blob: ec9c3935020566aee76eeef1bf82fc9092125762 [file] [log] [blame]
use super::errors::{
AsyncGeneratorsNotSupported, AsyncNonMoveClosureNotSupported, AwaitOnlyInAsyncFnAndBlocks,
BaseExpressionDoubleDot, ClosureCannotBeStatic, FunctionalRecordUpdateDestructuringAssignemnt,
GeneratorTooManyParameters, InclusiveRangeWithNoEnd, NotSupportedForLifetimeBinderAsyncClosure,
RustcBoxAttributeError, UnderscoreExprLhsAssign,
};
use super::ResolverAstLoweringExt;
use super::{ImplTraitContext, LoweringContext, ParamMode, ParenthesizedGenericArgs};
use crate::{FnDeclKind, ImplTraitPosition};
use rustc_ast::attr;
use rustc_ast::ptr::P as AstP;
use rustc_ast::*;
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_hir as hir;
use rustc_hir::def::Res;
use rustc_hir::definitions::DefPathData;
use rustc_span::source_map::{respan, DesugaringKind, Span, Spanned};
use rustc_span::symbol::{sym, Ident};
use rustc_span::DUMMY_SP;
use thin_vec::thin_vec;
impl<'hir> LoweringContext<'_, 'hir> {
fn lower_exprs(&mut self, exprs: &[AstP<Expr>]) -> &'hir [hir::Expr<'hir>] {
self.arena.alloc_from_iter(exprs.iter().map(|x| self.lower_expr_mut(x)))
}
pub(super) fn lower_expr(&mut self, e: &Expr) -> &'hir hir::Expr<'hir> {
self.arena.alloc(self.lower_expr_mut(e))
}
pub(super) fn lower_expr_mut(&mut self, e: &Expr) -> hir::Expr<'hir> {
ensure_sufficient_stack(|| {
let kind = match e.kind {
ExprKind::Box(ref inner) => hir::ExprKind::Box(self.lower_expr(inner)),
ExprKind::Array(ref exprs) => hir::ExprKind::Array(self.lower_exprs(exprs)),
ExprKind::ConstBlock(ref anon_const) => {
let anon_const = self.lower_anon_const(anon_const);
hir::ExprKind::ConstBlock(anon_const)
}
ExprKind::Repeat(ref expr, ref count) => {
let expr = self.lower_expr(expr);
let count = self.lower_array_length(count);
hir::ExprKind::Repeat(expr, count)
}
ExprKind::Tup(ref elts) => hir::ExprKind::Tup(self.lower_exprs(elts)),
ExprKind::Call(ref f, ref args) => {
if e.attrs.get(0).map_or(false, |a| a.has_name(sym::rustc_box)) {
if let [inner] = &args[..] && e.attrs.len() == 1 {
let kind = hir::ExprKind::Box(self.lower_expr(&inner));
let hir_id = self.lower_node_id(e.id);
return hir::Expr { hir_id, kind, span: self.lower_span(e.span) };
} else {
self.tcx.sess.emit_err(RustcBoxAttributeError { span: e.span });
hir::ExprKind::Err
}
} else if let Some(legacy_args) = self.resolver.legacy_const_generic_args(f) {
self.lower_legacy_const_generics((**f).clone(), args.clone(), &legacy_args)
} else {
let f = self.lower_expr(f);
hir::ExprKind::Call(f, self.lower_exprs(args))
}
}
ExprKind::MethodCall(ref seg, ref receiver, ref args, span) => {
let hir_seg = self.arena.alloc(self.lower_path_segment(
e.span,
seg,
ParamMode::Optional,
ParenthesizedGenericArgs::Err,
&ImplTraitContext::Disallowed(ImplTraitPosition::Path),
));
let receiver = self.lower_expr(receiver);
let args =
self.arena.alloc_from_iter(args.iter().map(|x| self.lower_expr_mut(x)));
hir::ExprKind::MethodCall(hir_seg, receiver, args, self.lower_span(span))
}
ExprKind::Binary(binop, ref lhs, ref rhs) => {
let binop = self.lower_binop(binop);
let lhs = self.lower_expr(lhs);
let rhs = self.lower_expr(rhs);
hir::ExprKind::Binary(binop, lhs, rhs)
}
ExprKind::Unary(op, ref ohs) => {
let op = self.lower_unop(op);
let ohs = self.lower_expr(ohs);
hir::ExprKind::Unary(op, ohs)
}
ExprKind::Lit(ref l) => {
hir::ExprKind::Lit(respan(self.lower_span(l.span), l.kind.clone()))
}
ExprKind::Cast(ref expr, ref ty) => {
let expr = self.lower_expr(expr);
let ty =
self.lower_ty(ty, &ImplTraitContext::Disallowed(ImplTraitPosition::Type));
hir::ExprKind::Cast(expr, ty)
}
ExprKind::Type(ref expr, ref ty) => {
let expr = self.lower_expr(expr);
let ty =
self.lower_ty(ty, &ImplTraitContext::Disallowed(ImplTraitPosition::Type));
hir::ExprKind::Type(expr, ty)
}
ExprKind::AddrOf(k, m, ref ohs) => {
let ohs = self.lower_expr(ohs);
hir::ExprKind::AddrOf(k, m, ohs)
}
ExprKind::Let(ref pat, ref scrutinee, span) => {
hir::ExprKind::Let(self.arena.alloc(hir::Let {
hir_id: self.next_id(),
span: self.lower_span(span),
pat: self.lower_pat(pat),
ty: None,
init: self.lower_expr(scrutinee),
}))
}
ExprKind::If(ref cond, ref then, ref else_opt) => {
self.lower_expr_if(cond, then, else_opt.as_deref())
}
ExprKind::While(ref cond, ref body, opt_label) => {
self.with_loop_scope(e.id, |this| {
let span =
this.mark_span_with_reason(DesugaringKind::WhileLoop, e.span, None);
this.lower_expr_while_in_loop_scope(span, cond, body, opt_label)
})
}
ExprKind::Loop(ref body, opt_label) => self.with_loop_scope(e.id, |this| {
hir::ExprKind::Loop(
this.lower_block(body, false),
this.lower_label(opt_label),
hir::LoopSource::Loop,
DUMMY_SP,
)
}),
ExprKind::TryBlock(ref body) => self.lower_expr_try_block(body),
ExprKind::Match(ref expr, ref arms) => hir::ExprKind::Match(
self.lower_expr(expr),
self.arena.alloc_from_iter(arms.iter().map(|x| self.lower_arm(x))),
hir::MatchSource::Normal,
),
ExprKind::Async(capture_clause, closure_node_id, ref block) => self
.make_async_expr(
capture_clause,
closure_node_id,
None,
block.span,
hir::AsyncGeneratorKind::Block,
|this| this.with_new_scopes(|this| this.lower_block_expr(block)),
),
ExprKind::Await(ref expr) => {
let dot_await_span = if expr.span.hi() < e.span.hi() {
let span_with_whitespace = self
.tcx
.sess
.source_map()
.span_extend_while(expr.span, char::is_whitespace)
.unwrap_or(expr.span);
span_with_whitespace.shrink_to_hi().with_hi(e.span.hi())
} else {
// this is a recovered `await expr`
e.span
};
self.lower_expr_await(dot_await_span, expr)
}
ExprKind::Closure(
ref binder,
capture_clause,
asyncness,
movability,
ref decl,
ref body,
fn_decl_span,
) => {
if let Async::Yes { closure_id, .. } = asyncness {
self.lower_expr_async_closure(
binder,
capture_clause,
e.id,
closure_id,
decl,
body,
fn_decl_span,
)
} else {
self.lower_expr_closure(
binder,
capture_clause,
e.id,
movability,
decl,
body,
fn_decl_span,
)
}
}
ExprKind::Block(ref blk, opt_label) => {
let opt_label = self.lower_label(opt_label);
hir::ExprKind::Block(self.lower_block(blk, opt_label.is_some()), opt_label)
}
ExprKind::Assign(ref el, ref er, span) => {
self.lower_expr_assign(el, er, span, e.span)
}
ExprKind::AssignOp(op, ref el, ref er) => hir::ExprKind::AssignOp(
self.lower_binop(op),
self.lower_expr(el),
self.lower_expr(er),
),
ExprKind::Field(ref el, ident) => {
hir::ExprKind::Field(self.lower_expr(el), self.lower_ident(ident))
}
ExprKind::Index(ref el, ref er) => {
hir::ExprKind::Index(self.lower_expr(el), self.lower_expr(er))
}
ExprKind::Range(Some(ref e1), Some(ref e2), RangeLimits::Closed) => {
self.lower_expr_range_closed(e.span, e1, e2)
}
ExprKind::Range(ref e1, ref e2, lims) => {
self.lower_expr_range(e.span, e1.as_deref(), e2.as_deref(), lims)
}
ExprKind::Underscore => {
self.tcx.sess.emit_err(UnderscoreExprLhsAssign { span: e.span });
hir::ExprKind::Err
}
ExprKind::Path(ref qself, ref path) => {
let qpath = self.lower_qpath(
e.id,
qself,
path,
ParamMode::Optional,
&ImplTraitContext::Disallowed(ImplTraitPosition::Path),
);
hir::ExprKind::Path(qpath)
}
ExprKind::Break(opt_label, ref opt_expr) => {
let opt_expr = opt_expr.as_ref().map(|x| self.lower_expr(x));
hir::ExprKind::Break(self.lower_jump_destination(e.id, opt_label), opt_expr)
}
ExprKind::Continue(opt_label) => {
hir::ExprKind::Continue(self.lower_jump_destination(e.id, opt_label))
}
ExprKind::Ret(ref e) => {
let e = e.as_ref().map(|x| self.lower_expr(x));
hir::ExprKind::Ret(e)
}
ExprKind::Yeet(ref sub_expr) => self.lower_expr_yeet(e.span, sub_expr.as_deref()),
ExprKind::InlineAsm(ref asm) => {
hir::ExprKind::InlineAsm(self.lower_inline_asm(e.span, asm))
}
ExprKind::Struct(ref se) => {
let rest = match &se.rest {
StructRest::Base(e) => Some(self.lower_expr(e)),
StructRest::Rest(sp) => {
self.tcx.sess.emit_err(BaseExpressionDoubleDot { span: *sp });
Some(&*self.arena.alloc(self.expr_err(*sp)))
}
StructRest::None => None,
};
hir::ExprKind::Struct(
self.arena.alloc(self.lower_qpath(
e.id,
&se.qself,
&se.path,
ParamMode::Optional,
&ImplTraitContext::Disallowed(ImplTraitPosition::Path),
)),
self.arena
.alloc_from_iter(se.fields.iter().map(|x| self.lower_expr_field(x))),
rest,
)
}
ExprKind::Yield(ref opt_expr) => self.lower_expr_yield(e.span, opt_expr.as_deref()),
ExprKind::Err => hir::ExprKind::Err,
ExprKind::Try(ref sub_expr) => self.lower_expr_try(e.span, sub_expr),
ExprKind::Paren(ref ex) => {
let mut ex = self.lower_expr_mut(ex);
// Include parens in span, but only if it is a super-span.
if e.span.contains(ex.span) {
ex.span = self.lower_span(e.span);
}
// Merge attributes into the inner expression.
if !e.attrs.is_empty() {
let old_attrs =
self.attrs.get(&ex.hir_id.local_id).map(|la| *la).unwrap_or(&[]);
self.attrs.insert(
ex.hir_id.local_id,
&*self.arena.alloc_from_iter(
e.attrs
.iter()
.map(|a| self.lower_attr(a))
.chain(old_attrs.iter().cloned()),
),
);
}
return ex;
}
// Desugar `ExprForLoop`
// from: `[opt_ident]: for <pat> in <head> <body>`
ExprKind::ForLoop(ref pat, ref head, ref body, opt_label) => {
return self.lower_expr_for(e, pat, head, body, opt_label);
}
ExprKind::MacCall(_) => panic!("{:?} shouldn't exist here", e.span),
};
let hir_id = self.lower_node_id(e.id);
self.lower_attrs(hir_id, &e.attrs);
hir::Expr { hir_id, kind, span: self.lower_span(e.span) }
})
}
fn lower_unop(&mut self, u: UnOp) -> hir::UnOp {
match u {
UnOp::Deref => hir::UnOp::Deref,
UnOp::Not => hir::UnOp::Not,
UnOp::Neg => hir::UnOp::Neg,
}
}
fn lower_binop(&mut self, b: BinOp) -> hir::BinOp {
Spanned {
node: match b.node {
BinOpKind::Add => hir::BinOpKind::Add,
BinOpKind::Sub => hir::BinOpKind::Sub,
BinOpKind::Mul => hir::BinOpKind::Mul,
BinOpKind::Div => hir::BinOpKind::Div,
BinOpKind::Rem => hir::BinOpKind::Rem,
BinOpKind::And => hir::BinOpKind::And,
BinOpKind::Or => hir::BinOpKind::Or,
BinOpKind::BitXor => hir::BinOpKind::BitXor,
BinOpKind::BitAnd => hir::BinOpKind::BitAnd,
BinOpKind::BitOr => hir::BinOpKind::BitOr,
BinOpKind::Shl => hir::BinOpKind::Shl,
BinOpKind::Shr => hir::BinOpKind::Shr,
BinOpKind::Eq => hir::BinOpKind::Eq,
BinOpKind::Lt => hir::BinOpKind::Lt,
BinOpKind::Le => hir::BinOpKind::Le,
BinOpKind::Ne => hir::BinOpKind::Ne,
BinOpKind::Ge => hir::BinOpKind::Ge,
BinOpKind::Gt => hir::BinOpKind::Gt,
},
span: self.lower_span(b.span),
}
}
fn lower_legacy_const_generics(
&mut self,
mut f: Expr,
args: Vec<AstP<Expr>>,
legacy_args_idx: &[usize],
) -> hir::ExprKind<'hir> {
let ExprKind::Path(None, ref mut path) = f.kind else {
unreachable!();
};
// Split the arguments into const generics and normal arguments
let mut real_args = vec![];
let mut generic_args = vec![];
for (idx, arg) in args.into_iter().enumerate() {
if legacy_args_idx.contains(&idx) {
let parent_def_id = self.current_hir_id_owner;
let node_id = self.next_node_id();
// Add a definition for the in-band const def.
self.create_def(parent_def_id.def_id, node_id, DefPathData::AnonConst);
let anon_const = AnonConst { id: node_id, value: arg };
generic_args.push(AngleBracketedArg::Arg(GenericArg::Const(anon_const)));
} else {
real_args.push(arg);
}
}
// Add generic args to the last element of the path.
let last_segment = path.segments.last_mut().unwrap();
assert!(last_segment.args.is_none());
last_segment.args = Some(AstP(GenericArgs::AngleBracketed(AngleBracketedArgs {
span: DUMMY_SP,
args: generic_args,
})));
// Now lower everything as normal.
let f = self.lower_expr(&f);
hir::ExprKind::Call(f, self.lower_exprs(&real_args))
}
fn lower_expr_if(
&mut self,
cond: &Expr,
then: &Block,
else_opt: Option<&Expr>,
) -> hir::ExprKind<'hir> {
let lowered_cond = self.lower_cond(cond);
let then_expr = self.lower_block_expr(then);
if let Some(rslt) = else_opt {
hir::ExprKind::If(
lowered_cond,
self.arena.alloc(then_expr),
Some(self.lower_expr(rslt)),
)
} else {
hir::ExprKind::If(lowered_cond, self.arena.alloc(then_expr), None)
}
}
// Lowers a condition (i.e. `cond` in `if cond` or `while cond`), wrapping it in a terminating scope
// so that temporaries created in the condition don't live beyond it.
fn lower_cond(&mut self, cond: &Expr) -> &'hir hir::Expr<'hir> {
fn has_let_expr(expr: &Expr) -> bool {
match &expr.kind {
ExprKind::Binary(_, lhs, rhs) => has_let_expr(lhs) || has_let_expr(rhs),
ExprKind::Let(..) => true,
_ => false,
}
}
// We have to take special care for `let` exprs in the condition, e.g. in
// `if let pat = val` or `if foo && let pat = val`, as we _do_ want `val` to live beyond the
// condition in this case.
//
// In order to mantain the drop behavior for the non `let` parts of the condition,
// we still wrap them in terminating scopes, e.g. `if foo && let pat = val` essentially
// gets transformed into `if { let _t = foo; _t } && let pat = val`
match &cond.kind {
ExprKind::Binary(op @ Spanned { node: ast::BinOpKind::And, .. }, lhs, rhs)
if has_let_expr(cond) =>
{
let op = self.lower_binop(*op);
let lhs = self.lower_cond(lhs);
let rhs = self.lower_cond(rhs);
self.arena.alloc(self.expr(
cond.span,
hir::ExprKind::Binary(op, lhs, rhs),
AttrVec::new(),
))
}
ExprKind::Let(..) => self.lower_expr(cond),
_ => {
let cond = self.lower_expr(cond);
let reason = DesugaringKind::CondTemporary;
let span_block = self.mark_span_with_reason(reason, cond.span, None);
self.expr_drop_temps(span_block, cond, AttrVec::new())
}
}
}
// We desugar: `'label: while $cond $body` into:
//
// ```
// 'label: loop {
// if { let _t = $cond; _t } {
// $body
// }
// else {
// break;
// }
// }
// ```
//
// Wrap in a construct equivalent to `{ let _t = $cond; _t }`
// to preserve drop semantics since `while $cond { ... }` does not
// let temporaries live outside of `cond`.
fn lower_expr_while_in_loop_scope(
&mut self,
span: Span,
cond: &Expr,
body: &Block,
opt_label: Option<Label>,
) -> hir::ExprKind<'hir> {
let lowered_cond = self.with_loop_condition_scope(|t| t.lower_cond(cond));
let then = self.lower_block_expr(body);
let expr_break = self.expr_break(span, AttrVec::new());
let stmt_break = self.stmt_expr(span, expr_break);
let else_blk = self.block_all(span, arena_vec![self; stmt_break], None);
let else_expr = self.arena.alloc(self.expr_block(else_blk, AttrVec::new()));
let if_kind = hir::ExprKind::If(lowered_cond, self.arena.alloc(then), Some(else_expr));
let if_expr = self.expr(span, if_kind, AttrVec::new());
let block = self.block_expr(self.arena.alloc(if_expr));
let span = self.lower_span(span.with_hi(cond.span.hi()));
let opt_label = self.lower_label(opt_label);
hir::ExprKind::Loop(block, opt_label, hir::LoopSource::While, span)
}
/// Desugar `try { <stmts>; <expr> }` into `{ <stmts>; ::std::ops::Try::from_output(<expr>) }`,
/// `try { <stmts>; }` into `{ <stmts>; ::std::ops::Try::from_output(()) }`
/// and save the block id to use it as a break target for desugaring of the `?` operator.
fn lower_expr_try_block(&mut self, body: &Block) -> hir::ExprKind<'hir> {
self.with_catch_scope(body.id, |this| {
let mut block = this.lower_block_noalloc(body, true);
// Final expression of the block (if present) or `()` with span at the end of block
let (try_span, tail_expr) = if let Some(expr) = block.expr.take() {
(
this.mark_span_with_reason(
DesugaringKind::TryBlock,
expr.span,
this.allow_try_trait.clone(),
),
expr,
)
} else {
let try_span = this.mark_span_with_reason(
DesugaringKind::TryBlock,
this.tcx.sess.source_map().end_point(body.span),
this.allow_try_trait.clone(),
);
(try_span, this.expr_unit(try_span))
};
let ok_wrapped_span =
this.mark_span_with_reason(DesugaringKind::TryBlock, tail_expr.span, None);
// `::std::ops::Try::from_output($tail_expr)`
block.expr = Some(this.wrap_in_try_constructor(
hir::LangItem::TryTraitFromOutput,
try_span,
tail_expr,
ok_wrapped_span,
));
hir::ExprKind::Block(this.arena.alloc(block), None)
})
}
fn wrap_in_try_constructor(
&mut self,
lang_item: hir::LangItem,
method_span: Span,
expr: &'hir hir::Expr<'hir>,
overall_span: Span,
) -> &'hir hir::Expr<'hir> {
let constructor = self.arena.alloc(self.expr_lang_item_path(
method_span,
lang_item,
AttrVec::new(),
None,
));
self.expr_call(overall_span, constructor, std::slice::from_ref(expr))
}
fn lower_arm(&mut self, arm: &Arm) -> hir::Arm<'hir> {
let pat = self.lower_pat(&arm.pat);
let guard = arm.guard.as_ref().map(|cond| {
if let ExprKind::Let(ref pat, ref scrutinee, span) = cond.kind {
hir::Guard::IfLet(self.arena.alloc(hir::Let {
hir_id: self.next_id(),
span: self.lower_span(span),
pat: self.lower_pat(pat),
ty: None,
init: self.lower_expr(scrutinee),
}))
} else {
hir::Guard::If(self.lower_expr(cond))
}
});
let hir_id = self.next_id();
self.lower_attrs(hir_id, &arm.attrs);
hir::Arm {
hir_id,
pat,
guard,
body: self.lower_expr(&arm.body),
span: self.lower_span(arm.span),
}
}
/// Lower an `async` construct to a generator that is then wrapped so it implements `Future`.
///
/// This results in:
///
/// ```text
/// std::future::from_generator(static move? |_task_context| -> <ret_ty> {
/// <body>
/// })
/// ```
pub(super) fn make_async_expr(
&mut self,
capture_clause: CaptureBy,
closure_node_id: NodeId,
ret_ty: Option<AstP<Ty>>,
span: Span,
async_gen_kind: hir::AsyncGeneratorKind,
body: impl FnOnce(&mut Self) -> hir::Expr<'hir>,
) -> hir::ExprKind<'hir> {
let output = match ret_ty {
Some(ty) => hir::FnRetTy::Return(
self.lower_ty(&ty, &ImplTraitContext::Disallowed(ImplTraitPosition::AsyncBlock)),
),
None => hir::FnRetTy::DefaultReturn(self.lower_span(span)),
};
// Resume argument type. We let the compiler infer this to simplify the lowering. It is
// fully constrained by `future::from_generator`.
let input_ty = hir::Ty {
hir_id: self.next_id(),
kind: hir::TyKind::Infer,
span: self.lower_span(span),
};
// The closure/generator `FnDecl` takes a single (resume) argument of type `input_ty`.
let fn_decl = self.arena.alloc(hir::FnDecl {
inputs: arena_vec![self; input_ty],
output,
c_variadic: false,
implicit_self: hir::ImplicitSelfKind::None,
});
// Lower the argument pattern/ident. The ident is used again in the `.await` lowering.
let (pat, task_context_hid) = self.pat_ident_binding_mode(
span,
Ident::with_dummy_span(sym::_task_context),
hir::BindingAnnotation::MUT,
);
let param = hir::Param {
hir_id: self.next_id(),
pat,
ty_span: self.lower_span(span),
span: self.lower_span(span),
};
let params = arena_vec![self; param];
let body = self.lower_body(move |this| {
this.generator_kind = Some(hir::GeneratorKind::Async(async_gen_kind));
let old_ctx = this.task_context;
this.task_context = Some(task_context_hid);
let res = body(this);
this.task_context = old_ctx;
(params, res)
});
// `static |_task_context| -> <ret_ty> { body }`:
let generator_kind = {
let c = self.arena.alloc(hir::Closure {
binder: hir::ClosureBinder::Default,
capture_clause,
bound_generic_params: &[],
fn_decl,
body,
fn_decl_span: self.lower_span(span),
movability: Some(hir::Movability::Static),
});
hir::ExprKind::Closure(c)
};
let generator = hir::Expr {
hir_id: self.lower_node_id(closure_node_id),
kind: generator_kind,
span: self.lower_span(span),
};
// `future::from_generator`:
let unstable_span =
self.mark_span_with_reason(DesugaringKind::Async, span, self.allow_gen_future.clone());
let gen_future = self.expr_lang_item_path(
unstable_span,
hir::LangItem::FromGenerator,
AttrVec::new(),
None,
);
// `future::from_generator(generator)`:
hir::ExprKind::Call(self.arena.alloc(gen_future), arena_vec![self; generator])
}
/// Desugar `<expr>.await` into:
/// ```ignore (pseudo-rust)
/// match ::std::future::IntoFuture::into_future(<expr>) {
/// mut __awaitee => loop {
/// match unsafe { ::std::future::Future::poll(
/// <::std::pin::Pin>::new_unchecked(&mut __awaitee),
/// ::std::future::get_context(task_context),
/// ) } {
/// ::std::task::Poll::Ready(result) => break result,
/// ::std::task::Poll::Pending => {}
/// }
/// task_context = yield ();
/// }
/// }
/// ```
fn lower_expr_await(&mut self, dot_await_span: Span, expr: &Expr) -> hir::ExprKind<'hir> {
let full_span = expr.span.to(dot_await_span);
match self.generator_kind {
Some(hir::GeneratorKind::Async(_)) => {}
Some(hir::GeneratorKind::Gen) | None => {
self.tcx.sess.emit_err(AwaitOnlyInAsyncFnAndBlocks {
dot_await_span,
item_span: self.current_item,
});
}
}
let span = self.mark_span_with_reason(DesugaringKind::Await, dot_await_span, None);
let gen_future_span = self.mark_span_with_reason(
DesugaringKind::Await,
full_span,
self.allow_gen_future.clone(),
);
let expr = self.lower_expr_mut(expr);
let expr_hir_id = expr.hir_id;
// Note that the name of this binding must not be changed to something else because
// debuggers and debugger extensions expect it to be called `__awaitee`. They use
// this name to identify what is being awaited by a suspended async functions.
let awaitee_ident = Ident::with_dummy_span(sym::__awaitee);
let (awaitee_pat, awaitee_pat_hid) =
self.pat_ident_binding_mode(span, awaitee_ident, hir::BindingAnnotation::MUT);
let task_context_ident = Ident::with_dummy_span(sym::_task_context);
// unsafe {
// ::std::future::Future::poll(
// ::std::pin::Pin::new_unchecked(&mut __awaitee),
// ::std::future::get_context(task_context),
// )
// }
let poll_expr = {
let awaitee = self.expr_ident(span, awaitee_ident, awaitee_pat_hid);
let ref_mut_awaitee = self.expr_mut_addr_of(span, awaitee);
let task_context = if let Some(task_context_hid) = self.task_context {
self.expr_ident_mut(span, task_context_ident, task_context_hid)
} else {
// Use of `await` outside of an async context, we cannot use `task_context` here.
self.expr_err(span)
};
let new_unchecked = self.expr_call_lang_item_fn_mut(
span,
hir::LangItem::PinNewUnchecked,
arena_vec![self; ref_mut_awaitee],
Some(expr_hir_id),
);
let get_context = self.expr_call_lang_item_fn_mut(
gen_future_span,
hir::LangItem::GetContext,
arena_vec![self; task_context],
Some(expr_hir_id),
);
let call = self.expr_call_lang_item_fn(
span,
hir::LangItem::FuturePoll,
arena_vec![self; new_unchecked, get_context],
Some(expr_hir_id),
);
self.arena.alloc(self.expr_unsafe(call))
};
// `::std::task::Poll::Ready(result) => break result`
let loop_node_id = self.next_node_id();
let loop_hir_id = self.lower_node_id(loop_node_id);
let ready_arm = {
let x_ident = Ident::with_dummy_span(sym::result);
let (x_pat, x_pat_hid) = self.pat_ident(gen_future_span, x_ident);
let x_expr = self.expr_ident(gen_future_span, x_ident, x_pat_hid);
let ready_field = self.single_pat_field(gen_future_span, x_pat);
let ready_pat = self.pat_lang_item_variant(
span,
hir::LangItem::PollReady,
ready_field,
Some(expr_hir_id),
);
let break_x = self.with_loop_scope(loop_node_id, move |this| {
let expr_break =
hir::ExprKind::Break(this.lower_loop_destination(None), Some(x_expr));
this.arena.alloc(this.expr(gen_future_span, expr_break, AttrVec::new()))
});
self.arm(ready_pat, break_x)
};
// `::std::task::Poll::Pending => {}`
let pending_arm = {
let pending_pat = self.pat_lang_item_variant(
span,
hir::LangItem::PollPending,
&[],
Some(expr_hir_id),
);
let empty_block = self.expr_block_empty(span);
self.arm(pending_pat, empty_block)
};
let inner_match_stmt = {
let match_expr = self.expr_match(
span,
poll_expr,
arena_vec![self; ready_arm, pending_arm],
hir::MatchSource::AwaitDesugar,
);
self.stmt_expr(span, match_expr)
};
// task_context = yield ();
let yield_stmt = {
let unit = self.expr_unit(span);
let yield_expr = self.expr(
span,
hir::ExprKind::Yield(unit, hir::YieldSource::Await { expr: Some(expr_hir_id) }),
AttrVec::new(),
);
let yield_expr = self.arena.alloc(yield_expr);
if let Some(task_context_hid) = self.task_context {
let lhs = self.expr_ident(span, task_context_ident, task_context_hid);
let assign = self.expr(
span,
hir::ExprKind::Assign(lhs, yield_expr, self.lower_span(span)),
AttrVec::new(),
);
self.stmt_expr(span, assign)
} else {
// Use of `await` outside of an async context. Return `yield_expr` so that we can
// proceed with type checking.
self.stmt(span, hir::StmtKind::Semi(yield_expr))
}
};
let loop_block = self.block_all(span, arena_vec![self; inner_match_stmt, yield_stmt], None);
// loop { .. }
let loop_expr = self.arena.alloc(hir::Expr {
hir_id: loop_hir_id,
kind: hir::ExprKind::Loop(
loop_block,
None,
hir::LoopSource::Loop,
self.lower_span(span),
),
span: self.lower_span(span),
});
// mut __awaitee => loop { ... }
let awaitee_arm = self.arm(awaitee_pat, loop_expr);
// `match ::std::future::IntoFuture::into_future(<expr>) { ... }`
let into_future_span = self.mark_span_with_reason(
DesugaringKind::Await,
dot_await_span,
self.allow_into_future.clone(),
);
let into_future_expr = self.expr_call_lang_item_fn(
into_future_span,
hir::LangItem::IntoFutureIntoFuture,
arena_vec![self; expr],
Some(expr_hir_id),
);
// match <into_future_expr> {
// mut __awaitee => loop { .. }
// }
hir::ExprKind::Match(
into_future_expr,
arena_vec![self; awaitee_arm],
hir::MatchSource::AwaitDesugar,
)
}
fn lower_expr_closure(
&mut self,
binder: &ClosureBinder,
capture_clause: CaptureBy,
closure_id: NodeId,
movability: Movability,
decl: &FnDecl,
body: &Expr,
fn_decl_span: Span,
) -> hir::ExprKind<'hir> {
let (binder_clause, generic_params) = self.lower_closure_binder(binder);
let (body_id, generator_option) = self.with_new_scopes(move |this| {
let prev = this.current_item;
this.current_item = Some(fn_decl_span);
let mut generator_kind = None;
let body_id = this.lower_fn_body(decl, |this| {
let e = this.lower_expr_mut(body);
generator_kind = this.generator_kind;
e
});
let generator_option =
this.generator_movability_for_fn(&decl, fn_decl_span, generator_kind, movability);
this.current_item = prev;
(body_id, generator_option)
});
let bound_generic_params = self.lower_lifetime_binder(closure_id, generic_params);
// Lower outside new scope to preserve `is_in_loop_condition`.
let fn_decl = self.lower_fn_decl(decl, None, fn_decl_span, FnDeclKind::Closure, None);
let c = self.arena.alloc(hir::Closure {
binder: binder_clause,
capture_clause,
bound_generic_params,
fn_decl,
body: body_id,
fn_decl_span: self.lower_span(fn_decl_span),
movability: generator_option,
});
hir::ExprKind::Closure(c)
}
fn generator_movability_for_fn(
&mut self,
decl: &FnDecl,
fn_decl_span: Span,
generator_kind: Option<hir::GeneratorKind>,
movability: Movability,
) -> Option<hir::Movability> {
match generator_kind {
Some(hir::GeneratorKind::Gen) => {
if decl.inputs.len() > 1 {
self.tcx.sess.emit_err(GeneratorTooManyParameters { fn_decl_span });
}
Some(movability)
}
Some(hir::GeneratorKind::Async(_)) => {
panic!("non-`async` closure body turned `async` during lowering");
}
None => {
if movability == Movability::Static {
self.tcx.sess.emit_err(ClosureCannotBeStatic { fn_decl_span });
}
None
}
}
}
fn lower_closure_binder<'c>(
&mut self,
binder: &'c ClosureBinder,
) -> (hir::ClosureBinder, &'c [GenericParam]) {
let (binder, params) = match binder {
ClosureBinder::NotPresent => (hir::ClosureBinder::Default, &[][..]),
&ClosureBinder::For { span, ref generic_params } => {
let span = self.lower_span(span);
(hir::ClosureBinder::For { span }, &**generic_params)
}
};
(binder, params)
}
fn lower_expr_async_closure(
&mut self,
binder: &ClosureBinder,
capture_clause: CaptureBy,
closure_id: NodeId,
inner_closure_id: NodeId,
decl: &FnDecl,
body: &Expr,
fn_decl_span: Span,
) -> hir::ExprKind<'hir> {
if let &ClosureBinder::For { span, .. } = binder {
self.tcx.sess.emit_err(NotSupportedForLifetimeBinderAsyncClosure { span });
}
let (binder_clause, generic_params) = self.lower_closure_binder(binder);
let outer_decl =
FnDecl { inputs: decl.inputs.clone(), output: FnRetTy::Default(fn_decl_span) };
let body = self.with_new_scopes(|this| {
// FIXME(cramertj): allow `async` non-`move` closures with arguments.
if capture_clause == CaptureBy::Ref && !decl.inputs.is_empty() {
this.tcx.sess.emit_err(AsyncNonMoveClosureNotSupported { fn_decl_span });
}
// Transform `async |x: u8| -> X { ... }` into
// `|x: u8| future_from_generator(|| -> X { ... })`.
let body_id = this.lower_fn_body(&outer_decl, |this| {
let async_ret_ty =
if let FnRetTy::Ty(ty) = &decl.output { Some(ty.clone()) } else { None };
let async_body = this.make_async_expr(
capture_clause,
inner_closure_id,
async_ret_ty,
body.span,
hir::AsyncGeneratorKind::Closure,
|this| this.with_new_scopes(|this| this.lower_expr_mut(body)),
);
this.expr(fn_decl_span, async_body, AttrVec::new())
});
body_id
});
let bound_generic_params = self.lower_lifetime_binder(closure_id, generic_params);
// We need to lower the declaration outside the new scope, because we
// have to conserve the state of being inside a loop condition for the
// closure argument types.
let fn_decl =
self.lower_fn_decl(&outer_decl, None, fn_decl_span, FnDeclKind::Closure, None);
let c = self.arena.alloc(hir::Closure {
binder: binder_clause,
capture_clause,
bound_generic_params,
fn_decl,
body,
fn_decl_span: self.lower_span(fn_decl_span),
movability: None,
});
hir::ExprKind::Closure(c)
}
/// Destructure the LHS of complex assignments.
/// For instance, lower `(a, b) = t` to `{ let (lhs1, lhs2) = t; a = lhs1; b = lhs2; }`.
fn lower_expr_assign(
&mut self,
lhs: &Expr,
rhs: &Expr,
eq_sign_span: Span,
whole_span: Span,
) -> hir::ExprKind<'hir> {
// Return early in case of an ordinary assignment.
fn is_ordinary(lower_ctx: &mut LoweringContext<'_, '_>, lhs: &Expr) -> bool {
match &lhs.kind {
ExprKind::Array(..)
| ExprKind::Struct(..)
| ExprKind::Tup(..)
| ExprKind::Underscore => false,
// Check for tuple struct constructor.
ExprKind::Call(callee, ..) => lower_ctx.extract_tuple_struct_path(callee).is_none(),
ExprKind::Paren(e) => {
match e.kind {
// We special-case `(..)` for consistency with patterns.
ExprKind::Range(None, None, RangeLimits::HalfOpen) => false,
_ => is_ordinary(lower_ctx, e),
}
}
_ => true,
}
}
if is_ordinary(self, lhs) {
return hir::ExprKind::Assign(
self.lower_expr(lhs),
self.lower_expr(rhs),
self.lower_span(eq_sign_span),
);
}
let mut assignments = vec![];
// The LHS becomes a pattern: `(lhs1, lhs2)`.
let pat = self.destructure_assign(lhs, eq_sign_span, &mut assignments);
let rhs = self.lower_expr(rhs);
// Introduce a `let` for destructuring: `let (lhs1, lhs2) = t`.
let destructure_let = self.stmt_let_pat(
None,
whole_span,
Some(rhs),
pat,
hir::LocalSource::AssignDesugar(self.lower_span(eq_sign_span)),
);
// `a = lhs1; b = lhs2;`.
let stmts = self
.arena
.alloc_from_iter(std::iter::once(destructure_let).chain(assignments.into_iter()));
// Wrap everything in a block.
hir::ExprKind::Block(&self.block_all(whole_span, stmts, None), None)
}
/// If the given expression is a path to a tuple struct, returns that path.
/// It is not a complete check, but just tries to reject most paths early
/// if they are not tuple structs.
/// Type checking will take care of the full validation later.
fn extract_tuple_struct_path<'a>(
&mut self,
expr: &'a Expr,
) -> Option<(&'a Option<QSelf>, &'a Path)> {
if let ExprKind::Path(qself, path) = &expr.kind {
// Does the path resolve to something disallowed in a tuple struct/variant pattern?
if let Some(partial_res) = self.resolver.get_partial_res(expr.id) {
if let Some(res) = partial_res.full_res() && !res.expected_in_tuple_struct_pat() {
return None;
}
}
return Some((qself, path));
}
None
}
/// If the given expression is a path to a unit struct, returns that path.
/// It is not a complete check, but just tries to reject most paths early
/// if they are not unit structs.
/// Type checking will take care of the full validation later.
fn extract_unit_struct_path<'a>(
&mut self,
expr: &'a Expr,
) -> Option<(&'a Option<QSelf>, &'a Path)> {
if let ExprKind::Path(qself, path) = &expr.kind {
// Does the path resolve to something disallowed in a unit struct/variant pattern?
if let Some(partial_res) = self.resolver.get_partial_res(expr.id) {
if let Some(res) = partial_res.full_res() && !res.expected_in_unit_struct_pat() {
return None;
}
}
return Some((qself, path));
}
None
}
/// Convert the LHS of a destructuring assignment to a pattern.
/// Each sub-assignment is recorded in `assignments`.
fn destructure_assign(
&mut self,
lhs: &Expr,
eq_sign_span: Span,
assignments: &mut Vec<hir::Stmt<'hir>>,
) -> &'hir hir::Pat<'hir> {
self.arena.alloc(self.destructure_assign_mut(lhs, eq_sign_span, assignments))
}
fn destructure_assign_mut(
&mut self,
lhs: &Expr,
eq_sign_span: Span,
assignments: &mut Vec<hir::Stmt<'hir>>,
) -> hir::Pat<'hir> {
match &lhs.kind {
// Underscore pattern.
ExprKind::Underscore => {
return self.pat_without_dbm(lhs.span, hir::PatKind::Wild);
}
// Slice patterns.
ExprKind::Array(elements) => {
let (pats, rest) =
self.destructure_sequence(elements, "slice", eq_sign_span, assignments);
let slice_pat = if let Some((i, span)) = rest {
let (before, after) = pats.split_at(i);
hir::PatKind::Slice(
before,
Some(self.arena.alloc(self.pat_without_dbm(span, hir::PatKind::Wild))),
after,
)
} else {
hir::PatKind::Slice(pats, None, &[])
};
return self.pat_without_dbm(lhs.span, slice_pat);
}
// Tuple structs.
ExprKind::Call(callee, args) => {
if let Some((qself, path)) = self.extract_tuple_struct_path(callee) {
let (pats, rest) = self.destructure_sequence(
args,
"tuple struct or variant",
eq_sign_span,
assignments,
);
let qpath = self.lower_qpath(
callee.id,
qself,
path,
ParamMode::Optional,
&ImplTraitContext::Disallowed(ImplTraitPosition::Path),
);
// Destructure like a tuple struct.
let tuple_struct_pat = hir::PatKind::TupleStruct(
qpath,
pats,
hir::DotDotPos::new(rest.map(|r| r.0)),
);
return self.pat_without_dbm(lhs.span, tuple_struct_pat);
}
}
// Unit structs and enum variants.
ExprKind::Path(..) => {
if let Some((qself, path)) = self.extract_unit_struct_path(lhs) {
let qpath = self.lower_qpath(
lhs.id,
qself,
path,
ParamMode::Optional,
&ImplTraitContext::Disallowed(ImplTraitPosition::Path),
);
// Destructure like a unit struct.
let unit_struct_pat = hir::PatKind::Path(qpath);
return self.pat_without_dbm(lhs.span, unit_struct_pat);
}
}
// Structs.
ExprKind::Struct(se) => {
let field_pats = self.arena.alloc_from_iter(se.fields.iter().map(|f| {
let pat = self.destructure_assign(&f.expr, eq_sign_span, assignments);
hir::PatField {
hir_id: self.next_id(),
ident: self.lower_ident(f.ident),
pat,
is_shorthand: f.is_shorthand,
span: self.lower_span(f.span),
}
}));
let qpath = self.lower_qpath(
lhs.id,
&se.qself,
&se.path,
ParamMode::Optional,
&ImplTraitContext::Disallowed(ImplTraitPosition::Path),
);
let fields_omitted = match &se.rest {
StructRest::Base(e) => {
self.tcx.sess.emit_err(FunctionalRecordUpdateDestructuringAssignemnt {
span: e.span,
});
true
}
StructRest::Rest(_) => true,
StructRest::None => false,
};
let struct_pat = hir::PatKind::Struct(qpath, field_pats, fields_omitted);
return self.pat_without_dbm(lhs.span, struct_pat);
}
// Tuples.
ExprKind::Tup(elements) => {
let (pats, rest) =
self.destructure_sequence(elements, "tuple", eq_sign_span, assignments);
let tuple_pat = hir::PatKind::Tuple(pats, hir::DotDotPos::new(rest.map(|r| r.0)));
return self.pat_without_dbm(lhs.span, tuple_pat);
}
ExprKind::Paren(e) => {
// We special-case `(..)` for consistency with patterns.
if let ExprKind::Range(None, None, RangeLimits::HalfOpen) = e.kind {
let tuple_pat = hir::PatKind::Tuple(&[], hir::DotDotPos::new(Some(0)));
return self.pat_without_dbm(lhs.span, tuple_pat);
} else {
return self.destructure_assign_mut(e, eq_sign_span, assignments);
}
}
_ => {}
}
// Treat all other cases as normal lvalue.
let ident = Ident::new(sym::lhs, self.lower_span(lhs.span));
let (pat, binding) = self.pat_ident_mut(lhs.span, ident);
let ident = self.expr_ident(lhs.span, ident, binding);
let assign =
hir::ExprKind::Assign(self.lower_expr(lhs), ident, self.lower_span(eq_sign_span));
let expr = self.expr(lhs.span, assign, AttrVec::new());
assignments.push(self.stmt_expr(lhs.span, expr));
pat
}
/// Destructure a sequence of expressions occurring on the LHS of an assignment.
/// Such a sequence occurs in a tuple (struct)/slice.
/// Return a sequence of corresponding patterns, and the index and the span of `..` if it
/// exists.
/// Each sub-assignment is recorded in `assignments`.
fn destructure_sequence(
&mut self,
elements: &[AstP<Expr>],
ctx: &str,
eq_sign_span: Span,
assignments: &mut Vec<hir::Stmt<'hir>>,
) -> (&'hir [hir::Pat<'hir>], Option<(usize, Span)>) {
let mut rest = None;
let elements =
self.arena.alloc_from_iter(elements.iter().enumerate().filter_map(|(i, e)| {
// Check for `..` pattern.
if let ExprKind::Range(None, None, RangeLimits::HalfOpen) = e.kind {
if let Some((_, prev_span)) = rest {
self.ban_extra_rest_pat(e.span, prev_span, ctx);
} else {
rest = Some((i, e.span));
}
None
} else {
Some(self.destructure_assign_mut(e, eq_sign_span, assignments))
}
}));
(elements, rest)
}
/// Desugar `<start>..=<end>` into `std::ops::RangeInclusive::new(<start>, <end>)`.
fn lower_expr_range_closed(&mut self, span: Span, e1: &Expr, e2: &Expr) -> hir::ExprKind<'hir> {
let e1 = self.lower_expr_mut(e1);
let e2 = self.lower_expr_mut(e2);
let fn_path =
hir::QPath::LangItem(hir::LangItem::RangeInclusiveNew, self.lower_span(span), None);
let fn_expr =
self.arena.alloc(self.expr(span, hir::ExprKind::Path(fn_path), AttrVec::new()));
hir::ExprKind::Call(fn_expr, arena_vec![self; e1, e2])
}
fn lower_expr_range(
&mut self,
span: Span,
e1: Option<&Expr>,
e2: Option<&Expr>,
lims: RangeLimits,
) -> hir::ExprKind<'hir> {
use rustc_ast::RangeLimits::*;
let lang_item = match (e1, e2, lims) {
(None, None, HalfOpen) => hir::LangItem::RangeFull,
(Some(..), None, HalfOpen) => hir::LangItem::RangeFrom,
(None, Some(..), HalfOpen) => hir::LangItem::RangeTo,
(Some(..), Some(..), HalfOpen) => hir::LangItem::Range,
(None, Some(..), Closed) => hir::LangItem::RangeToInclusive,
(Some(..), Some(..), Closed) => unreachable!(),
(start, None, Closed) => {
self.tcx.sess.emit_err(InclusiveRangeWithNoEnd { span });
match start {
Some(..) => hir::LangItem::RangeFrom,
None => hir::LangItem::RangeFull,
}
}
};
let fields = self.arena.alloc_from_iter(
e1.iter().map(|e| (sym::start, e)).chain(e2.iter().map(|e| (sym::end, e))).map(
|(s, e)| {
let expr = self.lower_expr(&e);
let ident = Ident::new(s, self.lower_span(e.span));
self.expr_field(ident, expr, e.span)
},
),
);
hir::ExprKind::Struct(
self.arena.alloc(hir::QPath::LangItem(lang_item, self.lower_span(span), None)),
fields,
None,
)
}
fn lower_label(&self, opt_label: Option<Label>) -> Option<Label> {
let label = opt_label?;
Some(Label { ident: self.lower_ident(label.ident) })
}
fn lower_loop_destination(&mut self, destination: Option<(NodeId, Label)>) -> hir::Destination {
let target_id = match destination {
Some((id, _)) => {
if let Some(loop_id) = self.resolver.get_label_res(id) {
Ok(self.lower_node_id(loop_id))
} else {
Err(hir::LoopIdError::UnresolvedLabel)
}
}
None => self
.loop_scope
.map(|id| Ok(self.lower_node_id(id)))
.unwrap_or(Err(hir::LoopIdError::OutsideLoopScope)),
};
let label = self.lower_label(destination.map(|(_, label)| label));
hir::Destination { label, target_id }
}
fn lower_jump_destination(&mut self, id: NodeId, opt_label: Option<Label>) -> hir::Destination {
if self.is_in_loop_condition && opt_label.is_none() {
hir::Destination {
label: None,
target_id: Err(hir::LoopIdError::UnlabeledCfInWhileCondition),
}
} else {
self.lower_loop_destination(opt_label.map(|label| (id, label)))
}
}
fn with_catch_scope<T>(&mut self, catch_id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
let old_scope = self.catch_scope.replace(catch_id);
let result = f(self);
self.catch_scope = old_scope;
result
}
fn with_loop_scope<T>(&mut self, loop_id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
// We're no longer in the base loop's condition; we're in another loop.
let was_in_loop_condition = self.is_in_loop_condition;
self.is_in_loop_condition = false;
let old_scope = self.loop_scope.replace(loop_id);
let result = f(self);
self.loop_scope = old_scope;
self.is_in_loop_condition = was_in_loop_condition;
result
}
fn with_loop_condition_scope<T>(&mut self, f: impl FnOnce(&mut Self) -> T) -> T {
let was_in_loop_condition = self.is_in_loop_condition;
self.is_in_loop_condition = true;
let result = f(self);
self.is_in_loop_condition = was_in_loop_condition;
result
}
fn lower_expr_field(&mut self, f: &ExprField) -> hir::ExprField<'hir> {
let hir_id = self.lower_node_id(f.id);
self.lower_attrs(hir_id, &f.attrs);
hir::ExprField {
hir_id,
ident: self.lower_ident(f.ident),
expr: self.lower_expr(&f.expr),
span: self.lower_span(f.span),
is_shorthand: f.is_shorthand,
}
}
fn lower_expr_yield(&mut self, span: Span, opt_expr: Option<&Expr>) -> hir::ExprKind<'hir> {
match self.generator_kind {
Some(hir::GeneratorKind::Gen) => {}
Some(hir::GeneratorKind::Async(_)) => {
self.tcx.sess.emit_err(AsyncGeneratorsNotSupported { span });
}
None => self.generator_kind = Some(hir::GeneratorKind::Gen),
}
let expr =
opt_expr.as_ref().map(|x| self.lower_expr(x)).unwrap_or_else(|| self.expr_unit(span));
hir::ExprKind::Yield(expr, hir::YieldSource::Yield)
}
/// Desugar `ExprForLoop` from: `[opt_ident]: for <pat> in <head> <body>` into:
/// ```ignore (pseudo-rust)
/// {
/// let result = match IntoIterator::into_iter(<head>) {
/// mut iter => {
/// [opt_ident]: loop {
/// match Iterator::next(&mut iter) {
/// None => break,
/// Some(<pat>) => <body>,
/// };
/// }
/// }
/// };
/// result
/// }
/// ```
fn lower_expr_for(
&mut self,
e: &Expr,
pat: &Pat,
head: &Expr,
body: &Block,
opt_label: Option<Label>,
) -> hir::Expr<'hir> {
let head = self.lower_expr_mut(head);
let pat = self.lower_pat(pat);
let for_span =
self.mark_span_with_reason(DesugaringKind::ForLoop, self.lower_span(e.span), None);
let head_span = self.mark_span_with_reason(DesugaringKind::ForLoop, head.span, None);
let pat_span = self.mark_span_with_reason(DesugaringKind::ForLoop, pat.span, None);
// `None => break`
let none_arm = {
let break_expr =
self.with_loop_scope(e.id, |this| this.expr_break_alloc(for_span, AttrVec::new()));
let pat = self.pat_none(for_span);
self.arm(pat, break_expr)
};
// Some(<pat>) => <body>,
let some_arm = {
let some_pat = self.pat_some(pat_span, pat);
let body_block = self.with_loop_scope(e.id, |this| this.lower_block(body, false));
let body_expr = self.arena.alloc(self.expr_block(body_block, AttrVec::new()));
self.arm(some_pat, body_expr)
};
// `mut iter`
let iter = Ident::with_dummy_span(sym::iter);
let (iter_pat, iter_pat_nid) =
self.pat_ident_binding_mode(head_span, iter, hir::BindingAnnotation::MUT);
// `match Iterator::next(&mut iter) { ... }`
let match_expr = {
let iter = self.expr_ident(head_span, iter, iter_pat_nid);
let ref_mut_iter = self.expr_mut_addr_of(head_span, iter);
let next_expr = self.expr_call_lang_item_fn(
head_span,
hir::LangItem::IteratorNext,
arena_vec![self; ref_mut_iter],
None,
);
let arms = arena_vec![self; none_arm, some_arm];
self.expr_match(head_span, next_expr, arms, hir::MatchSource::ForLoopDesugar)
};
let match_stmt = self.stmt_expr(for_span, match_expr);
let loop_block = self.block_all(for_span, arena_vec![self; match_stmt], None);
// `[opt_ident]: loop { ... }`
let kind = hir::ExprKind::Loop(
loop_block,
self.lower_label(opt_label),
hir::LoopSource::ForLoop,
self.lower_span(for_span.with_hi(head.span.hi())),
);
let loop_expr =
self.arena.alloc(hir::Expr { hir_id: self.lower_node_id(e.id), kind, span: for_span });
// `mut iter => { ... }`
let iter_arm = self.arm(iter_pat, loop_expr);
// `match ::std::iter::IntoIterator::into_iter(<head>) { ... }`
let into_iter_expr = {
self.expr_call_lang_item_fn(
head_span,
hir::LangItem::IntoIterIntoIter,
arena_vec![self; head],
None,
)
};
let match_expr = self.arena.alloc(self.expr_match(
for_span,
into_iter_expr,
arena_vec![self; iter_arm],
hir::MatchSource::ForLoopDesugar,
));
// This is effectively `{ let _result = ...; _result }`.
// The construct was introduced in #21984 and is necessary to make sure that
// temporaries in the `head` expression are dropped and do not leak to the
// surrounding scope of the `match` since the `match` is not a terminating scope.
//
// Also, add the attributes to the outer returned expr node.
self.expr_drop_temps_mut(for_span, match_expr, e.attrs.clone())
}
/// Desugar `ExprKind::Try` from: `<expr>?` into:
/// ```ignore (pseudo-rust)
/// match Try::branch(<expr>) {
/// ControlFlow::Continue(val) => #[allow(unreachable_code)] val,,
/// ControlFlow::Break(residual) =>
/// #[allow(unreachable_code)]
/// // If there is an enclosing `try {...}`:
/// break 'catch_target Try::from_residual(residual),
/// // Otherwise:
/// return Try::from_residual(residual),
/// }
/// ```
fn lower_expr_try(&mut self, span: Span, sub_expr: &Expr) -> hir::ExprKind<'hir> {
let unstable_span = self.mark_span_with_reason(
DesugaringKind::QuestionMark,
span,
self.allow_try_trait.clone(),
);
let try_span = self.tcx.sess.source_map().end_point(span);
let try_span = self.mark_span_with_reason(
DesugaringKind::QuestionMark,
try_span,
self.allow_try_trait.clone(),
);
// `Try::branch(<expr>)`
let scrutinee = {
// expand <expr>
let sub_expr = self.lower_expr_mut(sub_expr);
self.expr_call_lang_item_fn(
unstable_span,
hir::LangItem::TryTraitBranch,
arena_vec![self; sub_expr],
None,
)
};
// `#[allow(unreachable_code)]`
let attr = {
// `allow(unreachable_code)`
let allow = {
let allow_ident = Ident::new(sym::allow, self.lower_span(span));
let uc_ident = Ident::new(sym::unreachable_code, self.lower_span(span));
let uc_nested = attr::mk_nested_word_item(uc_ident);
attr::mk_list_item(allow_ident, vec![uc_nested])
};
attr::mk_attr_outer(&self.tcx.sess.parse_sess.attr_id_generator, allow)
};
let attrs: AttrVec = thin_vec![attr];
// `ControlFlow::Continue(val) => #[allow(unreachable_code)] val,`
let continue_arm = {
let val_ident = Ident::with_dummy_span(sym::val);
let (val_pat, val_pat_nid) = self.pat_ident(span, val_ident);
let val_expr = self.arena.alloc(self.expr_ident_with_attrs(
span,
val_ident,
val_pat_nid,
attrs.clone(),
));
let continue_pat = self.pat_cf_continue(unstable_span, val_pat);
self.arm(continue_pat, val_expr)
};
// `ControlFlow::Break(residual) =>
// #[allow(unreachable_code)]
// return Try::from_residual(residual),`
let break_arm = {
let residual_ident = Ident::with_dummy_span(sym::residual);
let (residual_local, residual_local_nid) = self.pat_ident(try_span, residual_ident);
let residual_expr = self.expr_ident_mut(try_span, residual_ident, residual_local_nid);
let from_residual_expr = self.wrap_in_try_constructor(
hir::LangItem::TryTraitFromResidual,
try_span,
self.arena.alloc(residual_expr),
unstable_span,
);
let ret_expr = if let Some(catch_node) = self.catch_scope {
let target_id = Ok(self.lower_node_id(catch_node));
self.arena.alloc(self.expr(
try_span,
hir::ExprKind::Break(
hir::Destination { label: None, target_id },
Some(from_residual_expr),
),
attrs,
))
} else {
self.arena.alloc(self.expr(
try_span,
hir::ExprKind::Ret(Some(from_residual_expr)),
attrs,
))
};
let break_pat = self.pat_cf_break(try_span, residual_local);
self.arm(break_pat, ret_expr)
};
hir::ExprKind::Match(
scrutinee,
arena_vec![self; break_arm, continue_arm],
hir::MatchSource::TryDesugar,
)
}
/// Desugar `ExprKind::Yeet` from: `do yeet <expr>` into:
/// ```ignore(illustrative)
/// // If there is an enclosing `try {...}`:
/// break 'catch_target FromResidual::from_residual(Yeet(residual));
/// // Otherwise:
/// return FromResidual::from_residual(Yeet(residual));
/// ```
/// But to simplify this, there's a `from_yeet` lang item function which
/// handles the combined `FromResidual::from_residual(Yeet(residual))`.
fn lower_expr_yeet(&mut self, span: Span, sub_expr: Option<&Expr>) -> hir::ExprKind<'hir> {
// The expression (if present) or `()` otherwise.
let (yeeted_span, yeeted_expr) = if let Some(sub_expr) = sub_expr {
(sub_expr.span, self.lower_expr(sub_expr))
} else {
(self.mark_span_with_reason(DesugaringKind::YeetExpr, span, None), self.expr_unit(span))
};
let unstable_span = self.mark_span_with_reason(
DesugaringKind::YeetExpr,
span,
self.allow_try_trait.clone(),
);
let from_yeet_expr = self.wrap_in_try_constructor(
hir::LangItem::TryTraitFromYeet,
unstable_span,
yeeted_expr,
yeeted_span,
);
if let Some(catch_node) = self.catch_scope {
let target_id = Ok(self.lower_node_id(catch_node));
hir::ExprKind::Break(hir::Destination { label: None, target_id }, Some(from_yeet_expr))
} else {
hir::ExprKind::Ret(Some(from_yeet_expr))
}
}
// =========================================================================
// Helper methods for building HIR.
// =========================================================================
/// Wrap the given `expr` in a terminating scope using `hir::ExprKind::DropTemps`.
///
/// In terms of drop order, it has the same effect as wrapping `expr` in
/// `{ let _t = $expr; _t }` but should provide better compile-time performance.
///
/// The drop order can be important in e.g. `if expr { .. }`.
pub(super) fn expr_drop_temps(
&mut self,
span: Span,
expr: &'hir hir::Expr<'hir>,
attrs: AttrVec,
) -> &'hir hir::Expr<'hir> {
self.arena.alloc(self.expr_drop_temps_mut(span, expr, attrs))
}
pub(super) fn expr_drop_temps_mut(
&mut self,
span: Span,
expr: &'hir hir::Expr<'hir>,
attrs: AttrVec,
) -> hir::Expr<'hir> {
self.expr(span, hir::ExprKind::DropTemps(expr), attrs)
}
fn expr_match(
&mut self,
span: Span,
arg: &'hir hir::Expr<'hir>,
arms: &'hir [hir::Arm<'hir>],
source: hir::MatchSource,
) -> hir::Expr<'hir> {
self.expr(span, hir::ExprKind::Match(arg, arms, source), AttrVec::new())
}
fn expr_break(&mut self, span: Span, attrs: AttrVec) -> hir::Expr<'hir> {
let expr_break = hir::ExprKind::Break(self.lower_loop_destination(None), None);
self.expr(span, expr_break, attrs)
}
fn expr_break_alloc(&mut self, span: Span, attrs: AttrVec) -> &'hir hir::Expr<'hir> {
let expr_break = self.expr_break(span, attrs);
self.arena.alloc(expr_break)
}
fn expr_mut_addr_of(&mut self, span: Span, e: &'hir hir::Expr<'hir>) -> hir::Expr<'hir> {
self.expr(
span,
hir::ExprKind::AddrOf(hir::BorrowKind::Ref, hir::Mutability::Mut, e),
AttrVec::new(),
)
}
fn expr_unit(&mut self, sp: Span) -> &'hir hir::Expr<'hir> {
self.arena.alloc(self.expr(sp, hir::ExprKind::Tup(&[]), AttrVec::new()))
}
fn expr_call_mut(
&mut self,
span: Span,
e: &'hir hir::Expr<'hir>,
args: &'hir [hir::Expr<'hir>],
) -> hir::Expr<'hir> {
self.expr(span, hir::ExprKind::Call(e, args), AttrVec::new())
}
fn expr_call(
&mut self,
span: Span,
e: &'hir hir::Expr<'hir>,
args: &'hir [hir::Expr<'hir>],
) -> &'hir hir::Expr<'hir> {
self.arena.alloc(self.expr_call_mut(span, e, args))
}
fn expr_call_lang_item_fn_mut(
&mut self,
span: Span,
lang_item: hir::LangItem,
args: &'hir [hir::Expr<'hir>],
hir_id: Option<hir::HirId>,
) -> hir::Expr<'hir> {
let path =
self.arena.alloc(self.expr_lang_item_path(span, lang_item, AttrVec::new(), hir_id));
self.expr_call_mut(span, path, args)
}
fn expr_call_lang_item_fn(
&mut self,
span: Span,
lang_item: hir::LangItem,
args: &'hir [hir::Expr<'hir>],
hir_id: Option<hir::HirId>,
) -> &'hir hir::Expr<'hir> {
self.arena.alloc(self.expr_call_lang_item_fn_mut(span, lang_item, args, hir_id))
}
fn expr_lang_item_path(
&mut self,
span: Span,
lang_item: hir::LangItem,
attrs: AttrVec,
hir_id: Option<hir::HirId>,
) -> hir::Expr<'hir> {
self.expr(
span,
hir::ExprKind::Path(hir::QPath::LangItem(lang_item, self.lower_span(span), hir_id)),
attrs,
)
}
pub(super) fn expr_ident(
&mut self,
sp: Span,
ident: Ident,
binding: hir::HirId,
) -> &'hir hir::Expr<'hir> {
self.arena.alloc(self.expr_ident_mut(sp, ident, binding))
}
pub(super) fn expr_ident_mut(
&mut self,
sp: Span,
ident: Ident,
binding: hir::HirId,
) -> hir::Expr<'hir> {
self.expr_ident_with_attrs(sp, ident, binding, AttrVec::new())
}
fn expr_ident_with_attrs(
&mut self,
span: Span,
ident: Ident,
binding: hir::HirId,
attrs: AttrVec,
) -> hir::Expr<'hir> {
let hir_id = self.next_id();
let res = Res::Local(binding);
let expr_path = hir::ExprKind::Path(hir::QPath::Resolved(
None,
self.arena.alloc(hir::Path {
span: self.lower_span(span),
res,
segments: arena_vec![self; hir::PathSegment::new(ident, hir_id, res)],
}),
));
self.expr(span, expr_path, attrs)
}
fn expr_unsafe(&mut self, expr: &'hir hir::Expr<'hir>) -> hir::Expr<'hir> {
let hir_id = self.next_id();
let span = expr.span;
self.expr(
span,
hir::ExprKind::Block(
self.arena.alloc(hir::Block {
stmts: &[],
expr: Some(expr),
hir_id,
rules: hir::BlockCheckMode::UnsafeBlock(hir::UnsafeSource::CompilerGenerated),
span: self.lower_span(span),
targeted_by_break: false,
}),
None,
),
AttrVec::new(),
)
}
fn expr_block_empty(&mut self, span: Span) -> &'hir hir::Expr<'hir> {
let blk = self.block_all(span, &[], None);
let expr = self.expr_block(blk, AttrVec::new());
self.arena.alloc(expr)
}
pub(super) fn expr_block(
&mut self,
b: &'hir hir::Block<'hir>,
attrs: AttrVec,
) -> hir::Expr<'hir> {
self.expr(b.span, hir::ExprKind::Block(b, None), attrs)
}
pub(super) fn expr(
&mut self,
span: Span,
kind: hir::ExprKind<'hir>,
attrs: AttrVec,
) -> hir::Expr<'hir> {
let hir_id = self.next_id();
self.lower_attrs(hir_id, &attrs);
hir::Expr { hir_id, kind, span: self.lower_span(span) }
}
fn expr_field(
&mut self,
ident: Ident,
expr: &'hir hir::Expr<'hir>,
span: Span,
) -> hir::ExprField<'hir> {
hir::ExprField {
hir_id: self.next_id(),
ident,
span: self.lower_span(span),
expr,
is_shorthand: false,
}
}
fn arm(&mut self, pat: &'hir hir::Pat<'hir>, expr: &'hir hir::Expr<'hir>) -> hir::Arm<'hir> {
hir::Arm {
hir_id: self.next_id(),
pat,
guard: None,
span: self.lower_span(expr.span),
body: expr,
}
}
}