blob: 9bfdb511c623c97f34974b9711b443978ffcea3b [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm::{self, ValueRef};
use rustc_const_eval::ErrKind;
use rustc::middle::lang_items;
use rustc::ty;
use rustc::mir::repr as mir;
use abi::{Abi, FnType, ArgType};
use adt;
use base;
use build;
use callee::{Callee, CalleeData, Fn, Intrinsic, NamedTupleConstructor, Virtual};
use common::{self, Block, BlockAndBuilder, LandingPad};
use common::{C_bool, C_str_slice, C_struct, C_u32, C_undef};
use consts;
use debuginfo::DebugLoc;
use Disr;
use machine::{llalign_of_min, llbitsize_of_real};
use meth;
use type_of;
use glue;
use type_::Type;
use rustc_data_structures::fnv::FnvHashMap;
use syntax::parse::token;
use super::{MirContext, LocalRef};
use super::analyze::CleanupKind;
use super::constant::Const;
use super::lvalue::{LvalueRef, load_fat_ptr};
use super::operand::OperandRef;
use super::operand::OperandValue::*;
impl<'bcx, 'tcx> MirContext<'bcx, 'tcx> {
pub fn trans_block(&mut self, bb: mir::BasicBlock) {
let mut bcx = self.bcx(bb);
let mir = self.mir.clone();
let data = &mir[bb];
debug!("trans_block({:?}={:?})", bb, data);
// Create the cleanup bundle, if needed.
let cleanup_pad = bcx.lpad().and_then(|lp| lp.cleanuppad());
let cleanup_bundle = bcx.lpad().and_then(|l| l.bundle());
let funclet_br = |this: &Self, bcx: BlockAndBuilder, bb: mir::BasicBlock| {
let lltarget = this.blocks[bb].llbb;
if let Some(cp) = cleanup_pad {
match this.cleanup_kinds[bb] {
CleanupKind::Funclet => {
// micro-optimization: generate a `ret` rather than a jump
// to a return block
bcx.cleanup_ret(cp, Some(lltarget));
}
CleanupKind::Internal { .. } => bcx.br(lltarget),
CleanupKind::NotCleanup => bug!("jump from cleanup bb to bb {:?}", bb)
}
} else {
bcx.br(lltarget);
}
};
let llblock = |this: &mut Self, target: mir::BasicBlock| {
let lltarget = this.blocks[target].llbb;
if let Some(cp) = cleanup_pad {
match this.cleanup_kinds[target] {
CleanupKind::Funclet => {
// MSVC cross-funclet jump - need a trampoline
debug!("llblock: creating cleanup trampoline for {:?}", target);
let name = &format!("{:?}_cleanup_trampoline_{:?}", bb, target);
let trampoline = this.fcx.new_block(name, None).build();
trampoline.set_personality_fn(this.fcx.eh_personality());
trampoline.cleanup_ret(cp, Some(lltarget));
trampoline.llbb()
}
CleanupKind::Internal { .. } => lltarget,
CleanupKind::NotCleanup =>
bug!("jump from cleanup bb {:?} to bb {:?}", bb, target)
}
} else {
if let (CleanupKind::NotCleanup, CleanupKind::Funclet) =
(this.cleanup_kinds[bb], this.cleanup_kinds[target])
{
// jump *into* cleanup - need a landing pad if GNU
this.landing_pad_to(target).llbb
} else {
lltarget
}
}
};
for statement in &data.statements {
bcx = self.trans_statement(bcx, statement);
}
let terminator = data.terminator();
debug!("trans_block: terminator: {:?}", terminator);
let span = terminator.source_info.span;
let debug_loc = self.debug_loc(terminator.source_info);
debug_loc.apply_to_bcx(&bcx);
debug_loc.apply(bcx.fcx());
match terminator.kind {
mir::TerminatorKind::Resume => {
if let Some(cleanup_pad) = cleanup_pad {
bcx.cleanup_ret(cleanup_pad, None);
} else {
let ps = self.get_personality_slot(&bcx);
let lp = bcx.load(ps);
bcx.with_block(|bcx| {
base::call_lifetime_end(bcx, ps);
base::trans_unwind_resume(bcx, lp);
});
}
}
mir::TerminatorKind::Goto { target } => {
funclet_br(self, bcx, target);
}
mir::TerminatorKind::If { ref cond, targets: (true_bb, false_bb) } => {
let cond = self.trans_operand(&bcx, cond);
let lltrue = llblock(self, true_bb);
let llfalse = llblock(self, false_bb);
bcx.cond_br(cond.immediate(), lltrue, llfalse);
}
mir::TerminatorKind::Switch { ref discr, ref adt_def, ref targets } => {
let discr_lvalue = self.trans_lvalue(&bcx, discr);
let ty = discr_lvalue.ty.to_ty(bcx.tcx());
let repr = adt::represent_type(bcx.ccx(), ty);
let discr = bcx.with_block(|bcx|
adt::trans_get_discr(bcx, &repr, discr_lvalue.llval, None, true)
);
let mut bb_hist = FnvHashMap();
for target in targets {
*bb_hist.entry(target).or_insert(0) += 1;
}
let (default_bb, default_blk) = match bb_hist.iter().max_by_key(|&(_, c)| c) {
// If a single target basic blocks is predominant, promote that to be the
// default case for the switch instruction to reduce the size of the generated
// code. This is especially helpful in cases like an if-let on a huge enum.
// Note: This optimization is only valid for exhaustive matches.
Some((&&bb, &c)) if c > targets.len() / 2 => {
(Some(bb), llblock(self, bb))
}
// We're generating an exhaustive switch, so the else branch
// can't be hit. Branching to an unreachable instruction
// lets LLVM know this
_ => (None, self.unreachable_block().llbb)
};
let switch = bcx.switch(discr, default_blk, targets.len());
assert_eq!(adt_def.variants.len(), targets.len());
for (adt_variant, &target) in adt_def.variants.iter().zip(targets) {
if default_bb != Some(target) {
let llbb = llblock(self, target);
let llval = bcx.with_block(|bcx| adt::trans_case(
bcx, &repr, Disr::from(adt_variant.disr_val)));
build::AddCase(switch, llval, llbb)
}
}
}
mir::TerminatorKind::SwitchInt { ref discr, switch_ty, ref values, ref targets } => {
let (otherwise, targets) = targets.split_last().unwrap();
let discr = bcx.load(self.trans_lvalue(&bcx, discr).llval);
let discr = bcx.with_block(|bcx| base::to_immediate(bcx, discr, switch_ty));
let switch = bcx.switch(discr, llblock(self, *otherwise), values.len());
for (value, target) in values.iter().zip(targets) {
let val = Const::from_constval(bcx.ccx(), value.clone(), switch_ty);
let llbb = llblock(self, *target);
build::AddCase(switch, val.llval, llbb)
}
}
mir::TerminatorKind::Return => {
let ret = bcx.fcx().fn_ty.ret;
if ret.is_ignore() || ret.is_indirect() {
bcx.ret_void();
return;
}
let llval = if let Some(cast_ty) = ret.cast {
let index = mir.local_index(&mir::Lvalue::ReturnPointer).unwrap();
let op = match self.locals[index] {
LocalRef::Operand(Some(op)) => op,
LocalRef::Operand(None) => bug!("use of return before def"),
LocalRef::Lvalue(tr_lvalue) => {
OperandRef {
val: Ref(tr_lvalue.llval),
ty: tr_lvalue.ty.to_ty(bcx.tcx())
}
}
};
let llslot = match op.val {
Immediate(_) | Pair(..) => {
let llscratch = build::AllocaFcx(bcx.fcx(), ret.original_ty, "ret");
self.store_operand(&bcx, llscratch, op);
llscratch
}
Ref(llval) => llval
};
let load = bcx.load(bcx.pointercast(llslot, cast_ty.ptr_to()));
let llalign = llalign_of_min(bcx.ccx(), ret.ty);
unsafe {
llvm::LLVMSetAlignment(load, llalign);
}
load
} else {
let op = self.trans_consume(&bcx, &mir::Lvalue::ReturnPointer);
op.pack_if_pair(&bcx).immediate()
};
bcx.ret(llval);
}
mir::TerminatorKind::Unreachable => {
bcx.unreachable();
}
mir::TerminatorKind::Drop { ref location, target, unwind } => {
let ty = mir.lvalue_ty(bcx.tcx(), location).to_ty(bcx.tcx());
let ty = bcx.monomorphize(&ty);
// Double check for necessity to drop
if !glue::type_needs_drop(bcx.tcx(), ty) {
funclet_br(self, bcx, target);
return;
}
let lvalue = self.trans_lvalue(&bcx, location);
let drop_fn = glue::get_drop_glue(bcx.ccx(), ty);
let drop_ty = glue::get_drop_glue_type(bcx.tcx(), ty);
let llvalue = if drop_ty != ty {
bcx.pointercast(lvalue.llval, type_of::type_of(bcx.ccx(), drop_ty).ptr_to())
} else {
lvalue.llval
};
if let Some(unwind) = unwind {
bcx.invoke(drop_fn,
&[llvalue],
self.blocks[target].llbb,
llblock(self, unwind),
cleanup_bundle);
} else {
bcx.call(drop_fn, &[llvalue], cleanup_bundle);
funclet_br(self, bcx, target);
}
}
mir::TerminatorKind::Assert { ref cond, expected, ref msg, target, cleanup } => {
let cond = self.trans_operand(&bcx, cond).immediate();
let mut const_cond = common::const_to_opt_uint(cond).map(|c| c == 1);
// This case can currently arise only from functions marked
// with #[rustc_inherit_overflow_checks] and inlined from
// another crate (mostly core::num generic/#[inline] fns),
// while the current crate doesn't use overflow checks.
// NOTE: Unlike binops, negation doesn't have its own
// checked operation, just a comparison with the minimum
// value, so we have to check for the assert message.
if !bcx.ccx().check_overflow() {
use rustc_const_math::ConstMathErr::Overflow;
use rustc_const_math::Op::Neg;
if let mir::AssertMessage::Math(Overflow(Neg)) = *msg {
const_cond = Some(expected);
}
}
// Don't translate the panic block if success if known.
if const_cond == Some(expected) {
funclet_br(self, bcx, target);
return;
}
// Pass the condition through llvm.expect for branch hinting.
let expect = bcx.ccx().get_intrinsic(&"llvm.expect.i1");
let cond = bcx.call(expect, &[cond, C_bool(bcx.ccx(), expected)], None);
// Create the failure block and the conditional branch to it.
let lltarget = llblock(self, target);
let panic_block = self.fcx.new_block("panic", None);
if expected {
bcx.cond_br(cond, lltarget, panic_block.llbb);
} else {
bcx.cond_br(cond, panic_block.llbb, lltarget);
}
// After this point, bcx is the block for the call to panic.
bcx = panic_block.build();
debug_loc.apply_to_bcx(&bcx);
// Get the location information.
let loc = bcx.sess().codemap().lookup_char_pos(span.lo);
let filename = token::intern_and_get_ident(&loc.file.name);
let filename = C_str_slice(bcx.ccx(), filename);
let line = C_u32(bcx.ccx(), loc.line as u32);
// Put together the arguments to the panic entry point.
let (lang_item, args, const_err) = match *msg {
mir::AssertMessage::BoundsCheck { ref len, ref index } => {
let len = self.trans_operand(&mut bcx, len).immediate();
let index = self.trans_operand(&mut bcx, index).immediate();
let const_err = common::const_to_opt_uint(len).and_then(|len| {
common::const_to_opt_uint(index).map(|index| {
ErrKind::IndexOutOfBounds {
len: len,
index: index
}
})
});
let file_line = C_struct(bcx.ccx(), &[filename, line], false);
let align = llalign_of_min(bcx.ccx(), common::val_ty(file_line));
let file_line = consts::addr_of(bcx.ccx(),
file_line,
align,
"panic_bounds_check_loc");
(lang_items::PanicBoundsCheckFnLangItem,
vec![file_line, index, len],
const_err)
}
mir::AssertMessage::Math(ref err) => {
let msg_str = token::intern_and_get_ident(err.description());
let msg_str = C_str_slice(bcx.ccx(), msg_str);
let msg_file_line = C_struct(bcx.ccx(),
&[msg_str, filename, line],
false);
let align = llalign_of_min(bcx.ccx(), common::val_ty(msg_file_line));
let msg_file_line = consts::addr_of(bcx.ccx(),
msg_file_line,
align,
"panic_loc");
(lang_items::PanicFnLangItem,
vec![msg_file_line],
Some(ErrKind::Math(err.clone())))
}
};
// If we know we always panic, and the error message
// is also constant, then we can produce a warning.
if const_cond == Some(!expected) {
if let Some(err) = const_err {
let _ = consts::const_err(bcx.ccx(), span,
Err::<(), _>(err),
consts::TrueConst::No);
}
}
// Obtain the panic entry point.
let def_id = common::langcall(bcx.tcx(), Some(span), "", lang_item);
let callee = Callee::def(bcx.ccx(), def_id,
bcx.ccx().empty_substs_for_def_id(def_id));
let llfn = callee.reify(bcx.ccx()).val;
// Translate the actual panic invoke/call.
if let Some(unwind) = cleanup {
bcx.invoke(llfn,
&args,
self.unreachable_block().llbb,
llblock(self, unwind),
cleanup_bundle);
} else {
bcx.call(llfn, &args, cleanup_bundle);
bcx.unreachable();
}
}
mir::TerminatorKind::DropAndReplace { .. } => {
bug!("undesugared DropAndReplace in trans: {:?}", data);
}
mir::TerminatorKind::Call { ref func, ref args, ref destination, ref cleanup } => {
// Create the callee. This is a fn ptr or zero-sized and hence a kind of scalar.
let callee = self.trans_operand(&bcx, func);
let (mut callee, abi, sig) = match callee.ty.sty {
ty::TyFnDef(def_id, substs, f) => {
(Callee::def(bcx.ccx(), def_id, substs), f.abi, &f.sig)
}
ty::TyFnPtr(f) => {
(Callee {
data: Fn(callee.immediate()),
ty: callee.ty
}, f.abi, &f.sig)
}
_ => bug!("{} is not callable", callee.ty)
};
let sig = bcx.tcx().erase_late_bound_regions(sig);
// Handle intrinsics old trans wants Expr's for, ourselves.
let intrinsic = match (&callee.ty.sty, &callee.data) {
(&ty::TyFnDef(def_id, _, _), &Intrinsic) => {
Some(bcx.tcx().item_name(def_id).as_str())
}
_ => None
};
let intrinsic = intrinsic.as_ref().map(|s| &s[..]);
if intrinsic == Some("move_val_init") {
let &(_, target) = destination.as_ref().unwrap();
// The first argument is a thin destination pointer.
let llptr = self.trans_operand(&bcx, &args[0]).immediate();
let val = self.trans_operand(&bcx, &args[1]);
self.store_operand(&bcx, llptr, val);
funclet_br(self, bcx, target);
return;
}
if intrinsic == Some("transmute") {
let &(ref dest, target) = destination.as_ref().unwrap();
self.with_lvalue_ref(&bcx, dest, |this, dest| {
this.trans_transmute(&bcx, &args[0], dest);
});
funclet_br(self, bcx, target);
return;
}
let extra_args = &args[sig.inputs.len()..];
let extra_args = extra_args.iter().map(|op_arg| {
let op_ty = self.mir.operand_ty(bcx.tcx(), op_arg);
bcx.monomorphize(&op_ty)
}).collect::<Vec<_>>();
let fn_ty = callee.direct_fn_type(bcx.ccx(), &extra_args);
// The arguments we'll be passing. Plus one to account for outptr, if used.
let arg_count = fn_ty.args.len() + fn_ty.ret.is_indirect() as usize;
let mut llargs = Vec::with_capacity(arg_count);
// Prepare the return value destination
let ret_dest = if let Some((ref dest, _)) = *destination {
let is_intrinsic = if let Intrinsic = callee.data {
true
} else {
false
};
self.make_return_dest(&bcx, dest, &fn_ty.ret, &mut llargs, is_intrinsic)
} else {
ReturnDest::Nothing
};
// Split the rust-call tupled arguments off.
let (first_args, untuple) = if abi == Abi::RustCall && !args.is_empty() {
let (tup, args) = args.split_last().unwrap();
(args, Some(tup))
} else {
(&args[..], None)
};
let is_shuffle = intrinsic.map_or(false, |name| {
name.starts_with("simd_shuffle")
});
let mut idx = 0;
for arg in first_args {
// The indices passed to simd_shuffle* in the
// third argument must be constant. This is
// checked by const-qualification, which also
// promotes any complex rvalues to constants.
if is_shuffle && idx == 2 {
match *arg {
mir::Operand::Consume(_) => {
span_bug!(span, "shuffle indices must be constant");
}
mir::Operand::Constant(ref constant) => {
let val = self.trans_constant(&bcx, constant);
llargs.push(val.llval);
idx += 1;
continue;
}
}
}
let op = self.trans_operand(&bcx, arg);
self.trans_argument(&bcx, op, &mut llargs, &fn_ty,
&mut idx, &mut callee.data);
}
if let Some(tup) = untuple {
self.trans_arguments_untupled(&bcx, tup, &mut llargs, &fn_ty,
&mut idx, &mut callee.data)
}
let fn_ptr = match callee.data {
NamedTupleConstructor(_) => {
// FIXME translate this like mir::Rvalue::Aggregate.
callee.reify(bcx.ccx()).val
}
Intrinsic => {
use callee::ArgVals;
use expr::{Ignore, SaveIn};
use intrinsic::trans_intrinsic_call;
let (dest, llargs) = match ret_dest {
_ if fn_ty.ret.is_indirect() => {
(SaveIn(llargs[0]), &llargs[1..])
}
ReturnDest::Nothing => (Ignore, &llargs[..]),
ReturnDest::IndirectOperand(dst, _) |
ReturnDest::Store(dst) => (SaveIn(dst), &llargs[..]),
ReturnDest::DirectOperand(_) =>
bug!("Cannot use direct operand with an intrinsic call")
};
bcx.with_block(|bcx| {
trans_intrinsic_call(bcx, callee.ty, &fn_ty,
ArgVals(llargs), dest,
debug_loc);
});
if let ReturnDest::IndirectOperand(dst, _) = ret_dest {
// Make a fake operand for store_return
let op = OperandRef {
val: Ref(dst),
ty: sig.output.unwrap()
};
self.store_return(&bcx, ret_dest, fn_ty.ret, op);
}
if let Some((_, target)) = *destination {
funclet_br(self, bcx, target);
} else {
// trans_intrinsic_call already used Unreachable.
// bcx.unreachable();
}
return;
}
Fn(f) => f,
Virtual(_) => bug!("Virtual fn ptr not extracted")
};
// Many different ways to call a function handled here
if let &Some(cleanup) = cleanup {
let ret_bcx = if let Some((_, target)) = *destination {
self.blocks[target]
} else {
self.unreachable_block()
};
let invokeret = bcx.invoke(fn_ptr,
&llargs,
ret_bcx.llbb,
llblock(self, cleanup),
cleanup_bundle);
fn_ty.apply_attrs_callsite(invokeret);
if destination.is_some() {
let ret_bcx = ret_bcx.build();
ret_bcx.at_start(|ret_bcx| {
debug_loc.apply_to_bcx(ret_bcx);
let op = OperandRef {
val: Immediate(invokeret),
ty: sig.output.unwrap()
};
self.store_return(&ret_bcx, ret_dest, fn_ty.ret, op);
});
}
} else {
let llret = bcx.call(fn_ptr, &llargs, cleanup_bundle);
fn_ty.apply_attrs_callsite(llret);
if let Some((_, target)) = *destination {
let op = OperandRef {
val: Immediate(llret),
ty: sig.output.unwrap()
};
self.store_return(&bcx, ret_dest, fn_ty.ret, op);
funclet_br(self, bcx, target);
} else {
bcx.unreachable();
}
}
}
}
}
fn trans_argument(&mut self,
bcx: &BlockAndBuilder<'bcx, 'tcx>,
op: OperandRef<'tcx>,
llargs: &mut Vec<ValueRef>,
fn_ty: &FnType,
next_idx: &mut usize,
callee: &mut CalleeData) {
if let Pair(a, b) = op.val {
// Treat the values in a fat pointer separately.
if common::type_is_fat_ptr(bcx.tcx(), op.ty) {
let (ptr, meta) = (a, b);
if *next_idx == 0 {
if let Virtual(idx) = *callee {
let llfn = bcx.with_block(|bcx| {
meth::get_virtual_method(bcx, meta, idx)
});
let llty = fn_ty.llvm_type(bcx.ccx()).ptr_to();
*callee = Fn(bcx.pointercast(llfn, llty));
}
}
let imm_op = |x| OperandRef {
val: Immediate(x),
// We won't be checking the type again.
ty: bcx.tcx().types.err
};
self.trans_argument(bcx, imm_op(ptr), llargs, fn_ty, next_idx, callee);
self.trans_argument(bcx, imm_op(meta), llargs, fn_ty, next_idx, callee);
return;
}
}
let arg = &fn_ty.args[*next_idx];
*next_idx += 1;
// Fill padding with undef value, where applicable.
if let Some(ty) = arg.pad {
llargs.push(C_undef(ty));
}
if arg.is_ignore() {
return;
}
// Force by-ref if we have to load through a cast pointer.
let (mut llval, by_ref) = match op.val {
Immediate(_) | Pair(..) => {
if arg.is_indirect() || arg.cast.is_some() {
let llscratch = build::AllocaFcx(bcx.fcx(), arg.original_ty, "arg");
self.store_operand(bcx, llscratch, op);
(llscratch, true)
} else {
(op.pack_if_pair(bcx).immediate(), false)
}
}
Ref(llval) => (llval, true)
};
if by_ref && !arg.is_indirect() {
// Have to load the argument, maybe while casting it.
if arg.original_ty == Type::i1(bcx.ccx()) {
// We store bools as i8 so we need to truncate to i1.
llval = bcx.load_range_assert(llval, 0, 2, llvm::False);
llval = bcx.trunc(llval, arg.original_ty);
} else if let Some(ty) = arg.cast {
llval = bcx.load(bcx.pointercast(llval, ty.ptr_to()));
let llalign = llalign_of_min(bcx.ccx(), arg.ty);
unsafe {
llvm::LLVMSetAlignment(llval, llalign);
}
} else {
llval = bcx.load(llval);
}
}
llargs.push(llval);
}
fn trans_arguments_untupled(&mut self,
bcx: &BlockAndBuilder<'bcx, 'tcx>,
operand: &mir::Operand<'tcx>,
llargs: &mut Vec<ValueRef>,
fn_ty: &FnType,
next_idx: &mut usize,
callee: &mut CalleeData) {
let tuple = self.trans_operand(bcx, operand);
let arg_types = match tuple.ty.sty {
ty::TyTuple(ref tys) => tys,
_ => span_bug!(self.mir.span,
"bad final argument to \"rust-call\" fn {:?}", tuple.ty)
};
// Handle both by-ref and immediate tuples.
match tuple.val {
Ref(llval) => {
let base_repr = adt::represent_type(bcx.ccx(), tuple.ty);
let base = adt::MaybeSizedValue::sized(llval);
for (n, &ty) in arg_types.iter().enumerate() {
let ptr = adt::trans_field_ptr_builder(bcx, &base_repr, base, Disr(0), n);
let val = if common::type_is_fat_ptr(bcx.tcx(), ty) {
let (lldata, llextra) = load_fat_ptr(bcx, ptr);
Pair(lldata, llextra)
} else {
// trans_argument will load this if it needs to
Ref(ptr)
};
let op = OperandRef {
val: val,
ty: ty
};
self.trans_argument(bcx, op, llargs, fn_ty, next_idx, callee);
}
}
Immediate(llval) => {
for (n, &ty) in arg_types.iter().enumerate() {
let mut elem = bcx.extract_value(llval, n);
// Truncate bools to i1, if needed
if ty.is_bool() && common::val_ty(elem) != Type::i1(bcx.ccx()) {
elem = bcx.trunc(elem, Type::i1(bcx.ccx()));
}
// If the tuple is immediate, the elements are as well
let op = OperandRef {
val: Immediate(elem),
ty: ty
};
self.trans_argument(bcx, op, llargs, fn_ty, next_idx, callee);
}
}
Pair(a, b) => {
let elems = [a, b];
for (n, &ty) in arg_types.iter().enumerate() {
let mut elem = elems[n];
// Truncate bools to i1, if needed
if ty.is_bool() && common::val_ty(elem) != Type::i1(bcx.ccx()) {
elem = bcx.trunc(elem, Type::i1(bcx.ccx()));
}
// Pair is always made up of immediates
let op = OperandRef {
val: Immediate(elem),
ty: ty
};
self.trans_argument(bcx, op, llargs, fn_ty, next_idx, callee);
}
}
}
}
fn get_personality_slot(&mut self, bcx: &BlockAndBuilder<'bcx, 'tcx>) -> ValueRef {
let ccx = bcx.ccx();
if let Some(slot) = self.llpersonalityslot {
slot
} else {
let llretty = Type::struct_(ccx, &[Type::i8p(ccx), Type::i32(ccx)], false);
bcx.with_block(|bcx| {
let slot = base::alloca(bcx, llretty, "personalityslot");
self.llpersonalityslot = Some(slot);
base::call_lifetime_start(bcx, slot);
slot
})
}
}
/// Return the landingpad wrapper around the given basic block
///
/// No-op in MSVC SEH scheme.
fn landing_pad_to(&mut self, target_bb: mir::BasicBlock) -> Block<'bcx, 'tcx>
{
if let Some(block) = self.landing_pads[target_bb] {
return block;
}
if base::wants_msvc_seh(self.fcx.ccx.sess()) {
return self.blocks[target_bb];
}
let target = self.bcx(target_bb);
let block = self.fcx.new_block("cleanup", None);
self.landing_pads[target_bb] = Some(block);
let bcx = block.build();
let ccx = bcx.ccx();
let llpersonality = self.fcx.eh_personality();
let llretty = Type::struct_(ccx, &[Type::i8p(ccx), Type::i32(ccx)], false);
let llretval = bcx.landing_pad(llretty, llpersonality, 1, self.fcx.llfn);
bcx.set_cleanup(llretval);
let slot = self.get_personality_slot(&bcx);
bcx.store(llretval, slot);
bcx.br(target.llbb());
block
}
pub fn init_cpad(&mut self, bb: mir::BasicBlock) {
let bcx = self.bcx(bb);
let data = &self.mir[bb];
debug!("init_cpad({:?})", data);
match self.cleanup_kinds[bb] {
CleanupKind::NotCleanup => {
bcx.set_lpad(None)
}
_ if !base::wants_msvc_seh(bcx.sess()) => {
bcx.set_lpad(Some(LandingPad::gnu()))
}
CleanupKind::Internal { funclet } => {
// FIXME: is this needed?
bcx.set_personality_fn(self.fcx.eh_personality());
bcx.set_lpad_ref(self.bcx(funclet).lpad());
}
CleanupKind::Funclet => {
bcx.set_personality_fn(self.fcx.eh_personality());
DebugLoc::None.apply_to_bcx(&bcx);
let cleanup_pad = bcx.cleanup_pad(None, &[]);
bcx.set_lpad(Some(LandingPad::msvc(cleanup_pad)));
}
};
}
fn unreachable_block(&mut self) -> Block<'bcx, 'tcx> {
self.unreachable_block.unwrap_or_else(|| {
let bl = self.fcx.new_block("unreachable", None);
bl.build().unreachable();
self.unreachable_block = Some(bl);
bl
})
}
fn bcx(&self, bb: mir::BasicBlock) -> BlockAndBuilder<'bcx, 'tcx> {
self.blocks[bb].build()
}
fn make_return_dest(&mut self, bcx: &BlockAndBuilder<'bcx, 'tcx>,
dest: &mir::Lvalue<'tcx>, fn_ret_ty: &ArgType,
llargs: &mut Vec<ValueRef>, is_intrinsic: bool) -> ReturnDest {
// If the return is ignored, we can just return a do-nothing ReturnDest
if fn_ret_ty.is_ignore() {
return ReturnDest::Nothing;
}
let dest = if let Some(index) = self.mir.local_index(dest) {
let ret_ty = self.lvalue_ty(dest);
match self.locals[index] {
LocalRef::Lvalue(dest) => dest,
LocalRef::Operand(None) => {
// Handle temporary lvalues, specifically Operand ones, as
// they don't have allocas
return if fn_ret_ty.is_indirect() {
// Odd, but possible, case, we have an operand temporary,
// but the calling convention has an indirect return.
let tmp = bcx.with_block(|bcx| {
base::alloc_ty(bcx, ret_ty, "tmp_ret")
});
llargs.push(tmp);
ReturnDest::IndirectOperand(tmp, index)
} else if is_intrinsic {
// Currently, intrinsics always need a location to store
// the result. so we create a temporary alloca for the
// result
let tmp = bcx.with_block(|bcx| {
base::alloc_ty(bcx, ret_ty, "tmp_ret")
});
ReturnDest::IndirectOperand(tmp, index)
} else {
ReturnDest::DirectOperand(index)
};
}
LocalRef::Operand(Some(_)) => {
bug!("lvalue local already assigned to");
}
}
} else {
self.trans_lvalue(bcx, dest)
};
if fn_ret_ty.is_indirect() {
llargs.push(dest.llval);
ReturnDest::Nothing
} else {
ReturnDest::Store(dest.llval)
}
}
fn trans_transmute(&mut self, bcx: &BlockAndBuilder<'bcx, 'tcx>,
src: &mir::Operand<'tcx>, dst: LvalueRef<'tcx>) {
let mut val = self.trans_operand(bcx, src);
if let ty::TyFnDef(def_id, substs, _) = val.ty.sty {
let llouttype = type_of::type_of(bcx.ccx(), dst.ty.to_ty(bcx.tcx()));
let out_type_size = llbitsize_of_real(bcx.ccx(), llouttype);
if out_type_size != 0 {
// FIXME #19925 Remove this hack after a release cycle.
let f = Callee::def(bcx.ccx(), def_id, substs);
let datum = f.reify(bcx.ccx());
val = OperandRef {
val: Immediate(datum.val),
ty: datum.ty
};
}
}
let llty = type_of::type_of(bcx.ccx(), val.ty);
let cast_ptr = bcx.pointercast(dst.llval, llty.ptr_to());
self.store_operand(bcx, cast_ptr, val);
}
// Stores the return value of a function call into it's final location.
fn store_return(&mut self,
bcx: &BlockAndBuilder<'bcx, 'tcx>,
dest: ReturnDest,
ret_ty: ArgType,
op: OperandRef<'tcx>) {
use self::ReturnDest::*;
match dest {
Nothing => (),
Store(dst) => ret_ty.store(bcx, op.immediate(), dst),
IndirectOperand(tmp, index) => {
let op = self.trans_load(bcx, tmp, op.ty);
self.locals[index] = LocalRef::Operand(Some(op));
}
DirectOperand(index) => {
// If there is a cast, we have to store and reload.
let op = if ret_ty.cast.is_some() {
let tmp = bcx.with_block(|bcx| {
base::alloc_ty(bcx, op.ty, "tmp_ret")
});
ret_ty.store(bcx, op.immediate(), tmp);
self.trans_load(bcx, tmp, op.ty)
} else {
op.unpack_if_pair(bcx)
};
self.locals[index] = LocalRef::Operand(Some(op));
}
}
}
}
enum ReturnDest {
// Do nothing, the return value is indirect or ignored
Nothing,
// Store the return value to the pointer
Store(ValueRef),
// Stores an indirect return value to an operand local lvalue
IndirectOperand(ValueRef, mir::Local),
// Stores a direct return value to an operand local lvalue
DirectOperand(mir::Local)
}