blob: 72740dd40be2932dab0c771d6c3b9d717be5157a [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! See README.md
use self::UndoLogEntry::*;
use self::CombineMapType::*;
use super::{MiscVariable, RegionVariableOrigin, SubregionOrigin};
use super::unify_key;
use rustc_data_structures::indexed_vec::{IndexVec, Idx};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::unify::{self, UnificationTable};
use ty::{self, Ty, TyCtxt};
use ty::{Region, RegionVid};
use ty::ReStatic;
use ty::{BrFresh, ReLateBound, ReSkolemized, ReVar};
use std::collections::BTreeMap;
use std::fmt;
use std::mem;
use std::u32;
mod taint;
pub struct RegionConstraintCollector<'tcx> {
/// For each `RegionVid`, the corresponding `RegionVariableOrigin`.
var_origins: IndexVec<RegionVid, RegionVariableOrigin>,
data: RegionConstraintData<'tcx>,
/// For a given pair of regions (R1, R2), maps to a region R3 that
/// is designated as their LUB (edges R1 <= R3 and R2 <= R3
/// exist). This prevents us from making many such regions.
lubs: CombineMap<'tcx>,
/// For a given pair of regions (R1, R2), maps to a region R3 that
/// is designated as their GLB (edges R3 <= R1 and R3 <= R2
/// exist). This prevents us from making many such regions.
glbs: CombineMap<'tcx>,
/// Number of skolemized variables currently active.
skolemization_count: u32,
/// Global counter used during the GLB algorithm to create unique
/// names for fresh bound regions
bound_count: u32,
/// The undo log records actions that might later be undone.
///
/// Note: when the undo_log is empty, we are not actively
/// snapshotting. When the `start_snapshot()` method is called, we
/// push an OpenSnapshot entry onto the list to indicate that we
/// are now actively snapshotting. The reason for this is that
/// otherwise we end up adding entries for things like the lower
/// bound on a variable and so forth, which can never be rolled
/// back.
undo_log: Vec<UndoLogEntry<'tcx>>,
/// When we add a R1 == R2 constriant, we currently add (a) edges
/// R1 <= R2 and R2 <= R1 and (b) we unify the two regions in this
/// table. You can then call `opportunistic_resolve_var` early
/// which will map R1 and R2 to some common region (i.e., either
/// R1 or R2). This is important when dropck and other such code
/// is iterating to a fixed point, because otherwise we sometimes
/// would wind up with a fresh stream of region variables that
/// have been equated but appear distinct.
unification_table: UnificationTable<ty::RegionVid>,
}
pub type VarOrigins = IndexVec<RegionVid, RegionVariableOrigin>;
/// The full set of region constraints gathered up by the collector.
/// Describes constraints between the region variables and other
/// regions, as well as other conditions that must be verified, or
/// assumptions that can be made.
#[derive(Default)]
pub struct RegionConstraintData<'tcx> {
/// Constraints of the form `A <= B`, where either `A` or `B` can
/// be a region variable (or neither, as it happens).
pub constraints: BTreeMap<Constraint<'tcx>, SubregionOrigin<'tcx>>,
/// A "verify" is something that we need to verify after inference
/// is done, but which does not directly affect inference in any
/// way.
///
/// An example is a `A <= B` where neither `A` nor `B` are
/// inference variables.
pub verifys: Vec<Verify<'tcx>>,
/// A "given" is a relationship that is known to hold. In
/// particular, we often know from closure fn signatures that a
/// particular free region must be a subregion of a region
/// variable:
///
/// foo.iter().filter(<'a> |x: &'a &'b T| ...)
///
/// In situations like this, `'b` is in fact a region variable
/// introduced by the call to `iter()`, and `'a` is a bound region
/// on the closure (as indicated by the `<'a>` prefix). If we are
/// naive, we wind up inferring that `'b` must be `'static`,
/// because we require that it be greater than `'a` and we do not
/// know what `'a` is precisely.
///
/// This hashmap is used to avoid that naive scenario. Basically
/// we record the fact that `'a <= 'b` is implied by the fn
/// signature, and then ignore the constraint when solving
/// equations. This is a bit of a hack but seems to work.
pub givens: FxHashSet<(Region<'tcx>, ty::RegionVid)>,
}
/// A constraint that influences the inference process.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, PartialOrd, Ord)]
pub enum Constraint<'tcx> {
/// One region variable is subregion of another
VarSubVar(RegionVid, RegionVid),
/// Concrete region is subregion of region variable
RegSubVar(Region<'tcx>, RegionVid),
/// Region variable is subregion of concrete region. This does not
/// directly affect inference, but instead is checked after
/// inference is complete.
VarSubReg(RegionVid, Region<'tcx>),
/// A constraint where neither side is a variable. This does not
/// directly affect inference, but instead is checked after
/// inference is complete.
RegSubReg(Region<'tcx>, Region<'tcx>),
}
/// VerifyGenericBound(T, _, R, RS): The parameter type `T` (or
/// associated type) must outlive the region `R`. `T` is known to
/// outlive `RS`. Therefore verify that `R <= RS[i]` for some
/// `i`. Inference variables may be involved (but this verification
/// step doesn't influence inference).
#[derive(Debug)]
pub struct Verify<'tcx> {
pub kind: GenericKind<'tcx>,
pub origin: SubregionOrigin<'tcx>,
pub region: Region<'tcx>,
pub bound: VerifyBound<'tcx>,
}
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum GenericKind<'tcx> {
Param(ty::ParamTy),
Projection(ty::ProjectionTy<'tcx>),
}
/// When we introduce a verification step, we wish to test that a
/// particular region (let's call it `'min`) meets some bound.
/// The bound is described the by the following grammar:
#[derive(Debug)]
pub enum VerifyBound<'tcx> {
/// B = exists {R} --> some 'r in {R} must outlive 'min
///
/// Put another way, the subject value is known to outlive all
/// regions in {R}, so if any of those outlives 'min, then the
/// bound is met.
AnyRegion(Vec<Region<'tcx>>),
/// B = forall {R} --> all 'r in {R} must outlive 'min
///
/// Put another way, the subject value is known to outlive some
/// region in {R}, so if all of those outlives 'min, then the bound
/// is met.
AllRegions(Vec<Region<'tcx>>),
/// B = exists {B} --> 'min must meet some bound b in {B}
AnyBound(Vec<VerifyBound<'tcx>>),
/// B = forall {B} --> 'min must meet all bounds b in {B}
AllBounds(Vec<VerifyBound<'tcx>>),
}
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
struct TwoRegions<'tcx> {
a: Region<'tcx>,
b: Region<'tcx>,
}
#[derive(Copy, Clone, PartialEq)]
enum UndoLogEntry<'tcx> {
/// Pushed when we start a snapshot.
OpenSnapshot,
/// Replaces an `OpenSnapshot` when a snapshot is committed, but
/// that snapshot is not the root. If the root snapshot is
/// unrolled, all nested snapshots must be committed.
CommitedSnapshot,
/// We added `RegionVid`
AddVar(RegionVid),
/// We added the given `constraint`
AddConstraint(Constraint<'tcx>),
/// We added the given `verify`
AddVerify(usize),
/// We added the given `given`
AddGiven(Region<'tcx>, ty::RegionVid),
/// We added a GLB/LUB "combination variable"
AddCombination(CombineMapType, TwoRegions<'tcx>),
/// During skolemization, we sometimes purge entries from the undo
/// log in a kind of minisnapshot (unlike other snapshots, this
/// purging actually takes place *on success*). In that case, we
/// replace the corresponding entry with `Noop` so as to avoid the
/// need to do a bunch of swapping. (We can't use `swap_remove` as
/// the order of the vector is important.)
Purged,
}
#[derive(Copy, Clone, PartialEq)]
enum CombineMapType {
Lub,
Glb,
}
type CombineMap<'tcx> = FxHashMap<TwoRegions<'tcx>, RegionVid>;
pub struct RegionSnapshot {
length: usize,
region_snapshot: unify::Snapshot<ty::RegionVid>,
skolemization_count: u32,
}
/// When working with skolemized regions, we often wish to find all of
/// the regions that are either reachable from a skolemized region, or
/// which can reach a skolemized region, or both. We call such regions
/// *tained* regions. This struct allows you to decide what set of
/// tainted regions you want.
#[derive(Debug)]
pub struct TaintDirections {
incoming: bool,
outgoing: bool,
}
impl TaintDirections {
pub fn incoming() -> Self {
TaintDirections {
incoming: true,
outgoing: false,
}
}
pub fn outgoing() -> Self {
TaintDirections {
incoming: false,
outgoing: true,
}
}
pub fn both() -> Self {
TaintDirections {
incoming: true,
outgoing: true,
}
}
}
impl<'tcx> RegionConstraintCollector<'tcx> {
pub fn new() -> RegionConstraintCollector<'tcx> {
RegionConstraintCollector {
var_origins: VarOrigins::default(),
data: RegionConstraintData::default(),
lubs: FxHashMap(),
glbs: FxHashMap(),
skolemization_count: 0,
bound_count: 0,
undo_log: Vec::new(),
unification_table: UnificationTable::new(),
}
}
pub fn var_origins(&self) -> &VarOrigins {
&self.var_origins
}
/// Once all the constraints have been gathered, extract out the final data.
///
/// Not legal during a snapshot.
pub fn into_origins_and_data(self) -> (VarOrigins, RegionConstraintData<'tcx>) {
assert!(!self.in_snapshot());
(self.var_origins, self.data)
}
/// Takes (and clears) the current set of constraints. Note that
/// the set of variables remains intact, but all relationships
/// between them are reset. This is used during NLL checking to
/// grab the set of constraints that arose from a particular
/// operation.
///
/// We don't want to leak relationships between variables between
/// points because just because (say) `r1 == r2` was true at some
/// point P in the graph doesn't imply that it will be true at
/// some other point Q, in NLL.
///
/// Not legal during a snapshot.
pub fn take_and_reset_data(&mut self) -> RegionConstraintData<'tcx> {
assert!(!self.in_snapshot());
// If you add a new field to `RegionConstraintCollector`, you
// should think carefully about whether it needs to be cleared
// or updated in some way.
let RegionConstraintCollector {
var_origins,
data,
lubs,
glbs,
skolemization_count,
bound_count: _,
undo_log: _,
unification_table,
} = self;
assert_eq!(*skolemization_count, 0);
// Clear the tables of (lubs, glbs), so that we will create
// fresh regions if we do a LUB operation. As it happens,
// LUB/GLB are not performed by the MIR type-checker, which is
// the one that uses this method, but it's good to be correct.
lubs.clear();
glbs.clear();
// Clear all unifications and recreate the variables a "now
// un-unified" state. Note that when we unify `a` and `b`, we
// also insert `a <= b` and a `b <= a` edges, so the
// `RegionConstraintData` contains the relationship here.
*unification_table = UnificationTable::new();
for vid in var_origins.indices() {
unification_table.new_key(unify_key::RegionVidKey { min_vid: vid });
}
mem::replace(data, RegionConstraintData::default())
}
fn in_snapshot(&self) -> bool {
!self.undo_log.is_empty()
}
pub fn start_snapshot(&mut self) -> RegionSnapshot {
let length = self.undo_log.len();
debug!("RegionConstraintCollector: start_snapshot({})", length);
self.undo_log.push(OpenSnapshot);
RegionSnapshot {
length,
region_snapshot: self.unification_table.snapshot(),
skolemization_count: self.skolemization_count,
}
}
pub fn commit(&mut self, snapshot: RegionSnapshot) {
debug!("RegionConstraintCollector: commit({})", snapshot.length);
assert!(self.undo_log.len() > snapshot.length);
assert!(self.undo_log[snapshot.length] == OpenSnapshot);
assert!(
self.skolemization_count == snapshot.skolemization_count,
"failed to pop skolemized regions: {} now vs {} at start",
self.skolemization_count,
snapshot.skolemization_count
);
if snapshot.length == 0 {
self.undo_log.truncate(0);
} else {
(*self.undo_log)[snapshot.length] = CommitedSnapshot;
}
self.unification_table.commit(snapshot.region_snapshot);
}
pub fn rollback_to(&mut self, snapshot: RegionSnapshot) {
debug!("RegionConstraintCollector: rollback_to({:?})", snapshot);
assert!(self.undo_log.len() > snapshot.length);
assert!(self.undo_log[snapshot.length] == OpenSnapshot);
while self.undo_log.len() > snapshot.length + 1 {
let undo_entry = self.undo_log.pop().unwrap();
self.rollback_undo_entry(undo_entry);
}
let c = self.undo_log.pop().unwrap();
assert!(c == OpenSnapshot);
self.skolemization_count = snapshot.skolemization_count;
self.unification_table.rollback_to(snapshot.region_snapshot);
}
fn rollback_undo_entry(&mut self, undo_entry: UndoLogEntry<'tcx>) {
match undo_entry {
OpenSnapshot => {
panic!("Failure to observe stack discipline");
}
Purged | CommitedSnapshot => {
// nothing to do here
}
AddVar(vid) => {
self.var_origins.pop().unwrap();
assert_eq!(self.var_origins.len(), vid.index() as usize);
}
AddConstraint(ref constraint) => {
self.data.constraints.remove(constraint);
}
AddVerify(index) => {
self.data.verifys.pop();
assert_eq!(self.data.verifys.len(), index);
}
AddGiven(sub, sup) => {
self.data.givens.remove(&(sub, sup));
}
AddCombination(Glb, ref regions) => {
self.glbs.remove(regions);
}
AddCombination(Lub, ref regions) => {
self.lubs.remove(regions);
}
}
}
pub fn new_region_var(&mut self, origin: RegionVariableOrigin) -> RegionVid {
let vid = self.var_origins.push(origin.clone());
let u_vid = self.unification_table
.new_key(unify_key::RegionVidKey { min_vid: vid });
assert_eq!(vid, u_vid);
if self.in_snapshot() {
self.undo_log.push(AddVar(vid));
}
debug!(
"created new region variable {:?} with origin {:?}",
vid,
origin
);
return vid;
}
/// Returns the origin for the given variable.
pub fn var_origin(&self, vid: RegionVid) -> RegionVariableOrigin {
self.var_origins[vid].clone()
}
/// Creates a new skolemized region. Skolemized regions are fresh
/// regions used when performing higher-ranked computations. They
/// must be used in a very particular way and are never supposed
/// to "escape" out into error messages or the code at large.
///
/// The idea is to always create a snapshot. Skolemized regions
/// can be created in the context of this snapshot, but before the
/// snapshot is committed or rolled back, they must be popped
/// (using `pop_skolemized_regions`), so that their numbers can be
/// recycled. Normally you don't have to think about this: you use
/// the APIs in `higher_ranked/mod.rs`, such as
/// `skolemize_late_bound_regions` and `plug_leaks`, which will
/// guide you on this path (ensure that the `SkolemizationMap` is
/// consumed and you are good). There are also somewhat extensive
/// comments in `higher_ranked/README.md`.
///
/// The `snapshot` argument to this function is not really used;
/// it's just there to make it explicit which snapshot bounds the
/// skolemized region that results. It should always be the top-most snapshot.
pub fn push_skolemized(
&mut self,
tcx: TyCtxt<'_, '_, 'tcx>,
br: ty::BoundRegion,
snapshot: &RegionSnapshot,
) -> Region<'tcx> {
assert!(self.in_snapshot());
assert!(self.undo_log[snapshot.length] == OpenSnapshot);
let sc = self.skolemization_count;
self.skolemization_count = sc + 1;
tcx.mk_region(ReSkolemized(ty::SkolemizedRegionVid { index: sc }, br))
}
/// Removes all the edges to/from the skolemized regions that are
/// in `skols`. This is used after a higher-ranked operation
/// completes to remove all trace of the skolemized regions
/// created in that time.
pub fn pop_skolemized(
&mut self,
_tcx: TyCtxt<'_, '_, 'tcx>,
skols: &FxHashSet<ty::Region<'tcx>>,
snapshot: &RegionSnapshot,
) {
debug!("pop_skolemized_regions(skols={:?})", skols);
assert!(self.in_snapshot());
assert!(self.undo_log[snapshot.length] == OpenSnapshot);
assert!(
self.skolemization_count as usize >= skols.len(),
"popping more skolemized variables than actually exist, \
sc now = {}, skols.len = {}",
self.skolemization_count,
skols.len()
);
let last_to_pop = self.skolemization_count;
let first_to_pop = last_to_pop - (skols.len() as u32);
assert!(
first_to_pop >= snapshot.skolemization_count,
"popping more regions than snapshot contains, \
sc now = {}, sc then = {}, skols.len = {}",
self.skolemization_count,
snapshot.skolemization_count,
skols.len()
);
debug_assert! {
skols.iter()
.all(|&k| match *k {
ty::ReSkolemized(index, _) =>
index.index >= first_to_pop &&
index.index < last_to_pop,
_ =>
false
}),
"invalid skolemization keys or keys out of range ({}..{}): {:?}",
snapshot.skolemization_count,
self.skolemization_count,
skols
}
let constraints_to_kill: Vec<usize> = self.undo_log
.iter()
.enumerate()
.rev()
.filter(|&(_, undo_entry)| kill_constraint(skols, undo_entry))
.map(|(index, _)| index)
.collect();
for index in constraints_to_kill {
let undo_entry = mem::replace(&mut self.undo_log[index], Purged);
self.rollback_undo_entry(undo_entry);
}
self.skolemization_count = snapshot.skolemization_count;
return;
fn kill_constraint<'tcx>(
skols: &FxHashSet<ty::Region<'tcx>>,
undo_entry: &UndoLogEntry<'tcx>,
) -> bool {
match undo_entry {
&AddConstraint(Constraint::VarSubVar(..)) => false,
&AddConstraint(Constraint::RegSubVar(a, _)) => skols.contains(&a),
&AddConstraint(Constraint::VarSubReg(_, b)) => skols.contains(&b),
&AddConstraint(Constraint::RegSubReg(a, b)) => {
skols.contains(&a) || skols.contains(&b)
}
&AddGiven(..) => false,
&AddVerify(_) => false,
&AddCombination(_, ref two_regions) => {
skols.contains(&two_regions.a) || skols.contains(&two_regions.b)
}
&AddVar(..) | &OpenSnapshot | &Purged | &CommitedSnapshot => false,
}
}
}
pub fn new_bound(
&mut self,
tcx: TyCtxt<'_, '_, 'tcx>,
debruijn: ty::DebruijnIndex,
) -> Region<'tcx> {
// Creates a fresh bound variable for use in GLB computations.
// See discussion of GLB computation in the large comment at
// the top of this file for more details.
//
// This computation is potentially wrong in the face of
// rollover. It's conceivable, if unlikely, that one might
// wind up with accidental capture for nested functions in
// that case, if the outer function had bound regions created
// a very long time before and the inner function somehow
// wound up rolling over such that supposedly fresh
// identifiers were in fact shadowed. For now, we just assert
// that there is no rollover -- eventually we should try to be
// robust against this possibility, either by checking the set
// of bound identifiers that appear in a given expression and
// ensure that we generate one that is distinct, or by
// changing the representation of bound regions in a fn
// declaration
let sc = self.bound_count;
self.bound_count = sc + 1;
if sc >= self.bound_count {
bug!("rollover in RegionInference new_bound()");
}
tcx.mk_region(ReLateBound(debruijn, BrFresh(sc)))
}
fn add_constraint(&mut self, constraint: Constraint<'tcx>, origin: SubregionOrigin<'tcx>) {
// cannot add constraints once regions are resolved
debug!(
"RegionConstraintCollector: add_constraint({:?})",
constraint
);
// never overwrite an existing (constraint, origin) - only insert one if it isn't
// present in the map yet. This prevents origins from outside the snapshot being
// replaced with "less informative" origins e.g. during calls to `can_eq`
let in_snapshot = self.in_snapshot();
let undo_log = &mut self.undo_log;
self.data.constraints.entry(constraint).or_insert_with(|| {
if in_snapshot {
undo_log.push(AddConstraint(constraint));
}
origin
});
}
fn add_verify(&mut self, verify: Verify<'tcx>) {
// cannot add verifys once regions are resolved
debug!("RegionConstraintCollector: add_verify({:?})", verify);
// skip no-op cases known to be satisfied
match verify.bound {
VerifyBound::AllBounds(ref bs) if bs.len() == 0 => {
return;
}
_ => {}
}
let index = self.data.verifys.len();
self.data.verifys.push(verify);
if self.in_snapshot() {
self.undo_log.push(AddVerify(index));
}
}
pub fn add_given(&mut self, sub: Region<'tcx>, sup: ty::RegionVid) {
// cannot add givens once regions are resolved
if self.data.givens.insert((sub, sup)) {
debug!("add_given({:?} <= {:?})", sub, sup);
if self.in_snapshot() {
self.undo_log.push(AddGiven(sub, sup));
}
}
}
pub fn make_eqregion(
&mut self,
origin: SubregionOrigin<'tcx>,
sub: Region<'tcx>,
sup: Region<'tcx>,
) {
if sub != sup {
// Eventually, it would be nice to add direct support for
// equating regions.
self.make_subregion(origin.clone(), sub, sup);
self.make_subregion(origin, sup, sub);
if let (ty::ReVar(sub), ty::ReVar(sup)) = (*sub, *sup) {
self.unification_table.union(sub, sup);
}
}
}
pub fn make_subregion(
&mut self,
origin: SubregionOrigin<'tcx>,
sub: Region<'tcx>,
sup: Region<'tcx>,
) {
// cannot add constraints once regions are resolved
debug!(
"RegionConstraintCollector: make_subregion({:?}, {:?}) due to {:?}",
sub,
sup,
origin
);
match (sub, sup) {
(&ReLateBound(..), _) | (_, &ReLateBound(..)) => {
span_bug!(
origin.span(),
"cannot relate bound region: {:?} <= {:?}",
sub,
sup
);
}
(_, &ReStatic) => {
// all regions are subregions of static, so we can ignore this
}
(&ReVar(sub_id), &ReVar(sup_id)) => {
self.add_constraint(Constraint::VarSubVar(sub_id, sup_id), origin);
}
(_, &ReVar(sup_id)) => {
self.add_constraint(Constraint::RegSubVar(sub, sup_id), origin);
}
(&ReVar(sub_id), _) => {
self.add_constraint(Constraint::VarSubReg(sub_id, sup), origin);
}
_ => {
self.add_constraint(Constraint::RegSubReg(sub, sup), origin);
}
}
}
/// See `Verify::VerifyGenericBound`
pub fn verify_generic_bound(
&mut self,
origin: SubregionOrigin<'tcx>,
kind: GenericKind<'tcx>,
sub: Region<'tcx>,
bound: VerifyBound<'tcx>,
) {
self.add_verify(Verify {
kind,
origin,
region: sub,
bound,
});
}
pub fn lub_regions(
&mut self,
tcx: TyCtxt<'_, '_, 'tcx>,
origin: SubregionOrigin<'tcx>,
a: Region<'tcx>,
b: Region<'tcx>,
) -> Region<'tcx> {
// cannot add constraints once regions are resolved
debug!("RegionConstraintCollector: lub_regions({:?}, {:?})", a, b);
match (a, b) {
(r @ &ReStatic, _) | (_, r @ &ReStatic) => {
r // nothing lives longer than static
}
_ if a == b => {
a // LUB(a,a) = a
}
_ => self.combine_vars(tcx, Lub, a, b, origin.clone()),
}
}
pub fn glb_regions(
&mut self,
tcx: TyCtxt<'_, '_, 'tcx>,
origin: SubregionOrigin<'tcx>,
a: Region<'tcx>,
b: Region<'tcx>,
) -> Region<'tcx> {
// cannot add constraints once regions are resolved
debug!("RegionConstraintCollector: glb_regions({:?}, {:?})", a, b);
match (a, b) {
(&ReStatic, r) | (r, &ReStatic) => {
r // static lives longer than everything else
}
_ if a == b => {
a // GLB(a,a) = a
}
_ => self.combine_vars(tcx, Glb, a, b, origin.clone()),
}
}
pub fn opportunistic_resolve_var(
&mut self,
tcx: TyCtxt<'_, '_, 'tcx>,
rid: RegionVid,
) -> ty::Region<'tcx> {
let vid = self.unification_table.find_value(rid).min_vid;
tcx.mk_region(ty::ReVar(vid))
}
fn combine_map(&mut self, t: CombineMapType) -> &mut CombineMap<'tcx> {
match t {
Glb => &mut self.glbs,
Lub => &mut self.lubs,
}
}
fn combine_vars(
&mut self,
tcx: TyCtxt<'_, '_, 'tcx>,
t: CombineMapType,
a: Region<'tcx>,
b: Region<'tcx>,
origin: SubregionOrigin<'tcx>,
) -> Region<'tcx> {
let vars = TwoRegions { a: a, b: b };
if let Some(&c) = self.combine_map(t).get(&vars) {
return tcx.mk_region(ReVar(c));
}
let c = self.new_region_var(MiscVariable(origin.span()));
self.combine_map(t).insert(vars, c);
if self.in_snapshot() {
self.undo_log.push(AddCombination(t, vars));
}
let new_r = tcx.mk_region(ReVar(c));
for &old_r in &[a, b] {
match t {
Glb => self.make_subregion(origin.clone(), new_r, old_r),
Lub => self.make_subregion(origin.clone(), old_r, new_r),
}
}
debug!("combine_vars() c={:?}", c);
new_r
}
pub fn vars_created_since_snapshot(&self, mark: &RegionSnapshot) -> Vec<RegionVid> {
self.undo_log[mark.length..]
.iter()
.filter_map(|&elt| match elt {
AddVar(vid) => Some(vid),
_ => None,
})
.collect()
}
/// Computes all regions that have been related to `r0` since the
/// mark `mark` was made---`r0` itself will be the first
/// entry. The `directions` parameter controls what kind of
/// relations are considered. For example, one can say that only
/// "incoming" edges to `r0` are desired, in which case one will
/// get the set of regions `{r|r <= r0}`. This is used when
/// checking whether skolemized regions are being improperly
/// related to other regions.
pub fn tainted(
&self,
tcx: TyCtxt<'_, '_, 'tcx>,
mark: &RegionSnapshot,
r0: Region<'tcx>,
directions: TaintDirections,
) -> FxHashSet<ty::Region<'tcx>> {
debug!(
"tainted(mark={:?}, r0={:?}, directions={:?})",
mark,
r0,
directions
);
// `result_set` acts as a worklist: we explore all outgoing
// edges and add any new regions we find to result_set. This
// is not a terribly efficient implementation.
let mut taint_set = taint::TaintSet::new(directions, r0);
taint_set.fixed_point(tcx, &self.undo_log[mark.length..], &self.data.verifys);
debug!("tainted: result={:?}", taint_set);
return taint_set.into_set();
}
}
impl fmt::Debug for RegionSnapshot {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"RegionSnapshot(length={},skolemization={})",
self.length,
self.skolemization_count
)
}
}
impl<'tcx> fmt::Debug for GenericKind<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
GenericKind::Param(ref p) => write!(f, "{:?}", p),
GenericKind::Projection(ref p) => write!(f, "{:?}", p),
}
}
}
impl<'tcx> fmt::Display for GenericKind<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
GenericKind::Param(ref p) => write!(f, "{}", p),
GenericKind::Projection(ref p) => write!(f, "{}", p),
}
}
}
impl<'a, 'gcx, 'tcx> GenericKind<'tcx> {
pub fn to_ty(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
match *self {
GenericKind::Param(ref p) => p.to_ty(tcx),
GenericKind::Projection(ref p) => tcx.mk_projection(p.item_def_id, p.substs),
}
}
}
impl<'a, 'gcx, 'tcx> VerifyBound<'tcx> {
fn for_each_region(&self, f: &mut FnMut(ty::Region<'tcx>)) {
match self {
&VerifyBound::AnyRegion(ref rs) | &VerifyBound::AllRegions(ref rs) => for &r in rs {
f(r);
},
&VerifyBound::AnyBound(ref bs) | &VerifyBound::AllBounds(ref bs) => for b in bs {
b.for_each_region(f);
},
}
}
pub fn must_hold(&self) -> bool {
match self {
&VerifyBound::AnyRegion(ref bs) => bs.contains(&&ty::ReStatic),
&VerifyBound::AllRegions(ref bs) => bs.is_empty(),
&VerifyBound::AnyBound(ref bs) => bs.iter().any(|b| b.must_hold()),
&VerifyBound::AllBounds(ref bs) => bs.iter().all(|b| b.must_hold()),
}
}
pub fn cannot_hold(&self) -> bool {
match self {
&VerifyBound::AnyRegion(ref bs) => bs.is_empty(),
&VerifyBound::AllRegions(ref bs) => bs.contains(&&ty::ReEmpty),
&VerifyBound::AnyBound(ref bs) => bs.iter().all(|b| b.cannot_hold()),
&VerifyBound::AllBounds(ref bs) => bs.iter().any(|b| b.cannot_hold()),
}
}
pub fn or(self, vb: VerifyBound<'tcx>) -> VerifyBound<'tcx> {
if self.must_hold() || vb.cannot_hold() {
self
} else if self.cannot_hold() || vb.must_hold() {
vb
} else {
VerifyBound::AnyBound(vec![self, vb])
}
}
pub fn and(self, vb: VerifyBound<'tcx>) -> VerifyBound<'tcx> {
if self.must_hold() && vb.must_hold() {
self
} else if self.cannot_hold() && vb.cannot_hold() {
self
} else {
VerifyBound::AllBounds(vec![self, vb])
}
}
}
impl<'tcx> RegionConstraintData<'tcx> {
/// True if this region constraint data contains no constraints.
pub fn is_empty(&self) -> bool {
let RegionConstraintData {
constraints,
verifys,
givens,
} = self;
constraints.is_empty() && verifys.is_empty() && givens.is_empty()
}
}