| // Copyright 2015 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| use std::iter::FromIterator; |
| |
| /// A very simple BitVector type. |
| #[derive(Clone, Debug, PartialEq)] |
| pub struct BitVector { |
| data: Vec<u64>, |
| } |
| |
| impl BitVector { |
| #[inline] |
| pub fn new(num_bits: usize) -> BitVector { |
| let num_words = u64s(num_bits); |
| BitVector { data: vec![0; num_words] } |
| } |
| |
| #[inline] |
| pub fn clear(&mut self) { |
| for p in &mut self.data { |
| *p = 0; |
| } |
| } |
| |
| pub fn count(&self) -> usize { |
| self.data.iter().map(|e| e.count_ones() as usize).sum() |
| } |
| |
| #[inline] |
| pub fn contains(&self, bit: usize) -> bool { |
| let (word, mask) = word_mask(bit); |
| (self.data[word] & mask) != 0 |
| } |
| |
| /// Returns true if the bit has changed. |
| #[inline] |
| pub fn insert(&mut self, bit: usize) -> bool { |
| let (word, mask) = word_mask(bit); |
| let data = &mut self.data[word]; |
| let value = *data; |
| let new_value = value | mask; |
| *data = new_value; |
| new_value != value |
| } |
| |
| #[inline] |
| pub fn insert_all(&mut self, all: &BitVector) -> bool { |
| assert!(self.data.len() == all.data.len()); |
| let mut changed = false; |
| for (i, j) in self.data.iter_mut().zip(&all.data) { |
| let value = *i; |
| *i = value | *j; |
| if value != *i { |
| changed = true; |
| } |
| } |
| changed |
| } |
| |
| #[inline] |
| pub fn grow(&mut self, num_bits: usize) { |
| let num_words = u64s(num_bits); |
| if self.data.len() < num_words { |
| self.data.resize(num_words, 0) |
| } |
| } |
| |
| /// Iterates over indexes of set bits in a sorted order |
| #[inline] |
| pub fn iter<'a>(&'a self) -> BitVectorIter<'a> { |
| BitVectorIter { |
| iter: self.data.iter(), |
| current: 0, |
| idx: 0, |
| } |
| } |
| } |
| |
| pub struct BitVectorIter<'a> { |
| iter: ::std::slice::Iter<'a, u64>, |
| current: u64, |
| idx: usize, |
| } |
| |
| impl<'a> Iterator for BitVectorIter<'a> { |
| type Item = usize; |
| fn next(&mut self) -> Option<usize> { |
| while self.current == 0 { |
| self.current = if let Some(&i) = self.iter.next() { |
| if i == 0 { |
| self.idx += 64; |
| continue; |
| } else { |
| self.idx = u64s(self.idx) * 64; |
| i |
| } |
| } else { |
| return None; |
| } |
| } |
| let offset = self.current.trailing_zeros() as usize; |
| self.current >>= offset; |
| self.current >>= 1; // shift otherwise overflows for 0b1000_0000_…_0000 |
| self.idx += offset + 1; |
| return Some(self.idx - 1); |
| } |
| } |
| |
| impl FromIterator<bool> for BitVector { |
| fn from_iter<I>(iter: I) -> BitVector where I: IntoIterator<Item=bool> { |
| let iter = iter.into_iter(); |
| let (len, _) = iter.size_hint(); |
| // Make the minimum length for the bitvector 64 bits since that's |
| // the smallest non-zero size anyway. |
| let len = if len < 64 { 64 } else { len }; |
| let mut bv = BitVector::new(len); |
| for (idx, val) in iter.enumerate() { |
| if idx > len { |
| bv.grow(idx); |
| } |
| if val { |
| bv.insert(idx); |
| } |
| } |
| |
| bv |
| } |
| } |
| |
| /// A "bit matrix" is basically a matrix of booleans represented as |
| /// one gigantic bitvector. In other words, it is as if you have |
| /// `rows` bitvectors, each of length `columns`. |
| #[derive(Clone, Debug)] |
| pub struct BitMatrix { |
| columns: usize, |
| vector: Vec<u64>, |
| } |
| |
| impl BitMatrix { |
| /// Create a new `rows x columns` matrix, initially empty. |
| pub fn new(rows: usize, columns: usize) -> BitMatrix { |
| // For every element, we need one bit for every other |
| // element. Round up to an even number of u64s. |
| let u64s_per_row = u64s(columns); |
| BitMatrix { |
| columns, |
| vector: vec![0; rows * u64s_per_row], |
| } |
| } |
| |
| /// The range of bits for a given row. |
| fn range(&self, row: usize) -> (usize, usize) { |
| let u64s_per_row = u64s(self.columns); |
| let start = row * u64s_per_row; |
| (start, start + u64s_per_row) |
| } |
| |
| /// Sets the cell at `(row, column)` to true. Put another way, add |
| /// `column` to the bitset for `row`. |
| /// |
| /// Returns true if this changed the matrix, and false otherwies. |
| pub fn add(&mut self, row: usize, column: usize) -> bool { |
| let (start, _) = self.range(row); |
| let (word, mask) = word_mask(column); |
| let vector = &mut self.vector[..]; |
| let v1 = vector[start + word]; |
| let v2 = v1 | mask; |
| vector[start + word] = v2; |
| v1 != v2 |
| } |
| |
| /// Do the bits from `row` contain `column`? Put another way, is |
| /// the matrix cell at `(row, column)` true? Put yet another way, |
| /// if the matrix represents (transitive) reachability, can |
| /// `row` reach `column`? |
| pub fn contains(&self, row: usize, column: usize) -> bool { |
| let (start, _) = self.range(row); |
| let (word, mask) = word_mask(column); |
| (self.vector[start + word] & mask) != 0 |
| } |
| |
| /// Returns those indices that are true in rows `a` and `b`. This |
| /// is an O(n) operation where `n` is the number of elements |
| /// (somewhat independent from the actual size of the |
| /// intersection, in particular). |
| pub fn intersection(&self, a: usize, b: usize) -> Vec<usize> { |
| let (a_start, a_end) = self.range(a); |
| let (b_start, b_end) = self.range(b); |
| let mut result = Vec::with_capacity(self.columns); |
| for (base, (i, j)) in (a_start..a_end).zip(b_start..b_end).enumerate() { |
| let mut v = self.vector[i] & self.vector[j]; |
| for bit in 0..64 { |
| if v == 0 { |
| break; |
| } |
| if v & 0x1 != 0 { |
| result.push(base * 64 + bit); |
| } |
| v >>= 1; |
| } |
| } |
| result |
| } |
| |
| /// Add the bits from row `read` to the bits from row `write`, |
| /// return true if anything changed. |
| /// |
| /// This is used when computing transitive reachability because if |
| /// you have an edge `write -> read`, because in that case |
| /// `write` can reach everything that `read` can (and |
| /// potentially more). |
| pub fn merge(&mut self, read: usize, write: usize) -> bool { |
| let (read_start, read_end) = self.range(read); |
| let (write_start, write_end) = self.range(write); |
| let vector = &mut self.vector[..]; |
| let mut changed = false; |
| for (read_index, write_index) in (read_start..read_end).zip(write_start..write_end) { |
| let v1 = vector[write_index]; |
| let v2 = v1 | vector[read_index]; |
| vector[write_index] = v2; |
| changed = changed | (v1 != v2); |
| } |
| changed |
| } |
| |
| /// Iterates through all the columns set to true in a given row of |
| /// the matrix. |
| pub fn iter<'a>(&'a self, row: usize) -> BitVectorIter<'a> { |
| let (start, end) = self.range(row); |
| BitVectorIter { |
| iter: self.vector[start..end].iter(), |
| current: 0, |
| idx: 0, |
| } |
| } |
| } |
| |
| #[inline] |
| fn u64s(elements: usize) -> usize { |
| (elements + 63) / 64 |
| } |
| |
| #[inline] |
| fn word_mask(index: usize) -> (usize, u64) { |
| let word = index / 64; |
| let mask = 1 << (index % 64); |
| (word, mask) |
| } |
| |
| #[test] |
| fn bitvec_iter_works() { |
| let mut bitvec = BitVector::new(100); |
| bitvec.insert(1); |
| bitvec.insert(10); |
| bitvec.insert(19); |
| bitvec.insert(62); |
| bitvec.insert(63); |
| bitvec.insert(64); |
| bitvec.insert(65); |
| bitvec.insert(66); |
| bitvec.insert(99); |
| assert_eq!(bitvec.iter().collect::<Vec<_>>(), |
| [1, 10, 19, 62, 63, 64, 65, 66, 99]); |
| } |
| |
| |
| #[test] |
| fn bitvec_iter_works_2() { |
| let mut bitvec = BitVector::new(319); |
| bitvec.insert(0); |
| bitvec.insert(127); |
| bitvec.insert(191); |
| bitvec.insert(255); |
| bitvec.insert(319); |
| assert_eq!(bitvec.iter().collect::<Vec<_>>(), [0, 127, 191, 255, 319]); |
| } |
| |
| #[test] |
| fn union_two_vecs() { |
| let mut vec1 = BitVector::new(65); |
| let mut vec2 = BitVector::new(65); |
| assert!(vec1.insert(3)); |
| assert!(!vec1.insert(3)); |
| assert!(vec2.insert(5)); |
| assert!(vec2.insert(64)); |
| assert!(vec1.insert_all(&vec2)); |
| assert!(!vec1.insert_all(&vec2)); |
| assert!(vec1.contains(3)); |
| assert!(!vec1.contains(4)); |
| assert!(vec1.contains(5)); |
| assert!(!vec1.contains(63)); |
| assert!(vec1.contains(64)); |
| } |
| |
| #[test] |
| fn grow() { |
| let mut vec1 = BitVector::new(65); |
| for index in 0 .. 65 { |
| assert!(vec1.insert(index)); |
| assert!(!vec1.insert(index)); |
| } |
| vec1.grow(128); |
| |
| // Check if the bits set before growing are still set |
| for index in 0 .. 65 { |
| assert!(vec1.contains(index)); |
| } |
| |
| // Check if the new bits are all un-set |
| for index in 65 .. 128 { |
| assert!(!vec1.contains(index)); |
| } |
| |
| // Check that we can set all new bits without running out of bounds |
| for index in 65 .. 128 { |
| assert!(vec1.insert(index)); |
| assert!(!vec1.insert(index)); |
| } |
| } |
| |
| #[test] |
| fn matrix_intersection() { |
| let mut vec1 = BitMatrix::new(200, 200); |
| |
| // (*) Elements reachable from both 2 and 65. |
| |
| vec1.add(2, 3); |
| vec1.add(2, 6); |
| vec1.add(2, 10); // (*) |
| vec1.add(2, 64); // (*) |
| vec1.add(2, 65); |
| vec1.add(2, 130); |
| vec1.add(2, 160); // (*) |
| |
| vec1.add(64, 133); |
| |
| vec1.add(65, 2); |
| vec1.add(65, 8); |
| vec1.add(65, 10); // (*) |
| vec1.add(65, 64); // (*) |
| vec1.add(65, 68); |
| vec1.add(65, 133); |
| vec1.add(65, 160); // (*) |
| |
| let intersection = vec1.intersection(2, 64); |
| assert!(intersection.is_empty()); |
| |
| let intersection = vec1.intersection(2, 65); |
| assert_eq!(intersection, &[10, 64, 160]); |
| } |
| |
| #[test] |
| fn matrix_iter() { |
| let mut matrix = BitMatrix::new(64, 100); |
| matrix.add(3, 22); |
| matrix.add(3, 75); |
| matrix.add(2, 99); |
| matrix.add(4, 0); |
| matrix.merge(3, 5); |
| |
| let expected = [99]; |
| let mut iter = expected.iter(); |
| for i in matrix.iter(2) { |
| let j = *iter.next().unwrap(); |
| assert_eq!(i, j); |
| } |
| assert!(iter.next().is_none()); |
| |
| let expected = [22, 75]; |
| let mut iter = expected.iter(); |
| for i in matrix.iter(3) { |
| let j = *iter.next().unwrap(); |
| assert_eq!(i, j); |
| } |
| assert!(iter.next().is_none()); |
| |
| let expected = [0]; |
| let mut iter = expected.iter(); |
| for i in matrix.iter(4) { |
| let j = *iter.next().unwrap(); |
| assert_eq!(i, j); |
| } |
| assert!(iter.next().is_none()); |
| |
| let expected = [22, 75]; |
| let mut iter = expected.iter(); |
| for i in matrix.iter(5) { |
| let j = *iter.next().unwrap(); |
| assert_eq!(i, j); |
| } |
| assert!(iter.next().is_none()); |
| } |