| //! Trait Resolution. See the [rustc dev guide] for more information on how this works. |
| //! |
| //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html |
| |
| pub mod auto_trait; |
| pub(crate) mod coherence; |
| pub mod const_evaluatable; |
| mod dyn_compatibility; |
| pub mod effects; |
| mod engine; |
| mod fulfill; |
| pub mod misc; |
| pub mod normalize; |
| pub mod outlives_bounds; |
| pub mod project; |
| pub mod query; |
| #[allow(hidden_glob_reexports)] |
| mod select; |
| mod specialize; |
| mod structural_normalize; |
| #[allow(hidden_glob_reexports)] |
| mod util; |
| pub mod vtable; |
| pub mod wf; |
| |
| use std::fmt::Debug; |
| use std::ops::ControlFlow; |
| |
| use rustc_errors::ErrorGuaranteed; |
| use rustc_hir::def::DefKind; |
| pub use rustc_infer::traits::*; |
| use rustc_middle::query::Providers; |
| use rustc_middle::span_bug; |
| use rustc_middle::ty::error::{ExpectedFound, TypeError}; |
| use rustc_middle::ty::{ |
| self, GenericArgs, GenericArgsRef, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable, |
| TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypingMode, Upcast, |
| }; |
| use rustc_span::def_id::DefId; |
| use rustc_span::{DUMMY_SP, Span}; |
| use tracing::{debug, instrument}; |
| |
| pub use self::coherence::{ |
| InCrate, IsFirstInputType, OrphanCheckErr, OrphanCheckMode, OverlapResult, UncoveredTyParams, |
| add_placeholder_note, orphan_check_trait_ref, overlapping_impls, |
| }; |
| pub use self::dyn_compatibility::{ |
| DynCompatibilityViolation, dyn_compatibility_violations_for_assoc_item, |
| hir_ty_lowering_dyn_compatibility_violations, is_vtable_safe_method, |
| }; |
| pub use self::engine::{ObligationCtxt, TraitEngineExt}; |
| pub use self::fulfill::{FulfillmentContext, OldSolverError, PendingPredicateObligation}; |
| pub use self::normalize::NormalizeExt; |
| pub use self::project::{normalize_inherent_projection, normalize_projection_term}; |
| pub use self::select::{ |
| EvaluationCache, EvaluationResult, IntercrateAmbiguityCause, OverflowError, SelectionCache, |
| SelectionContext, |
| }; |
| pub use self::specialize::specialization_graph::{ |
| FutureCompatOverlapError, FutureCompatOverlapErrorKind, |
| }; |
| pub use self::specialize::{ |
| OverlapError, specialization_graph, translate_args, translate_args_with_cause, |
| }; |
| pub use self::structural_normalize::StructurallyNormalizeExt; |
| pub use self::util::{ |
| BoundVarReplacer, PlaceholderReplacer, elaborate, expand_trait_aliases, impl_item_is_final, |
| sizedness_fast_path, supertrait_def_ids, supertraits, transitive_bounds_that_define_assoc_item, |
| upcast_choices, with_replaced_escaping_bound_vars, |
| }; |
| use crate::error_reporting::InferCtxtErrorExt; |
| use crate::infer::outlives::env::OutlivesEnvironment; |
| use crate::infer::{InferCtxt, TyCtxtInferExt}; |
| use crate::regions::InferCtxtRegionExt; |
| use crate::traits::query::evaluate_obligation::InferCtxtExt as _; |
| |
| #[derive(Debug)] |
| pub struct FulfillmentError<'tcx> { |
| pub obligation: PredicateObligation<'tcx>, |
| pub code: FulfillmentErrorCode<'tcx>, |
| /// Diagnostics only: the 'root' obligation which resulted in |
| /// the failure to process `obligation`. This is the obligation |
| /// that was initially passed to `register_predicate_obligation` |
| pub root_obligation: PredicateObligation<'tcx>, |
| } |
| |
| impl<'tcx> FulfillmentError<'tcx> { |
| pub fn new( |
| obligation: PredicateObligation<'tcx>, |
| code: FulfillmentErrorCode<'tcx>, |
| root_obligation: PredicateObligation<'tcx>, |
| ) -> FulfillmentError<'tcx> { |
| FulfillmentError { obligation, code, root_obligation } |
| } |
| |
| pub fn is_true_error(&self) -> bool { |
| match self.code { |
| FulfillmentErrorCode::Select(_) |
| | FulfillmentErrorCode::Project(_) |
| | FulfillmentErrorCode::Subtype(_, _) |
| | FulfillmentErrorCode::ConstEquate(_, _) => true, |
| FulfillmentErrorCode::Cycle(_) | FulfillmentErrorCode::Ambiguity { overflow: _ } => { |
| false |
| } |
| } |
| } |
| } |
| |
| #[derive(Clone)] |
| pub enum FulfillmentErrorCode<'tcx> { |
| /// Inherently impossible to fulfill; this trait is implemented if and only |
| /// if it is already implemented. |
| Cycle(PredicateObligations<'tcx>), |
| Select(SelectionError<'tcx>), |
| Project(MismatchedProjectionTypes<'tcx>), |
| Subtype(ExpectedFound<Ty<'tcx>>, TypeError<'tcx>), // always comes from a SubtypePredicate |
| ConstEquate(ExpectedFound<ty::Const<'tcx>>, TypeError<'tcx>), |
| Ambiguity { |
| /// Overflow is only `Some(suggest_recursion_limit)` when using the next generation |
| /// trait solver `-Znext-solver`. With the old solver overflow is eagerly handled by |
| /// emitting a fatal error instead. |
| overflow: Option<bool>, |
| }, |
| } |
| |
| impl<'tcx> Debug for FulfillmentErrorCode<'tcx> { |
| fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
| match *self { |
| FulfillmentErrorCode::Select(ref e) => write!(f, "{e:?}"), |
| FulfillmentErrorCode::Project(ref e) => write!(f, "{e:?}"), |
| FulfillmentErrorCode::Subtype(ref a, ref b) => { |
| write!(f, "CodeSubtypeError({a:?}, {b:?})") |
| } |
| FulfillmentErrorCode::ConstEquate(ref a, ref b) => { |
| write!(f, "CodeConstEquateError({a:?}, {b:?})") |
| } |
| FulfillmentErrorCode::Ambiguity { overflow: None } => write!(f, "Ambiguity"), |
| FulfillmentErrorCode::Ambiguity { overflow: Some(suggest_increasing_limit) } => { |
| write!(f, "Overflow({suggest_increasing_limit})") |
| } |
| FulfillmentErrorCode::Cycle(ref cycle) => write!(f, "Cycle({cycle:?})"), |
| } |
| } |
| } |
| |
| /// Whether to skip the leak check, as part of a future compatibility warning step. |
| /// |
| /// The "default" for skip-leak-check corresponds to the current |
| /// behavior (do not skip the leak check) -- not the behavior we are |
| /// transitioning into. |
| #[derive(Copy, Clone, PartialEq, Eq, Debug, Default)] |
| pub enum SkipLeakCheck { |
| Yes, |
| #[default] |
| No, |
| } |
| |
| impl SkipLeakCheck { |
| fn is_yes(self) -> bool { |
| self == SkipLeakCheck::Yes |
| } |
| } |
| |
| /// The mode that trait queries run in. |
| #[derive(Copy, Clone, PartialEq, Eq, Debug)] |
| pub enum TraitQueryMode { |
| /// Standard/un-canonicalized queries get accurate |
| /// spans etc. passed in and hence can do reasonable |
| /// error reporting on their own. |
| Standard, |
| /// Canonical queries get dummy spans and hence |
| /// must generally propagate errors to |
| /// pre-canonicalization callsites. |
| Canonical, |
| } |
| |
| /// Creates predicate obligations from the generic bounds. |
| #[instrument(level = "debug", skip(cause, param_env))] |
| pub fn predicates_for_generics<'tcx>( |
| cause: impl Fn(usize, Span) -> ObligationCause<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| generic_bounds: ty::InstantiatedPredicates<'tcx>, |
| ) -> impl Iterator<Item = PredicateObligation<'tcx>> { |
| generic_bounds.into_iter().enumerate().map(move |(idx, (clause, span))| Obligation { |
| cause: cause(idx, span), |
| recursion_depth: 0, |
| param_env, |
| predicate: clause.as_predicate(), |
| }) |
| } |
| |
| /// Determines whether the type `ty` is known to meet `bound` and |
| /// returns true if so. Returns false if `ty` either does not meet |
| /// `bound` or is not known to meet bound (note that this is |
| /// conservative towards *no impl*, which is the opposite of the |
| /// `evaluate` methods). |
| pub fn type_known_to_meet_bound_modulo_regions<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| ty: Ty<'tcx>, |
| def_id: DefId, |
| ) -> bool { |
| let trait_ref = ty::TraitRef::new(infcx.tcx, def_id, [ty]); |
| pred_known_to_hold_modulo_regions(infcx, param_env, trait_ref) |
| } |
| |
| /// FIXME(@lcnr): this function doesn't seem right and shouldn't exist? |
| /// |
| /// Ping me on zulip if you want to use this method and need help with finding |
| /// an appropriate replacement. |
| #[instrument(level = "debug", skip(infcx, param_env, pred), ret)] |
| fn pred_known_to_hold_modulo_regions<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| pred: impl Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>>, |
| ) -> bool { |
| let obligation = Obligation::new(infcx.tcx, ObligationCause::dummy(), param_env, pred); |
| |
| let result = infcx.evaluate_obligation_no_overflow(&obligation); |
| debug!(?result); |
| |
| if result.must_apply_modulo_regions() { |
| true |
| } else if result.may_apply() { |
| // Sometimes obligations are ambiguous because the recursive evaluator |
| // is not smart enough, so we fall back to fulfillment when we're not certain |
| // that an obligation holds or not. Even still, we must make sure that |
| // the we do no inference in the process of checking this obligation. |
| let goal = infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env)); |
| infcx.probe(|_| { |
| let ocx = ObligationCtxt::new(infcx); |
| ocx.register_obligation(obligation); |
| |
| let errors = ocx.select_all_or_error(); |
| match errors.as_slice() { |
| // Only known to hold if we did no inference. |
| [] => infcx.resolve_vars_if_possible(goal) == goal, |
| |
| errors => { |
| debug!(?errors); |
| false |
| } |
| } |
| }) |
| } else { |
| false |
| } |
| } |
| |
| #[instrument(level = "debug", skip(tcx, elaborated_env))] |
| fn do_normalize_predicates<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| cause: ObligationCause<'tcx>, |
| elaborated_env: ty::ParamEnv<'tcx>, |
| predicates: Vec<ty::Clause<'tcx>>, |
| ) -> Result<Vec<ty::Clause<'tcx>>, ErrorGuaranteed> { |
| let span = cause.span; |
| |
| // FIXME. We should really... do something with these region |
| // obligations. But this call just continues the older |
| // behavior (i.e., doesn't cause any new bugs), and it would |
| // take some further refactoring to actually solve them. In |
| // particular, we would have to handle implied bounds |
| // properly, and that code is currently largely confined to |
| // regionck (though I made some efforts to extract it |
| // out). -nmatsakis |
| // |
| // @arielby: In any case, these obligations are checked |
| // by wfcheck anyway, so I'm not sure we have to check |
| // them here too, and we will remove this function when |
| // we move over to lazy normalization *anyway*. |
| let infcx = tcx.infer_ctxt().ignoring_regions().build(TypingMode::non_body_analysis()); |
| let ocx = ObligationCtxt::new_with_diagnostics(&infcx); |
| let predicates = ocx.normalize(&cause, elaborated_env, predicates); |
| |
| let errors = ocx.select_all_or_error(); |
| if !errors.is_empty() { |
| let reported = infcx.err_ctxt().report_fulfillment_errors(errors); |
| return Err(reported); |
| } |
| |
| debug!("do_normalize_predicates: normalized predicates = {:?}", predicates); |
| |
| // We can use the `elaborated_env` here; the region code only |
| // cares about declarations like `'a: 'b`. |
| // FIXME: It's very weird that we ignore region obligations but apparently |
| // still need to use `resolve_regions` as we need the resolved regions in |
| // the normalized predicates. |
| let errors = infcx.resolve_regions(cause.body_id, elaborated_env, []); |
| if !errors.is_empty() { |
| tcx.dcx().span_delayed_bug( |
| span, |
| format!("failed region resolution while normalizing {elaborated_env:?}: {errors:?}"), |
| ); |
| } |
| |
| match infcx.fully_resolve(predicates) { |
| Ok(predicates) => Ok(predicates), |
| Err(fixup_err) => { |
| // If we encounter a fixup error, it means that some type |
| // variable wound up unconstrained. I actually don't know |
| // if this can happen, and I certainly don't expect it to |
| // happen often, but if it did happen it probably |
| // represents a legitimate failure due to some kind of |
| // unconstrained variable. |
| // |
| // @lcnr: Let's still ICE here for now. I want a test case |
| // for that. |
| span_bug!( |
| span, |
| "inference variables in normalized parameter environment: {}", |
| fixup_err |
| ); |
| } |
| } |
| } |
| |
| // FIXME: this is gonna need to be removed ... |
| /// Normalizes the parameter environment, reporting errors if they occur. |
| #[instrument(level = "debug", skip(tcx))] |
| pub fn normalize_param_env_or_error<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| unnormalized_env: ty::ParamEnv<'tcx>, |
| cause: ObligationCause<'tcx>, |
| ) -> ty::ParamEnv<'tcx> { |
| // I'm not wild about reporting errors here; I'd prefer to |
| // have the errors get reported at a defined place (e.g., |
| // during typeck). Instead I have all parameter |
| // environments, in effect, going through this function |
| // and hence potentially reporting errors. This ensures of |
| // course that we never forget to normalize (the |
| // alternative seemed like it would involve a lot of |
| // manual invocations of this fn -- and then we'd have to |
| // deal with the errors at each of those sites). |
| // |
| // In any case, in practice, typeck constructs all the |
| // parameter environments once for every fn as it goes, |
| // and errors will get reported then; so outside of type inference we |
| // can be sure that no errors should occur. |
| let mut predicates: Vec<_> = util::elaborate( |
| tcx, |
| unnormalized_env.caller_bounds().into_iter().map(|predicate| { |
| if tcx.features().generic_const_exprs() { |
| return predicate; |
| } |
| |
| struct ConstNormalizer<'tcx>(TyCtxt<'tcx>); |
| |
| impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ConstNormalizer<'tcx> { |
| fn cx(&self) -> TyCtxt<'tcx> { |
| self.0 |
| } |
| |
| fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> { |
| // FIXME(return_type_notation): track binders in this normalizer, as |
| // `ty::Const::normalize` can only work with properly preserved binders. |
| |
| if c.has_escaping_bound_vars() { |
| return ty::Const::new_misc_error(self.0); |
| } |
| |
| // While it is pretty sus to be evaluating things with an empty param env, it |
| // should actually be okay since without `feature(generic_const_exprs)` the only |
| // const arguments that have a non-empty param env are array repeat counts. These |
| // do not appear in the type system though. |
| if let ty::ConstKind::Unevaluated(uv) = c.kind() |
| && self.0.def_kind(uv.def) == DefKind::AnonConst |
| { |
| let infcx = self.0.infer_ctxt().build(TypingMode::non_body_analysis()); |
| let c = evaluate_const(&infcx, c, ty::ParamEnv::empty()); |
| // We should never wind up with any `infcx` local state when normalizing anon consts |
| // under min const generics. |
| assert!(!c.has_infer() && !c.has_placeholders()); |
| return c; |
| } |
| |
| c |
| } |
| } |
| |
| // This whole normalization step is a hack to work around the fact that |
| // `normalize_param_env_or_error` is fundamentally broken from using an |
| // unnormalized param env with a trait solver that expects the param env |
| // to be normalized. |
| // |
| // When normalizing the param env we can end up evaluating obligations |
| // that have been normalized but can only be proven via a where clause |
| // which is still in its unnormalized form. example: |
| // |
| // Attempting to prove `T: Trait<<u8 as Identity>::Assoc>` in a param env |
| // with a `T: Trait<<u8 as Identity>::Assoc>` where clause will fail because |
| // we first normalize obligations before proving them so we end up proving |
| // `T: Trait<u8>`. Since lazy normalization is not implemented equating `u8` |
| // with `<u8 as Identity>::Assoc` fails outright so we incorrectly believe that |
| // we cannot prove `T: Trait<u8>`. |
| // |
| // The same thing is true for const generics- attempting to prove |
| // `T: Trait<ConstKind::Unevaluated(...)>` with the same thing as a where clauses |
| // will fail. After normalization we may be attempting to prove `T: Trait<4>` with |
| // the unnormalized where clause `T: Trait<ConstKind::Unevaluated(...)>`. In order |
| // for the obligation to hold `4` must be equal to `ConstKind::Unevaluated(...)` |
| // but as we do not have lazy norm implemented, equating the two consts fails outright. |
| // |
| // Ideally we would not normalize consts here at all but it is required for backwards |
| // compatibility. Eventually when lazy norm is implemented this can just be removed. |
| // We do not normalize types here as there is no backwards compatibility requirement |
| // for us to do so. |
| // |
| // FIXME(-Znext-solver): remove this hack since we have deferred projection equality |
| predicate.fold_with(&mut ConstNormalizer(tcx)) |
| }), |
| ) |
| .collect(); |
| |
| debug!("normalize_param_env_or_error: elaborated-predicates={:?}", predicates); |
| |
| let elaborated_env = ty::ParamEnv::new(tcx.mk_clauses(&predicates)); |
| if !elaborated_env.has_aliases() { |
| return elaborated_env; |
| } |
| |
| // HACK: we are trying to normalize the param-env inside *itself*. The problem is that |
| // normalization expects its param-env to be already normalized, which means we have |
| // a circularity. |
| // |
| // The way we handle this is by normalizing the param-env inside an unnormalized version |
| // of the param-env, which means that if the param-env contains unnormalized projections, |
| // we'll have some normalization failures. This is unfortunate. |
| // |
| // Lazy normalization would basically handle this by treating just the |
| // normalizing-a-trait-ref-requires-itself cycles as evaluation failures. |
| // |
| // Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated |
| // types, so to make the situation less bad, we normalize all the predicates *but* |
| // the `TypeOutlives` predicates first inside the unnormalized parameter environment, and |
| // then we normalize the `TypeOutlives` bounds inside the normalized parameter environment. |
| // |
| // This works fairly well because trait matching does not actually care about param-env |
| // TypeOutlives predicates - these are normally used by regionck. |
| let outlives_predicates: Vec<_> = predicates |
| .extract_if(.., |predicate| { |
| matches!(predicate.kind().skip_binder(), ty::ClauseKind::TypeOutlives(..)) |
| }) |
| .collect(); |
| |
| debug!( |
| "normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})", |
| predicates, outlives_predicates |
| ); |
| let Ok(non_outlives_predicates) = |
| do_normalize_predicates(tcx, cause.clone(), elaborated_env, predicates) |
| else { |
| // An unnormalized env is better than nothing. |
| debug!("normalize_param_env_or_error: errored resolving non-outlives predicates"); |
| return elaborated_env; |
| }; |
| |
| debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates); |
| |
| // Not sure whether it is better to include the unnormalized TypeOutlives predicates |
| // here. I believe they should not matter, because we are ignoring TypeOutlives param-env |
| // predicates here anyway. Keeping them here anyway because it seems safer. |
| let outlives_env = non_outlives_predicates.iter().chain(&outlives_predicates).cloned(); |
| let outlives_env = ty::ParamEnv::new(tcx.mk_clauses_from_iter(outlives_env)); |
| let Ok(outlives_predicates) = |
| do_normalize_predicates(tcx, cause, outlives_env, outlives_predicates) |
| else { |
| // An unnormalized env is better than nothing. |
| debug!("normalize_param_env_or_error: errored resolving outlives predicates"); |
| return elaborated_env; |
| }; |
| debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates); |
| |
| let mut predicates = non_outlives_predicates; |
| predicates.extend(outlives_predicates); |
| debug!("normalize_param_env_or_error: final predicates={:?}", predicates); |
| ty::ParamEnv::new(tcx.mk_clauses(&predicates)) |
| } |
| |
| #[derive(Debug)] |
| pub enum EvaluateConstErr { |
| /// The constant being evaluated was either a generic parameter or inference variable, *or*, |
| /// some unevaluated constant with either generic parameters or inference variables in its |
| /// generic arguments. |
| HasGenericsOrInfers, |
| /// The type this constant evalauted to is not valid for use in const generics. This should |
| /// always result in an error when checking the constant is correctly typed for the parameter |
| /// it is an argument to, so a bug is delayed when encountering this. |
| InvalidConstParamTy(ErrorGuaranteed), |
| /// CTFE failed to evaluate the constant in some unrecoverable way (e.g. encountered a `panic!`). |
| /// This is also used when the constant was already tainted by error. |
| EvaluationFailure(ErrorGuaranteed), |
| } |
| |
| // FIXME(BoxyUwU): Private this once we `generic_const_exprs` isn't doing its own normalization routine |
| // FIXME(generic_const_exprs): Consider accepting a `ty::UnevaluatedConst` when we are not rolling our own |
| // normalization scheme |
| /// Evaluates a type system constant returning a `ConstKind::Error` in cases where CTFE failed and |
| /// returning the passed in constant if it was not fully concrete (i.e. depended on generic parameters |
| /// or inference variables) |
| /// |
| /// You should not call this function unless you are implementing normalization itself. Prefer to use |
| /// `normalize_erasing_regions` or the `normalize` functions on `ObligationCtxt`/`FnCtxt`/`InferCtxt`. |
| pub fn evaluate_const<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| ct: ty::Const<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| ) -> ty::Const<'tcx> { |
| match try_evaluate_const(infcx, ct, param_env) { |
| Ok(ct) => ct, |
| Err(EvaluateConstErr::EvaluationFailure(e) | EvaluateConstErr::InvalidConstParamTy(e)) => { |
| ty::Const::new_error(infcx.tcx, e) |
| } |
| Err(EvaluateConstErr::HasGenericsOrInfers) => ct, |
| } |
| } |
| |
| // FIXME(BoxyUwU): Private this once we `generic_const_exprs` isn't doing its own normalization routine |
| // FIXME(generic_const_exprs): Consider accepting a `ty::UnevaluatedConst` when we are not rolling our own |
| // normalization scheme |
| /// Evaluates a type system constant making sure to not allow constants that depend on generic parameters |
| /// or inference variables to succeed in evaluating. |
| /// |
| /// You should not call this function unless you are implementing normalization itself. Prefer to use |
| /// `normalize_erasing_regions` or the `normalize` functions on `ObligationCtxt`/`FnCtxt`/`InferCtxt`. |
| #[instrument(level = "debug", skip(infcx), ret)] |
| pub fn try_evaluate_const<'tcx>( |
| infcx: &InferCtxt<'tcx>, |
| ct: ty::Const<'tcx>, |
| param_env: ty::ParamEnv<'tcx>, |
| ) -> Result<ty::Const<'tcx>, EvaluateConstErr> { |
| let tcx = infcx.tcx; |
| let ct = infcx.resolve_vars_if_possible(ct); |
| debug!(?ct); |
| |
| match ct.kind() { |
| ty::ConstKind::Value(..) => Ok(ct), |
| ty::ConstKind::Error(e) => Err(EvaluateConstErr::EvaluationFailure(e)), |
| ty::ConstKind::Param(_) |
| | ty::ConstKind::Infer(_) |
| | ty::ConstKind::Bound(_, _) |
| | ty::ConstKind::Placeholder(_) |
| | ty::ConstKind::Expr(_) => Err(EvaluateConstErr::HasGenericsOrInfers), |
| ty::ConstKind::Unevaluated(uv) => { |
| let opt_anon_const_kind = |
| (tcx.def_kind(uv.def) == DefKind::AnonConst).then(|| tcx.anon_const_kind(uv.def)); |
| |
| // Postpone evaluation of constants that depend on generic parameters or |
| // inference variables. |
| // |
| // We use `TypingMode::PostAnalysis` here which is not *technically* correct |
| // to be revealing opaque types here as borrowcheck has not run yet. However, |
| // CTFE itself uses `TypingMode::PostAnalysis` unconditionally even during |
| // typeck and not doing so has a lot of (undesirable) fallout (#101478, #119821). |
| // As a result we always use a revealed env when resolving the instance to evaluate. |
| // |
| // FIXME: `const_eval_resolve_for_typeck` should probably just modify the env itself |
| // instead of having this logic here |
| let (args, typing_env) = match opt_anon_const_kind { |
| // We handle `generic_const_exprs` separately as reasonable ways of handling constants in the type system |
| // completely fall apart under `generic_const_exprs` and makes this whole function Really hard to reason |
| // about if you have to consider gce whatsoever. |
| Some(ty::AnonConstKind::GCE) => { |
| if uv.has_non_region_infer() || uv.has_non_region_param() { |
| // `feature(generic_const_exprs)` causes anon consts to inherit all parent generics. This can cause |
| // inference variables and generic parameters to show up in `ty::Const` even though the anon const |
| // does not actually make use of them. We handle this case specially and attempt to evaluate anyway. |
| match tcx.thir_abstract_const(uv.def) { |
| Ok(Some(ct)) => { |
| let ct = tcx.expand_abstract_consts(ct.instantiate(tcx, uv.args)); |
| if let Err(e) = ct.error_reported() { |
| return Err(EvaluateConstErr::EvaluationFailure(e)); |
| } else if ct.has_non_region_infer() || ct.has_non_region_param() { |
| // If the anon const *does* actually use generic parameters or inference variables from |
| // the generic arguments provided for it, then we should *not* attempt to evaluate it. |
| return Err(EvaluateConstErr::HasGenericsOrInfers); |
| } else { |
| let args = |
| replace_param_and_infer_args_with_placeholder(tcx, uv.args); |
| let typing_env = infcx |
| .typing_env(tcx.erase_regions(param_env)) |
| .with_post_analysis_normalized(tcx); |
| (args, typing_env) |
| } |
| } |
| Err(_) | Ok(None) => { |
| let args = GenericArgs::identity_for_item(tcx, uv.def); |
| let typing_env = ty::TypingEnv::post_analysis(tcx, uv.def); |
| (args, typing_env) |
| } |
| } |
| } else { |
| let typing_env = infcx |
| .typing_env(tcx.erase_regions(param_env)) |
| .with_post_analysis_normalized(tcx); |
| (uv.args, typing_env) |
| } |
| } |
| Some(ty::AnonConstKind::RepeatExprCount) => { |
| if uv.has_non_region_infer() { |
| // Diagnostics will sometimes replace the identity args of anon consts in |
| // array repeat expr counts with inference variables so we have to handle this |
| // even though it is not something we should ever actually encounter. |
| // |
| // Array repeat expr counts are allowed to syntactically use generic parameters |
| // but must not actually depend on them in order to evalaute successfully. This means |
| // that it is actually fine to evalaute them in their own environment rather than with |
| // the actually provided generic arguments. |
| tcx.dcx().delayed_bug("AnonConst with infer args but no error reported"); |
| } |
| |
| // The generic args of repeat expr counts under `min_const_generics` are not supposed to |
| // affect evaluation of the constant as this would make it a "truly" generic const arg. |
| // To prevent this we discard all the generic arguments and evalaute with identity args |
| // and in its own environment instead of the current environment we are normalizing in. |
| let args = GenericArgs::identity_for_item(tcx, uv.def); |
| let typing_env = ty::TypingEnv::post_analysis(tcx, uv.def); |
| |
| (args, typing_env) |
| } |
| _ => { |
| // We are only dealing with "truly" generic/uninferred constants here: |
| // - GCEConsts have been handled separately |
| // - Repeat expr count back compat consts have also been handled separately |
| // So we are free to simply defer evaluation here. |
| // |
| // FIXME: This assumes that `args` are normalized which is not necessarily true |
| // |
| // Const patterns are converted to type system constants before being |
| // evaluated. However, we don't care about them here as pattern evaluation |
| // logic does not go through type system normalization. If it did this would |
| // be a backwards compatibility problem as we do not enforce "syntactic" non- |
| // usage of generic parameters like we do here. |
| if uv.args.has_non_region_param() || uv.args.has_non_region_infer() { |
| return Err(EvaluateConstErr::HasGenericsOrInfers); |
| } |
| |
| let typing_env = infcx |
| .typing_env(tcx.erase_regions(param_env)) |
| .with_post_analysis_normalized(tcx); |
| (uv.args, typing_env) |
| } |
| }; |
| |
| let uv = ty::UnevaluatedConst::new(uv.def, args); |
| let erased_uv = tcx.erase_regions(uv); |
| |
| use rustc_middle::mir::interpret::ErrorHandled; |
| match tcx.const_eval_resolve_for_typeck(typing_env, erased_uv, DUMMY_SP) { |
| Ok(Ok(val)) => Ok(ty::Const::new_value( |
| tcx, |
| val, |
| tcx.type_of(uv.def).instantiate(tcx, uv.args), |
| )), |
| Ok(Err(_)) => { |
| let e = tcx.dcx().delayed_bug( |
| "Type system constant with non valtree'able type evaluated but no error emitted", |
| ); |
| Err(EvaluateConstErr::InvalidConstParamTy(e)) |
| } |
| Err(ErrorHandled::Reported(info, _)) => { |
| Err(EvaluateConstErr::EvaluationFailure(info.into())) |
| } |
| Err(ErrorHandled::TooGeneric(_)) => Err(EvaluateConstErr::HasGenericsOrInfers), |
| } |
| } |
| } |
| } |
| |
| /// Replaces args that reference param or infer variables with suitable |
| /// placeholders. This function is meant to remove these param and infer |
| /// args when they're not actually needed to evaluate a constant. |
| fn replace_param_and_infer_args_with_placeholder<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| args: GenericArgsRef<'tcx>, |
| ) -> GenericArgsRef<'tcx> { |
| struct ReplaceParamAndInferWithPlaceholder<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| idx: ty::BoundVar, |
| } |
| |
| impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceParamAndInferWithPlaceholder<'tcx> { |
| fn cx(&self) -> TyCtxt<'tcx> { |
| self.tcx |
| } |
| |
| fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> { |
| if let ty::Infer(_) = t.kind() { |
| let idx = self.idx; |
| self.idx += 1; |
| Ty::new_placeholder( |
| self.tcx, |
| ty::PlaceholderType { |
| universe: ty::UniverseIndex::ROOT, |
| bound: ty::BoundTy { var: idx, kind: ty::BoundTyKind::Anon }, |
| }, |
| ) |
| } else { |
| t.super_fold_with(self) |
| } |
| } |
| |
| fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> { |
| if let ty::ConstKind::Infer(_) = c.kind() { |
| let idx = self.idx; |
| self.idx += 1; |
| ty::Const::new_placeholder( |
| self.tcx, |
| ty::PlaceholderConst { universe: ty::UniverseIndex::ROOT, bound: idx }, |
| ) |
| } else { |
| c.super_fold_with(self) |
| } |
| } |
| } |
| |
| args.fold_with(&mut ReplaceParamAndInferWithPlaceholder { tcx, idx: ty::BoundVar::ZERO }) |
| } |
| |
| /// Normalizes the predicates and checks whether they hold in an empty environment. If this |
| /// returns true, then either normalize encountered an error or one of the predicates did not |
| /// hold. Used when creating vtables to check for unsatisfiable methods. This should not be |
| /// used during analysis. |
| pub fn impossible_predicates<'tcx>(tcx: TyCtxt<'tcx>, predicates: Vec<ty::Clause<'tcx>>) -> bool { |
| debug!("impossible_predicates(predicates={:?})", predicates); |
| let (infcx, param_env) = tcx |
| .infer_ctxt() |
| .with_next_trait_solver(true) |
| .build_with_typing_env(ty::TypingEnv::fully_monomorphized()); |
| |
| let ocx = ObligationCtxt::new(&infcx); |
| let predicates = ocx.normalize(&ObligationCause::dummy(), param_env, predicates); |
| for predicate in predicates { |
| let obligation = Obligation::new(tcx, ObligationCause::dummy(), param_env, predicate); |
| ocx.register_obligation(obligation); |
| } |
| |
| // Use `select_where_possible` to only return impossible for true errors, |
| // and not ambiguities or overflows. Since the new trait solver forces |
| // some currently undetected overlap between `dyn Trait: Trait` built-in |
| // vs user-written impls to AMBIGUOUS, this may return ambiguity even |
| // with no infer vars. There may also be ways to encounter ambiguity due |
| // to post-mono overflow. |
| let true_errors = ocx.select_where_possible(); |
| if !true_errors.is_empty() { |
| return true; |
| } |
| |
| false |
| } |
| |
| fn instantiate_and_check_impossible_predicates<'tcx>( |
| tcx: TyCtxt<'tcx>, |
| key: (DefId, GenericArgsRef<'tcx>), |
| ) -> bool { |
| debug!("instantiate_and_check_impossible_predicates(key={:?})", key); |
| |
| let mut predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates; |
| |
| // Specifically check trait fulfillment to avoid an error when trying to resolve |
| // associated items. |
| if let Some(trait_def_id) = tcx.trait_of_item(key.0) { |
| let trait_ref = ty::TraitRef::from_method(tcx, trait_def_id, key.1); |
| predicates.push(trait_ref.upcast(tcx)); |
| } |
| |
| predicates.retain(|predicate| !predicate.has_param()); |
| let result = impossible_predicates(tcx, predicates); |
| |
| debug!("instantiate_and_check_impossible_predicates(key={:?}) = {:?}", key, result); |
| result |
| } |
| |
| /// Checks whether a trait's associated item is impossible to reference on a given impl. |
| /// |
| /// This only considers predicates that reference the impl's generics, and not |
| /// those that reference the method's generics. |
| fn is_impossible_associated_item( |
| tcx: TyCtxt<'_>, |
| (impl_def_id, trait_item_def_id): (DefId, DefId), |
| ) -> bool { |
| struct ReferencesOnlyParentGenerics<'tcx> { |
| tcx: TyCtxt<'tcx>, |
| generics: &'tcx ty::Generics, |
| trait_item_def_id: DefId, |
| } |
| impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for ReferencesOnlyParentGenerics<'tcx> { |
| type Result = ControlFlow<()>; |
| fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result { |
| // If this is a parameter from the trait item's own generics, then bail |
| if let ty::Param(param) = *t.kind() |
| && let param_def_id = self.generics.type_param(param, self.tcx).def_id |
| && self.tcx.parent(param_def_id) == self.trait_item_def_id |
| { |
| return ControlFlow::Break(()); |
| } |
| t.super_visit_with(self) |
| } |
| fn visit_region(&mut self, r: ty::Region<'tcx>) -> Self::Result { |
| if let ty::ReEarlyParam(param) = r.kind() |
| && let param_def_id = self.generics.region_param(param, self.tcx).def_id |
| && self.tcx.parent(param_def_id) == self.trait_item_def_id |
| { |
| return ControlFlow::Break(()); |
| } |
| ControlFlow::Continue(()) |
| } |
| fn visit_const(&mut self, ct: ty::Const<'tcx>) -> Self::Result { |
| if let ty::ConstKind::Param(param) = ct.kind() |
| && let param_def_id = self.generics.const_param(param, self.tcx).def_id |
| && self.tcx.parent(param_def_id) == self.trait_item_def_id |
| { |
| return ControlFlow::Break(()); |
| } |
| ct.super_visit_with(self) |
| } |
| } |
| |
| let generics = tcx.generics_of(trait_item_def_id); |
| let predicates = tcx.predicates_of(trait_item_def_id); |
| |
| // Be conservative in cases where we have `W<T: ?Sized>` and a method like `Self: Sized`, |
| // since that method *may* have some substitutions where the predicates hold. |
| // |
| // This replicates the logic we use in coherence. |
| let infcx = tcx |
| .infer_ctxt() |
| .ignoring_regions() |
| .with_next_trait_solver(true) |
| .build(TypingMode::Coherence); |
| let param_env = ty::ParamEnv::empty(); |
| let fresh_args = infcx.fresh_args_for_item(tcx.def_span(impl_def_id), impl_def_id); |
| |
| let impl_trait_ref = tcx |
| .impl_trait_ref(impl_def_id) |
| .expect("expected impl to correspond to trait") |
| .instantiate(tcx, fresh_args); |
| |
| let mut visitor = ReferencesOnlyParentGenerics { tcx, generics, trait_item_def_id }; |
| let predicates_for_trait = predicates.predicates.iter().filter_map(|(pred, span)| { |
| pred.visit_with(&mut visitor).is_continue().then(|| { |
| Obligation::new( |
| tcx, |
| ObligationCause::dummy_with_span(*span), |
| param_env, |
| ty::EarlyBinder::bind(*pred).instantiate(tcx, impl_trait_ref.args), |
| ) |
| }) |
| }); |
| |
| let ocx = ObligationCtxt::new(&infcx); |
| ocx.register_obligations(predicates_for_trait); |
| !ocx.select_where_possible().is_empty() |
| } |
| |
| pub fn provide(providers: &mut Providers) { |
| dyn_compatibility::provide(providers); |
| vtable::provide(providers); |
| *providers = Providers { |
| specialization_graph_of: specialize::specialization_graph_provider, |
| specializes: specialize::specializes, |
| specialization_enabled_in: specialize::specialization_enabled_in, |
| instantiate_and_check_impossible_predicates, |
| is_impossible_associated_item, |
| ..*providers |
| }; |
| } |