blob: 1ff9c7a86291eaea07585d515552c9f2449256fb [file] [log] [blame]
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// This implements the dead-code warning pass. It follows middle::reachable
// closely. The idea is that all reachable symbols are live, codes called
// from live codes are live, and everything else is dead.
use hir::map as hir_map;
use hir::{self, Item_, PatKind};
use hir::intravisit::{self, Visitor, NestedVisitorMap};
use hir::itemlikevisit::ItemLikeVisitor;
use hir::def::Def;
use hir::def_id::{DefId, LOCAL_CRATE};
use lint;
use middle::privacy;
use ty::{self, TyCtxt};
use util::nodemap::FxHashSet;
use syntax::{ast, codemap};
use syntax::attr;
use syntax_pos;
// Any local node that may call something in its body block should be
// explored. For example, if it's a live NodeItem that is a
// function, then we should explore its block to check for codes that
// may need to be marked as live.
fn should_explore<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
node_id: ast::NodeId) -> bool {
match tcx.hir.find(node_id) {
Some(hir_map::NodeItem(..)) |
Some(hir_map::NodeImplItem(..)) |
Some(hir_map::NodeForeignItem(..)) |
Some(hir_map::NodeTraitItem(..)) =>
true,
_ =>
false
}
}
struct MarkSymbolVisitor<'a, 'tcx: 'a> {
worklist: Vec<ast::NodeId>,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
tables: &'a ty::TypeckTables<'tcx>,
live_symbols: Box<FxHashSet<ast::NodeId>>,
repr_has_repr_c: bool,
in_pat: bool,
inherited_pub_visibility: bool,
ignore_variant_stack: Vec<DefId>,
}
impl<'a, 'tcx> MarkSymbolVisitor<'a, 'tcx> {
fn check_def_id(&mut self, def_id: DefId) {
if let Some(node_id) = self.tcx.hir.as_local_node_id(def_id) {
if should_explore(self.tcx, node_id) {
self.worklist.push(node_id);
}
self.live_symbols.insert(node_id);
}
}
fn insert_def_id(&mut self, def_id: DefId) {
if let Some(node_id) = self.tcx.hir.as_local_node_id(def_id) {
debug_assert!(!should_explore(self.tcx, node_id));
self.live_symbols.insert(node_id);
}
}
fn handle_definition(&mut self, def: Def) {
match def {
Def::Const(_) | Def::AssociatedConst(..) | Def::TyAlias(_) => {
self.check_def_id(def.def_id());
}
_ if self.in_pat => (),
Def::PrimTy(..) | Def::SelfTy(..) |
Def::Local(..) | Def::Upvar(..) => {}
Def::Variant(variant_id) | Def::VariantCtor(variant_id, ..) => {
if let Some(enum_id) = self.tcx.parent_def_id(variant_id) {
self.check_def_id(enum_id);
}
if !self.ignore_variant_stack.contains(&variant_id) {
self.check_def_id(variant_id);
}
}
_ => {
self.check_def_id(def.def_id());
}
}
}
fn lookup_and_handle_method(&mut self, id: hir::HirId) {
self.check_def_id(self.tables.type_dependent_defs()[id].def_id());
}
fn handle_field_access(&mut self, lhs: &hir::Expr, name: ast::Name) {
match self.tables.expr_ty_adjusted(lhs).sty {
ty::TyAdt(def, _) => {
self.insert_def_id(def.non_enum_variant().field_named(name).did);
}
_ => span_bug!(lhs.span, "named field access on non-ADT"),
}
}
fn handle_tup_field_access(&mut self, lhs: &hir::Expr, idx: usize) {
match self.tables.expr_ty_adjusted(lhs).sty {
ty::TyAdt(def, _) => {
self.insert_def_id(def.non_enum_variant().fields[idx].did);
}
ty::TyTuple(..) => {}
_ => span_bug!(lhs.span, "numeric field access on non-ADT"),
}
}
fn handle_field_pattern_match(&mut self, lhs: &hir::Pat, def: Def,
pats: &[codemap::Spanned<hir::FieldPat>]) {
let variant = match self.tables.node_id_to_type(lhs.hir_id).sty {
ty::TyAdt(adt, _) => adt.variant_of_def(def),
_ => span_bug!(lhs.span, "non-ADT in struct pattern")
};
for pat in pats {
if let PatKind::Wild = pat.node.pat.node {
continue;
}
self.insert_def_id(variant.field_named(pat.node.name).did);
}
}
fn mark_live_symbols(&mut self) {
let mut scanned = FxHashSet();
while !self.worklist.is_empty() {
let id = self.worklist.pop().unwrap();
if scanned.contains(&id) {
continue
}
scanned.insert(id);
if let Some(ref node) = self.tcx.hir.find(id) {
self.live_symbols.insert(id);
self.visit_node(node);
}
}
}
fn visit_node(&mut self, node: &hir_map::Node<'tcx>) {
let had_repr_c = self.repr_has_repr_c;
self.repr_has_repr_c = false;
let had_inherited_pub_visibility = self.inherited_pub_visibility;
self.inherited_pub_visibility = false;
match *node {
hir_map::NodeItem(item) => {
match item.node {
hir::ItemStruct(..) | hir::ItemUnion(..) => {
let def_id = self.tcx.hir.local_def_id(item.id);
let def = self.tcx.adt_def(def_id);
self.repr_has_repr_c = def.repr.c();
intravisit::walk_item(self, &item);
}
hir::ItemEnum(..) => {
self.inherited_pub_visibility = item.vis == hir::Public;
intravisit::walk_item(self, &item);
}
hir::ItemFn(..)
| hir::ItemTy(..)
| hir::ItemStatic(..)
| hir::ItemConst(..) => {
intravisit::walk_item(self, &item);
}
_ => ()
}
}
hir_map::NodeTraitItem(trait_item) => {
intravisit::walk_trait_item(self, trait_item);
}
hir_map::NodeImplItem(impl_item) => {
intravisit::walk_impl_item(self, impl_item);
}
hir_map::NodeForeignItem(foreign_item) => {
intravisit::walk_foreign_item(self, &foreign_item);
}
_ => ()
}
self.repr_has_repr_c = had_repr_c;
self.inherited_pub_visibility = had_inherited_pub_visibility;
}
fn mark_as_used_if_union(&mut self, did: DefId, fields: &hir::HirVec<hir::Field>) {
if let Some(node_id) = self.tcx.hir.as_local_node_id(did) {
if let Some(hir_map::NodeItem(item)) = self.tcx.hir.find(node_id) {
if let Item_::ItemUnion(ref variant, _) = item.node {
if variant.fields().len() > 1 {
for field in variant.fields() {
if fields.iter().find(|x| x.name.node == field.name).is_some() {
self.live_symbols.insert(field.id);
}
}
}
}
}
}
}
}
impl<'a, 'tcx> Visitor<'tcx> for MarkSymbolVisitor<'a, 'tcx> {
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::None
}
fn visit_nested_body(&mut self, body: hir::BodyId) {
let old_tables = self.tables;
self.tables = self.tcx.body_tables(body);
let body = self.tcx.hir.body(body);
self.visit_body(body);
self.tables = old_tables;
}
fn visit_variant_data(&mut self, def: &'tcx hir::VariantData, _: ast::Name,
_: &hir::Generics, _: ast::NodeId, _: syntax_pos::Span) {
let has_repr_c = self.repr_has_repr_c;
let inherited_pub_visibility = self.inherited_pub_visibility;
let live_fields = def.fields().iter().filter(|f| {
has_repr_c || inherited_pub_visibility || f.vis == hir::Public
});
self.live_symbols.extend(live_fields.map(|f| f.id));
intravisit::walk_struct_def(self, def);
}
fn visit_expr(&mut self, expr: &'tcx hir::Expr) {
match expr.node {
hir::ExprPath(ref qpath @ hir::QPath::TypeRelative(..)) => {
let def = self.tables.qpath_def(qpath, expr.hir_id);
self.handle_definition(def);
}
hir::ExprMethodCall(..) => {
self.lookup_and_handle_method(expr.hir_id);
}
hir::ExprField(ref lhs, ref name) => {
self.handle_field_access(&lhs, name.node);
}
hir::ExprTupField(ref lhs, idx) => {
self.handle_tup_field_access(&lhs, idx.node);
}
hir::ExprStruct(_, ref fields, _) => {
if let ty::TypeVariants::TyAdt(ref def, _) = self.tables.expr_ty(expr).sty {
if def.is_union() {
self.mark_as_used_if_union(def.did, fields);
}
}
}
_ => ()
}
intravisit::walk_expr(self, expr);
}
fn visit_arm(&mut self, arm: &'tcx hir::Arm) {
if arm.pats.len() == 1 {
let variants = arm.pats[0].necessary_variants();
// Inside the body, ignore constructions of variants
// necessary for the pattern to match. Those construction sites
// can't be reached unless the variant is constructed elsewhere.
let len = self.ignore_variant_stack.len();
self.ignore_variant_stack.extend_from_slice(&variants);
intravisit::walk_arm(self, arm);
self.ignore_variant_stack.truncate(len);
} else {
intravisit::walk_arm(self, arm);
}
}
fn visit_pat(&mut self, pat: &'tcx hir::Pat) {
match pat.node {
PatKind::Struct(hir::QPath::Resolved(_, ref path), ref fields, _) => {
self.handle_field_pattern_match(pat, path.def, fields);
}
PatKind::Path(ref qpath @ hir::QPath::TypeRelative(..)) => {
let def = self.tables.qpath_def(qpath, pat.hir_id);
self.handle_definition(def);
}
_ => ()
}
self.in_pat = true;
intravisit::walk_pat(self, pat);
self.in_pat = false;
}
fn visit_path(&mut self, path: &'tcx hir::Path, _: ast::NodeId) {
self.handle_definition(path.def);
intravisit::walk_path(self, path);
}
}
fn has_allow_dead_code_or_lang_attr(tcx: TyCtxt,
id: ast::NodeId,
attrs: &[ast::Attribute]) -> bool {
if attr::contains_name(attrs, "lang") {
return true;
}
// #[used] also keeps the item alive forcefully,
// e.g. for placing it in a specific section.
if attr::contains_name(attrs, "used") {
return true;
}
// Don't lint about global allocators
if attr::contains_name(attrs, "global_allocator") {
return true;
}
tcx.lint_level_at_node(lint::builtin::DEAD_CODE, id).0 == lint::Allow
}
// This visitor seeds items that
// 1) We want to explicitly consider as live:
// * Item annotated with #[allow(dead_code)]
// - This is done so that if we want to suppress warnings for a
// group of dead functions, we only have to annotate the "root".
// For example, if both `f` and `g` are dead and `f` calls `g`,
// then annotating `f` with `#[allow(dead_code)]` will suppress
// warning for both `f` and `g`.
// * Item annotated with #[lang=".."]
// - This is because lang items are always callable from elsewhere.
// or
// 2) We are not sure to be live or not
// * Implementation of a trait method
struct LifeSeeder<'k, 'tcx: 'k> {
worklist: Vec<ast::NodeId>,
krate: &'k hir::Crate,
tcx: TyCtxt<'k, 'tcx, 'tcx>,
}
impl<'v, 'k, 'tcx> ItemLikeVisitor<'v> for LifeSeeder<'k, 'tcx> {
fn visit_item(&mut self, item: &hir::Item) {
let allow_dead_code = has_allow_dead_code_or_lang_attr(self.tcx,
item.id,
&item.attrs);
if allow_dead_code {
self.worklist.push(item.id);
}
match item.node {
hir::ItemEnum(ref enum_def, _) if allow_dead_code => {
self.worklist.extend(enum_def.variants.iter()
.map(|variant| variant.node.data.id()));
}
hir::ItemTrait(.., ref trait_item_refs) => {
for trait_item_ref in trait_item_refs {
let trait_item = self.krate.trait_item(trait_item_ref.id);
match trait_item.node {
hir::TraitItemKind::Const(_, Some(_)) |
hir::TraitItemKind::Method(_, hir::TraitMethod::Provided(_)) => {
if has_allow_dead_code_or_lang_attr(self.tcx,
trait_item.id,
&trait_item.attrs) {
self.worklist.push(trait_item.id);
}
}
_ => {}
}
}
}
hir::ItemImpl(.., ref opt_trait, _, ref impl_item_refs) => {
for impl_item_ref in impl_item_refs {
let impl_item = self.krate.impl_item(impl_item_ref.id);
if opt_trait.is_some() ||
has_allow_dead_code_or_lang_attr(self.tcx,
impl_item.id,
&impl_item.attrs) {
self.worklist.push(impl_item_ref.id.node_id);
}
}
}
_ => ()
}
}
fn visit_trait_item(&mut self, _item: &hir::TraitItem) {
// ignore: we are handling this in `visit_item` above
}
fn visit_impl_item(&mut self, _item: &hir::ImplItem) {
// ignore: we are handling this in `visit_item` above
}
}
fn create_and_seed_worklist<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
access_levels: &privacy::AccessLevels,
krate: &hir::Crate)
-> Vec<ast::NodeId> {
let mut worklist = Vec::new();
for (id, _) in &access_levels.map {
worklist.push(*id);
}
// Seed entry point
if let Some((id, _)) = *tcx.sess.entry_fn.borrow() {
worklist.push(id);
}
// Seed implemented trait items
let mut life_seeder = LifeSeeder {
worklist,
krate,
tcx,
};
krate.visit_all_item_likes(&mut life_seeder);
return life_seeder.worklist;
}
fn find_live<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
access_levels: &privacy::AccessLevels,
krate: &hir::Crate)
-> Box<FxHashSet<ast::NodeId>> {
let worklist = create_and_seed_worklist(tcx, access_levels, krate);
let mut symbol_visitor = MarkSymbolVisitor {
worklist,
tcx,
tables: &ty::TypeckTables::empty(None),
live_symbols: box FxHashSet(),
repr_has_repr_c: false,
in_pat: false,
inherited_pub_visibility: false,
ignore_variant_stack: vec![],
};
symbol_visitor.mark_live_symbols();
symbol_visitor.live_symbols
}
fn get_struct_ctor_id(item: &hir::Item) -> Option<ast::NodeId> {
match item.node {
hir::ItemStruct(ref struct_def, _) if !struct_def.is_struct() => {
Some(struct_def.id())
}
_ => None
}
}
struct DeadVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
live_symbols: Box<FxHashSet<ast::NodeId>>,
}
impl<'a, 'tcx> DeadVisitor<'a, 'tcx> {
fn should_warn_about_item(&mut self, item: &hir::Item) -> bool {
let should_warn = match item.node {
hir::ItemStatic(..)
| hir::ItemConst(..)
| hir::ItemFn(..)
| hir::ItemTy(..)
| hir::ItemEnum(..)
| hir::ItemStruct(..)
| hir::ItemUnion(..) => true,
_ => false
};
let ctor_id = get_struct_ctor_id(item);
should_warn && !self.symbol_is_live(item.id, ctor_id)
}
fn should_warn_about_field(&mut self, field: &hir::StructField) -> bool {
let field_type = self.tcx.type_of(self.tcx.hir.local_def_id(field.id));
let is_marker_field = match field_type.ty_to_def_id() {
Some(def_id) => self.tcx.lang_items().items().iter().any(|item| *item == Some(def_id)),
_ => false
};
!field.is_positional()
&& !self.symbol_is_live(field.id, None)
&& !is_marker_field
&& !has_allow_dead_code_or_lang_attr(self.tcx, field.id, &field.attrs)
}
fn should_warn_about_variant(&mut self, variant: &hir::Variant_) -> bool {
!self.symbol_is_live(variant.data.id(), None)
&& !has_allow_dead_code_or_lang_attr(self.tcx,
variant.data.id(),
&variant.attrs)
}
fn should_warn_about_foreign_item(&mut self, fi: &hir::ForeignItem) -> bool {
!self.symbol_is_live(fi.id, None)
&& !has_allow_dead_code_or_lang_attr(self.tcx, fi.id, &fi.attrs)
}
// id := node id of an item's definition.
// ctor_id := `Some` if the item is a struct_ctor (tuple struct),
// `None` otherwise.
// If the item is a struct_ctor, then either its `id` or
// `ctor_id` (unwrapped) is in the live_symbols set. More specifically,
// DefMap maps the ExprPath of a struct_ctor to the node referred by
// `ctor_id`. On the other hand, in a statement like
// `type <ident> <generics> = <ty>;` where <ty> refers to a struct_ctor,
// DefMap maps <ty> to `id` instead.
fn symbol_is_live(&mut self,
id: ast::NodeId,
ctor_id: Option<ast::NodeId>)
-> bool {
if self.live_symbols.contains(&id)
|| ctor_id.map_or(false,
|ctor| self.live_symbols.contains(&ctor)) {
return true;
}
// If it's a type whose items are live, then it's live, too.
// This is done to handle the case where, for example, the static
// method of a private type is used, but the type itself is never
// called directly.
let def_id = self.tcx.hir.local_def_id(id);
let inherent_impls = self.tcx.inherent_impls(def_id);
for &impl_did in inherent_impls.iter() {
for &item_did in &self.tcx.associated_item_def_ids(impl_did)[..] {
if let Some(item_node_id) = self.tcx.hir.as_local_node_id(item_did) {
if self.live_symbols.contains(&item_node_id) {
return true;
}
}
}
}
false
}
fn warn_dead_code(&mut self,
id: ast::NodeId,
span: syntax_pos::Span,
name: ast::Name,
node_type: &str,
participle: &str) {
if !name.as_str().starts_with("_") {
self.tcx
.lint_node(lint::builtin::DEAD_CODE,
id,
span,
&format!("{} is never {}: `{}`",
node_type, participle, name));
}
}
}
impl<'a, 'tcx> Visitor<'tcx> for DeadVisitor<'a, 'tcx> {
/// Walk nested items in place so that we don't report dead-code
/// on inner functions when the outer function is already getting
/// an error. We could do this also by checking the parents, but
/// this is how the code is setup and it seems harmless enough.
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::All(&self.tcx.hir)
}
fn visit_item(&mut self, item: &'tcx hir::Item) {
if self.should_warn_about_item(item) {
// For items that have a definition with a signature followed by a
// block, point only at the signature.
let span = match item.node {
hir::ItemFn(..) |
hir::ItemMod(..) |
hir::ItemEnum(..) |
hir::ItemStruct(..) |
hir::ItemUnion(..) |
hir::ItemTrait(..) |
hir::ItemImpl(..) => self.tcx.sess.codemap().def_span(item.span),
_ => item.span,
};
self.warn_dead_code(
item.id,
span,
item.name,
item.node.descriptive_variant(),
"used",
);
} else {
// Only continue if we didn't warn
intravisit::walk_item(self, item);
}
}
fn visit_variant(&mut self,
variant: &'tcx hir::Variant,
g: &'tcx hir::Generics,
id: ast::NodeId) {
if self.should_warn_about_variant(&variant.node) {
self.warn_dead_code(variant.node.data.id(), variant.span, variant.node.name,
"variant", "constructed");
} else {
intravisit::walk_variant(self, variant, g, id);
}
}
fn visit_foreign_item(&mut self, fi: &'tcx hir::ForeignItem) {
if self.should_warn_about_foreign_item(fi) {
self.warn_dead_code(fi.id, fi.span, fi.name,
fi.node.descriptive_variant(), "used");
}
intravisit::walk_foreign_item(self, fi);
}
fn visit_struct_field(&mut self, field: &'tcx hir::StructField) {
if self.should_warn_about_field(&field) {
self.warn_dead_code(field.id, field.span, field.name, "field", "used");
}
intravisit::walk_struct_field(self, field);
}
fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
match impl_item.node {
hir::ImplItemKind::Const(_, body_id) => {
if !self.symbol_is_live(impl_item.id, None) {
self.warn_dead_code(impl_item.id,
impl_item.span,
impl_item.name,
"associated const",
"used");
}
self.visit_nested_body(body_id)
}
hir::ImplItemKind::Method(_, body_id) => {
if !self.symbol_is_live(impl_item.id, None) {
let span = self.tcx.sess.codemap().def_span(impl_item.span);
self.warn_dead_code(impl_item.id, span, impl_item.name, "method", "used");
}
self.visit_nested_body(body_id)
}
hir::ImplItemKind::Type(..) => {}
}
}
// Overwrite so that we don't warn the trait item itself.
fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) {
match trait_item.node {
hir::TraitItemKind::Const(_, Some(body_id)) |
hir::TraitItemKind::Method(_, hir::TraitMethod::Provided(body_id)) => {
self.visit_nested_body(body_id)
}
hir::TraitItemKind::Const(_, None) |
hir::TraitItemKind::Method(_, hir::TraitMethod::Required(_)) |
hir::TraitItemKind::Type(..) => {}
}
}
}
pub fn check_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) {
let access_levels = &tcx.privacy_access_levels(LOCAL_CRATE);
let krate = tcx.hir.krate();
let live_symbols = find_live(tcx, access_levels, krate);
let mut visitor = DeadVisitor {
tcx,
live_symbols,
};
intravisit::walk_crate(&mut visitor, krate);
}