable statics
Some(&MemoryKind::MutableStatic) => Ok(()),
// just locals and machine allocs
Some(_) => self.mark_static_initalized(alloc, mutability),
}
}
/// mark an allocation as static and initialized, either mutable or not
pub fn mark_static_initalized(
&mut self,
alloc_id: AllocId,
mutability: Mutability,
) -> EvalResult<'tcx> {
trace!(
"mark_static_initalized {:?}, mutability: {:?}",
alloc_id,
mutability
);
if mutability == Mutability::Immutable {
let alloc = self.alloc_map.remove(&alloc_id);
let kind = self.alloc_kind.remove(&alloc_id);
assert_ne!(kind, Some(MemoryKind::MutableStatic));
let uninit = self.uninitialized_statics.remove(&alloc_id);
if let Some(alloc) = alloc.or(uninit) {
let alloc = self.tcx.intern_const_alloc(alloc);
self.tcx.interpret_interner.borrow_mut().intern_at_reserved(alloc_id, alloc);
// recurse into inner allocations
for &alloc in alloc.relocations.values() {
self.mark_inner_allocation_initialized(alloc, mutability)?;
}
}
return Ok(());
}
// We are marking the static as initialized, so move it out of the uninit map
if let Some(uninit) = self.uninitialized_statics.remove(&alloc_id) {
self.alloc_map.insert(alloc_id, uninit);
}
// do not use `self.get_mut(alloc_id)` here, because we might have already marked a
// sub-element or have circular pointers (e.g. `Rc`-cycles)
let relocations = match self.alloc_map.get_mut(&alloc_id) {
Some(&mut Allocation {
ref mut relocations,
..
}) => {
match self.alloc_kind.get(&alloc_id) {
// const eval results can refer to "locals".
// E.g. `const Foo: &u32 = &1;` refers to the temp local that stores the `1`
None |
Some(&MemoryKind::Stack) => {},
Some(&MemoryKind::Machine(m)) => M::mark_static_initialized(m)?,
Some(&MemoryKind::MutableStatic) => {
trace!("mark_static_initalized: skipping already initialized static referred to by static currently being initialized");
return Ok(());
},
}
// overwrite or insert
self.alloc_kind.insert(alloc_id, MemoryKind::MutableStatic);
// take out the relocations vector to free the borrow on self, so we can call
// mark recursively
mem::replace(relocations, Default::default())
}
None => return err!(DanglingPointerDeref),
};
// recurse into inner allocations
for &alloc in relocations.values() {
self.mark_inner_allocation_initialized(alloc, mutability)?;
}
// put back the relocations
self.alloc_map
.get_mut(&alloc_id)
.expect("checked above")
.relocations = relocations;
Ok(())
}
pub fn copy(
&mut self,
src: Pointer,
src_align: Align,
dest: Pointer,
dest_align: Align,
size: u64,
nonoverlapping: bool,
) -> EvalResult<'tcx> {
// Empty accesses don't need to be valid pointers, but they should still be aligned
self.check_align(src, src_align)?;
self.check_align(dest, dest_align)?;
if size == 0 {
return Ok(());
}
let src = src.to_ptr()?;
let dest = dest.to_ptr()?;
self.check_relocation_edges(src, size)?;
// first copy the relocations to a temporary buffer, because
// `get_bytes_mut` will clear the relocations, which is correct,
// since we don't want to keep any relocations at the target.
let relocations: Vec<_> = self.relocations(src, size)?
.map(|(&offset, &alloc_id)| {
// Update relocation offsets for the new positions in the destination allocation.
(offset + dest.offset - src.offset, alloc_id)
})
.collect();
let src_bytes = self.get_bytes_unchecked(src, size, src_align)?.as_ptr();
let dest_bytes = self.get_bytes_mut(dest, size, dest_align)?.as_mut_ptr();
// SAFE: The above indexing would have panicked if there weren't at least `size` bytes
// behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and
// `dest` could possibly overlap.
unsafe {
assert_eq!(size as usize as u64, size);
if src.alloc_id == dest.alloc_id {
if nonoverlapping {
if (src.offset <= dest.offset && src.offset + size > dest.offset) ||
(dest.offset <= src.offset && dest.offset + size > src.offset)
{
return err!(Intrinsic(
format!("copy_nonoverlapping called on overlapping ranges"),
));
}
}
ptr::copy(src_bytes, dest_bytes, size as usize);
} else {
ptr::copy_nonoverlapping(src_bytes, dest_bytes, size as usize);
}
}
self.copy_undef_mask(src, dest, size)?;
// copy back the relocations
self.get_mut(dest.alloc_id)?.relocations.extend(relocations);
Ok(())
}
pub fn read_c_str(&self, ptr: MemoryPointer) -> EvalResult<'tcx, &[u8]> {
let alloc = self.get(ptr.alloc_id)?;
assert_eq!(ptr.offset as usize as u64, ptr.offset);
let offset = ptr.offset as usize;
match alloc.bytes[offset..].iter().position(|&c| c == 0) {
Some(size) => {
if self.relocations(ptr, (size + 1) as u64)?.count() != 0 {
return err!(ReadPointerAsBytes);
}
self.check_defined(ptr, (size + 1) as u64)?;
M::check_locks(self, ptr, (size + 1) as u64, AccessKind::Read)?;
Ok(&alloc.bytes[offset..offset + size])
}
None => err!(UnterminatedCString(ptr)),
}
}
pub fn read_bytes(&self, ptr: Pointer, size: u64) -> EvalResult<'tcx, &[u8]> {
// Empty accesses don't need to be valid pointers, but they should still be non-NULL
let align = Align::from_bytes(1, 1).unwrap();
self.check_align(ptr, align)?;
if size == 0 {
return Ok(&[]);
}
self.get_bytes(ptr.to_ptr()?, size, align)
}
pub fn write_bytes(&mut self, ptr: Pointer, src: &[u8]) -> EvalResult<'tcx> {
// Empty accesses don't need to be valid pointers, but they should still be non-NULL
let align = Align::from_bytes(1, 1).unwrap();
self.check_align(ptr, align)?;
if src.is_empty() {
return Ok(());
}
let bytes = self.get_bytes_mut(ptr.to_ptr()?, src.len() as u64, align)?;
bytes.clone_from_slice(src);
Ok(())
}
pub fn write_repeat(&mut self, ptr: Pointer, val: u8, count: u64) -> EvalResult<'tcx> {
// Empty accesses don't need to be valid pointers, but they should still be non-NULL
let align = Align::from_bytes(1, 1).unwrap();
self.check_align(ptr, align)?;
if count == 0 {
return Ok(());
}
let bytes = self.get_bytes_mut(ptr.to_ptr()?, count, align)?;
for b in bytes {
*b = val;
}
Ok(())
}
pub fn read_primval(&self, ptr: MemoryPointer, ptr_align: Align, size: u64, signed: bool) -> EvalResult<'tcx, PrimVal> {
self.check_relocation_edges(ptr, size)?; // Make sure we don't read part of a pointer as a pointer
let endianess = self.endianess();
let bytes = self.get_bytes_unchecked(ptr, size, ptr_align.min(self.int_align(size)))?;
// Undef check happens *after* we established that the alignment is correct.
// We must not return Ok() for unaligned pointers!
if self.check_defined(ptr, size).is_err() {
return Ok(PrimVal::Undef.into());
}
// Now we do the actual reading
let bytes = if signed {
read_target_int(endianess, bytes).unwrap() as u128
} else {
read_target_uint(endianess, bytes).unwrap()
};
// See if we got a pointer
if size != self.pointer_size() {
if self.relocations(ptr, size)?.count() != 0 {
return err!(ReadPointerAsBytes);
}
} else {
let alloc = self.get(ptr.alloc_id)?;
match alloc.relocations.get(&ptr.offset) {
Some(&alloc_id) => return Ok(PrimVal::Ptr(MemoryPointer::new(alloc_id, bytes as u64))),
None => {},
}
}
// We don't. Just return the bytes.
Ok(PrimVal::Bytes(bytes))
}
pub fn read_ptr_sized_unsigned(&self, ptr: MemoryPointer, ptr_align: Align) -> EvalResult<'tcx, PrimVal> {
self.read_primval(ptr, ptr_align, self.pointer_size(), false)
}
pub fn write_primval(&mut self, ptr: MemoryPointer, ptr_align: Align, val: PrimVal, size: u64, signed: bool) -> EvalResult<'tcx> {
let endianess = self.endianess();
let bytes = match val {
PrimVal::Ptr(val) => {
assert_eq!(size, self.pointer_size());
val.offset as u128
}
PrimVal::Bytes(bytes) => {
// We need to mask here, or the byteorder crate can die when given a u64 larger
// than fits in an integer of the requested size.
let mask = match size {
1 => !0u8 as u128,
2 => !0u16 as u128,
4 => !0u32 as u128,
8 => !0u64 as u128,
16 => !0,
n => bug!("unexpected PrimVal::Bytes size: {}", n),
};
bytes & mask
}
PrimVal::Undef => {
self.mark_definedness(PrimVal::Ptr(ptr).into(), size, false)?;
return Ok(());
}
};
{
let align = self.int_align(size);
let dst = self.get_bytes_mut(ptr, size, ptr_align.min(align))?;
if signed {
write_target_int(endianess, dst, bytes as i128).unwrap();
} else {
write_target_uint(endianess, dst, bytes).unwrap();
}
}
// See if we have to also write a relocation
match val {
PrimVal::Ptr(val) => {
self.get_mut(ptr.alloc_id)?.relocations.insert(
ptr.offset,
val.alloc_id,
);
}
_ => {}
}
Ok(())
}
pub fn write_ptr_sized_unsigned(&mut self, ptr: MemoryPointer, ptr_align: Align, val: PrimVal) -> EvalResult<'tcx> {
let ptr_size = self.pointer_size();
self.write_primval(ptr, ptr_align, val, ptr_size, false)
}
fn int_align(&self, size: u64) -> Align {
// We assume pointer-sized integers have the same alignment as pointers.
// We also assume signed and unsigned integers of the same size have the same alignment.
let ity = match size {
1 => layout::I8,
2 => layout::I16,
4 => layout::I32,
8 => layout::I64,
16 => layout::I128,
_ => bug!("bad integer size: {}", size),
};
ity.align(self)
}
}
/// Relocations
impl<'a, 'tcx, M: Machine<'tcx>> Memory<'a, 'tcx, M> {
fn relocations(
&self,
ptr: MemoryPointer,
size: u64,
) -> EvalResult<'tcx, btree_map::Range<u64, AllocId>> {
let start = ptr.offset.saturating_sub(self.pointer_size() - 1);
let end = ptr.offset + size;
Ok(self.get(ptr.alloc_id)?.relocations.range(start..end))
}
fn clear_relocations(&mut self, ptr: MemoryPointer, size: u64) -> EvalResult<'tcx> {
// Find all relocations overlapping the given range.
let keys: Vec<_> = self.relocations(ptr, size)?.map(|(&k, _)| k).collect();
if keys.is_empty() {
return Ok(());
}
// Find the start and end of the given range and its outermost relocations.
let start = ptr.offset;
let end = start + size;
let first = *keys.first().unwrap();
let last = *keys.last().unwrap() + self.pointer_size();
let alloc = self.get_mut(ptr.alloc_id)?;
// Mark parts of the outermost relocations as undefined if they partially fall outside the
// given range.
if first < start {
alloc.undef_mask.set_range(first, start, false);
}
if last > end {
alloc.undef_mask.set_range(end, last, false);
}
// Forget all the relocations.
for k in keys {
alloc.relocations.remove(&k);
}
Ok(())
}
fn check_relocation_edges(&self, ptr: MemoryPointer, size: u64) -> EvalResult<'tcx> {
let overlapping_start = self.relocations(ptr, 0)?.count();
let overlapping_end = self.relocations(ptr.offset(size, self)?, 0)?.count();
if overlapping_start + overlapping_end != 0 {
return err!(ReadPointerAsBytes);
}
Ok(())
}
}
/// Undefined bytes
impl<'a, 'tcx, M: Machine<'tcx>> Memory<'a, 'tcx, M> {
// FIXME(solson): This is a very naive, slow version.
fn copy_undef_mask(
&mut self,
src: MemoryPointer,
dest: MemoryPointer,
size: u64,
) -> EvalResult<'tcx> {
// The bits have to be saved locally before writing to dest in case src and dest overlap.
assert_eq!(size as usize as u64, size);
let mut v = Vec::with_capacity(size as usize);
for i in 0..size {
let defined = self.get(src.alloc_id)?.undef_mask.get(src.offset + i);
v.push(defined);
}
for (i, defined) in v.into_iter().enumerate() {
self.get_mut(dest.alloc_id)?.undef_mask.set(
dest.offset +
i as u64,
defined,
);
}
Ok(())
}
fn check_defined(&self, ptr: MemoryPointer, size: u64) -> EvalResult<'tcx> {
let alloc = self.get(ptr.alloc_id)?;
if !alloc.undef_mask.is_range_defined(
ptr.offset,
ptr.offset + size,
)
{
return err!(ReadUndefBytes);
}
Ok(())
}
pub fn mark_definedness(
&mut self,
ptr: Pointer,
size: u64,
new_state: bool,
) -> EvalResult<'tcx> {
if size == 0 {
return Ok(());
}
let ptr = ptr.to_ptr()?;
let alloc = self.get_mut(ptr.alloc_id)?;
alloc.undef_mask.set_range(
ptr.offset,
ptr.offset + size,
new_state,
);
Ok(())
}
}
////////////////////////////////////////////////////////////////////////////////
// Methods to access integers in the target endianess
////////////////////////////////////////////////////////////////////////////////
fn write_target_uint(
endianess: layout::Endian,
mut target: &mut [u8],
data: u128,
) -> Result<(), io::Error> {
let len = target.len();
match endianess {
layout::Endian::Little => target.write_uint128::<LittleEndian>(data, len),
layout::Endian::Big => target.write_uint128::<BigEndian>(data, len),
}
}
fn write_target_int(
endianess: layout::Endian,
mut target: &mut [u8],
data: i128,
) -> Result<(), io::Error> {
let len = target.len();
match endianess {
layout::Endian::Little => target.write_int128::<LittleEndian>(data, len),
layout::Endian::Big => target.write_int128::<BigEndian>(data, len),
}
}
fn read_target_uint(endianess: layout::Endian, mut source: &[u8]) -> Result<u128, io::Error> {
match endianess {
layout::Endian::Little => source.read_uint128::<LittleEndian>(source.len()),
layout::Endian::Big => source.read_uint128::<BigEndian>(source.len()),
}
}
fn read_target_int(endianess: layout::Endian, mut source: &[u8]) -> Result<i128, io::Error> {
match endianess {
layout::Endian::Little => source.read_int128::<LittleEndian>(source.len()),
layout::Endian::Big => source.read_int128::<BigEndian>(source.len()),
}
}
////////////////////////////////////////////////////////////////////////////////
// Unaligned accesses
////////////////////////////////////////////////////////////////////////////////
pub trait HasMemory<'a, 'tcx: 'a, M: Machine<'tcx>> {
fn memory_mut(&mut self) -> &mut Memory<'a, 'tcx, M>;
fn memory(&self) -> &Memory<'a, 'tcx, M>;
/// Convert the value into a pointer (or a pointer-sized integer). If the value is a ByRef,
/// this may have to perform a load.
fn into_ptr(
&self,
value: Value,
) -> EvalResult<'tcx, Pointer> {
Ok(match value {
Value::ByRef(ptr, align) => {
self.memory().read_ptr_sized_unsigned(ptr.to_ptr()?, align)?
}
Value::ByVal(ptr) |
Value::ByValPair(ptr, _) => ptr,
}.into())
}
fn into_ptr_vtable_pair(
&self,
value: Value,
) -> EvalResult<'tcx, (Pointer, MemoryPointer)> {
match value {
Value::ByRef(ref_ptr, align) => {
let mem = self.memory();
let ptr = mem.read_ptr_sized_unsigned(ref_ptr.to_ptr()?, align)?.into();
let vtable = mem.read_ptr_sized_unsigned(
ref_ptr.offset(mem.pointer_size(), &mem.tcx.data_layout)?.to_ptr()?,
align
)?.to_ptr()?;
Ok((ptr, vtable))
}
Value::ByValPair(ptr, vtable) => Ok((ptr.into(), vtable.to_ptr()?)),
Value::ByVal(PrimVal::Undef) => err!(ReadUndefBytes),
_ => bug!("expected ptr and vtable, got {:?}", value),
}
}
fn into_slice(
&self,
value: Value,
) -> EvalResult<'tcx, (Pointer, u64)> {
match value {
Value::ByRef(ref_ptr, align) => {
let mem = self.memory();
let ptr = mem.read_ptr_sized_unsigned(ref_ptr.to_ptr()?, align)?.into();
let len = mem.read_ptr_sized_unsigned(
ref_ptr.offset(mem.pointer_size(), &mem.tcx.data_layout)?.to_ptr()?,
align
)?.to_bytes()? as u64;
Ok((ptr, len))
}
Value::ByValPair(ptr, val) => {
let len = val.to_u128()?;
assert_eq!(len as u64 as u128, len);
Ok((ptr.into(), len as u64))
}
Value::ByVal(PrimVal::Undef) => err!(ReadUndefBytes),
Value::ByVal(_) => bug!("expected ptr and length, got {:?}", value),
}
}
}
impl<'a, 'tcx, M: Machine<'tcx>> HasMemory<'a, 'tcx, M> for Memory<'a, 'tcx, M> {
#[inline]
fn memory_mut(&mut self) -> &mut Memory<'a, 'tcx, M> {
self
}
#[inline]
fn memory(&self) -> &Memory<'a, 'tcx, M> {
self
}
}
impl<'a, 'tcx, M: Machine<'tcx>> HasMemory<'a, 'tcx, M> for EvalContext<'a, 'tcx, M> {
#[inline]
fn memory_mut(&mut self) -> &mut Memory<'a, 'tcx, M> {
&mut self.memory
}
#[inline]
fn memory(&self) -> &Memory<'a, 'tcx, M> {
&self.memory
}
}
impl<'a, 'tcx, M: Machine<'tcx>> layout::HasDataLayout for &'a Memory<'a, 'tcx, M> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}