blob: b952e8814a361adec72a9e3fec9ad9b7dccd3d48 [file] [log] [blame]
use super::{Parser, Restrictions, PrevTokenKind, SemiColonMode, BlockMode};
use super::expr::LhsExpr;
use super::path::PathStyle;
use super::pat::GateOr;
use super::diagnostics::Error;
use crate::maybe_whole;
use crate::DirectoryOwnership;
use syntax::ThinVec;
use syntax::ptr::P;
use syntax::ast;
use syntax::ast::{DUMMY_NODE_ID, Stmt, StmtKind, Local, Block, BlockCheckMode, Expr, ExprKind};
use syntax::ast::{Attribute, AttrStyle, VisibilityKind, MacStmtStyle, Mac};
use syntax::util::classify;
use syntax::token;
use syntax::source_map::{respan, Span};
use syntax::symbol::{kw, sym};
use std::mem;
use errors::{PResult, Applicability};
impl<'a> Parser<'a> {
/// Parses a statement. This stops just before trailing semicolons on everything but items.
/// e.g., a `StmtKind::Semi` parses to a `StmtKind::Expr`, leaving the trailing `;` unconsumed.
pub fn parse_stmt(&mut self) -> PResult<'a, Option<Stmt>> {
Ok(self.parse_stmt_(true))
}
fn parse_stmt_(&mut self, macro_legacy_warnings: bool) -> Option<Stmt> {
self.parse_stmt_without_recovery(macro_legacy_warnings).unwrap_or_else(|mut e| {
e.emit();
self.recover_stmt_(SemiColonMode::Break, BlockMode::Ignore);
None
})
}
fn parse_stmt_without_recovery(
&mut self,
macro_legacy_warnings: bool,
) -> PResult<'a, Option<Stmt>> {
maybe_whole!(self, NtStmt, |x| Some(x));
let attrs = self.parse_outer_attributes()?;
let lo = self.token.span;
Ok(Some(if self.eat_keyword(kw::Let) {
Stmt {
id: DUMMY_NODE_ID,
kind: StmtKind::Local(self.parse_local(attrs.into())?),
span: lo.to(self.prev_span),
}
} else if let Some(macro_def) = self.eat_macro_def(
&attrs,
&respan(lo, VisibilityKind::Inherited),
lo,
)? {
Stmt {
id: DUMMY_NODE_ID,
kind: StmtKind::Item(macro_def),
span: lo.to(self.prev_span),
}
// Starts like a simple path, being careful to avoid contextual keywords
// such as a union items, item with `crate` visibility or auto trait items.
// Our goal here is to parse an arbitrary path `a::b::c` but not something that starts
// like a path (1 token), but it fact not a path.
// `union::b::c` - path, `union U { ... }` - not a path.
// `crate::b::c` - path, `crate struct S;` - not a path.
} else if self.token.is_path_start() &&
!self.token.is_qpath_start() &&
!self.is_union_item() &&
!self.is_crate_vis() &&
!self.is_auto_trait_item() &&
!self.is_async_fn() {
let path = self.parse_path(PathStyle::Expr)?;
if !self.eat(&token::Not) {
let expr = if self.check(&token::OpenDelim(token::Brace)) {
self.parse_struct_expr(lo, path, ThinVec::new())?
} else {
let hi = self.prev_span;
self.mk_expr(lo.to(hi), ExprKind::Path(None, path), ThinVec::new())
};
let expr = self.with_res(Restrictions::STMT_EXPR, |this| {
let expr = this.parse_dot_or_call_expr_with(expr, lo, attrs.into())?;
this.parse_assoc_expr_with(0, LhsExpr::AlreadyParsed(expr))
})?;
return Ok(Some(Stmt {
id: DUMMY_NODE_ID,
kind: StmtKind::Expr(expr),
span: lo.to(self.prev_span),
}));
}
let args = self.parse_mac_args()?;
let delim = args.delim();
let hi = self.prev_span;
let style = if delim == token::Brace {
MacStmtStyle::Braces
} else {
MacStmtStyle::NoBraces
};
let mac = Mac {
path,
args,
prior_type_ascription: self.last_type_ascription,
};
let kind = if delim == token::Brace ||
self.token == token::Semi || self.token == token::Eof {
StmtKind::Mac(P((mac, style, attrs.into())))
}
// We used to incorrectly stop parsing macro-expanded statements here.
// If the next token will be an error anyway but could have parsed with the
// earlier behavior, stop parsing here and emit a warning to avoid breakage.
else if macro_legacy_warnings && self.token.can_begin_expr() &&
match self.token.kind {
// These can continue an expression, so we can't stop parsing and warn.
token::OpenDelim(token::Paren) | token::OpenDelim(token::Bracket) |
token::BinOp(token::Minus) | token::BinOp(token::Star) |
token::BinOp(token::And) | token::BinOp(token::Or) |
token::AndAnd | token::OrOr |
token::DotDot | token::DotDotDot | token::DotDotEq => false,
_ => true,
}
{
self.warn_missing_semicolon();
StmtKind::Mac(P((mac, style, attrs.into())))
} else {
let e = self.mk_expr(lo.to(hi), ExprKind::Mac(mac), ThinVec::new());
let e = self.maybe_recover_from_bad_qpath(e, true)?;
let e = self.parse_dot_or_call_expr_with(e, lo, attrs.into())?;
let e = self.parse_assoc_expr_with(0, LhsExpr::AlreadyParsed(e))?;
StmtKind::Expr(e)
};
Stmt {
id: DUMMY_NODE_ID,
span: lo.to(hi),
kind,
}
} else {
// FIXME: Bad copy of attrs
let old_directory_ownership =
mem::replace(&mut self.directory.ownership, DirectoryOwnership::UnownedViaBlock);
let item = self.parse_item_(attrs.clone(), false, true)?;
self.directory.ownership = old_directory_ownership;
match item {
Some(i) => Stmt {
id: DUMMY_NODE_ID,
span: lo.to(i.span),
kind: StmtKind::Item(i),
},
None => {
let unused_attrs = |attrs: &[Attribute], s: &mut Self| {
if !attrs.is_empty() {
if s.prev_token_kind == PrevTokenKind::DocComment {
s.span_fatal_err(s.prev_span, Error::UselessDocComment).emit();
} else if attrs.iter().any(|a| a.style == AttrStyle::Outer) {
s.span_err(
s.token.span, "expected statement after outer attribute"
);
}
}
};
// Do not attempt to parse an expression if we're done here.
if self.token == token::Semi {
unused_attrs(&attrs, self);
self.bump();
let mut last_semi = lo;
while self.token == token::Semi {
last_semi = self.token.span;
self.bump();
}
// We are encoding a string of semicolons as an
// an empty tuple that spans the excess semicolons
// to preserve this info until the lint stage
return Ok(Some(Stmt {
id: DUMMY_NODE_ID,
span: lo.to(last_semi),
kind: StmtKind::Semi(self.mk_expr(lo.to(last_semi),
ExprKind::Tup(Vec::new()),
ThinVec::new()
)),
}));
}
if self.token == token::CloseDelim(token::Brace) {
unused_attrs(&attrs, self);
return Ok(None);
}
// Remainder are line-expr stmts.
let e = self.parse_expr_res(
Restrictions::STMT_EXPR, Some(attrs.into()))?;
Stmt {
id: DUMMY_NODE_ID,
span: lo.to(e.span),
kind: StmtKind::Expr(e),
}
}
}
}))
}
/// Parses a local variable declaration.
fn parse_local(&mut self, attrs: ThinVec<Attribute>) -> PResult<'a, P<Local>> {
let lo = self.prev_span;
let pat = self.parse_top_pat(GateOr::Yes)?;
let (err, ty) = if self.eat(&token::Colon) {
// Save the state of the parser before parsing type normally, in case there is a `:`
// instead of an `=` typo.
let parser_snapshot_before_type = self.clone();
let colon_sp = self.prev_span;
match self.parse_ty() {
Ok(ty) => (None, Some(ty)),
Err(mut err) => {
// Rewind to before attempting to parse the type and continue parsing.
let parser_snapshot_after_type = self.clone();
mem::replace(self, parser_snapshot_before_type);
let snippet = self.span_to_snippet(pat.span).unwrap();
err.span_label(pat.span, format!("while parsing the type for `{}`", snippet));
(Some((parser_snapshot_after_type, colon_sp, err)), None)
}
}
} else {
(None, None)
};
let init = match (self.parse_initializer(err.is_some()), err) {
(Ok(init), None) => { // init parsed, ty parsed
init
}
(Ok(init), Some((_, colon_sp, mut err))) => { // init parsed, ty error
// Could parse the type as if it were the initializer, it is likely there was a
// typo in the code: `:` instead of `=`. Add suggestion and emit the error.
err.span_suggestion_short(
colon_sp,
"use `=` if you meant to assign",
" =".to_string(),
Applicability::MachineApplicable
);
err.emit();
// As this was parsed successfully, continue as if the code has been fixed for the
// rest of the file. It will still fail due to the emitted error, but we avoid
// extra noise.
init
}
(Err(mut init_err), Some((snapshot, _, ty_err))) => { // init error, ty error
init_err.cancel();
// Couldn't parse the type nor the initializer, only raise the type error and
// return to the parser state before parsing the type as the initializer.
// let x: <parse_error>;
mem::replace(self, snapshot);
return Err(ty_err);
}
(Err(err), None) => { // init error, ty parsed
// Couldn't parse the initializer and we're not attempting to recover a failed
// parse of the type, return the error.
return Err(err);
}
};
let hi = if self.token == token::Semi {
self.token.span
} else {
self.prev_span
};
Ok(P(ast::Local {
ty,
pat,
init,
id: DUMMY_NODE_ID,
span: lo.to(hi),
attrs,
}))
}
/// Parses the RHS of a local variable declaration (e.g., '= 14;').
fn parse_initializer(&mut self, skip_eq: bool) -> PResult<'a, Option<P<Expr>>> {
if self.eat(&token::Eq) {
Ok(Some(self.parse_expr()?))
} else if skip_eq {
Ok(Some(self.parse_expr()?))
} else {
Ok(None)
}
}
fn is_auto_trait_item(&self) -> bool {
// auto trait
(self.token.is_keyword(kw::Auto) &&
self.is_keyword_ahead(1, &[kw::Trait]))
|| // unsafe auto trait
(self.token.is_keyword(kw::Unsafe) &&
self.is_keyword_ahead(1, &[kw::Auto]) &&
self.is_keyword_ahead(2, &[kw::Trait]))
}
/// Parses a block. No inner attributes are allowed.
pub fn parse_block(&mut self) -> PResult<'a, P<Block>> {
maybe_whole!(self, NtBlock, |x| x);
let lo = self.token.span;
if !self.eat(&token::OpenDelim(token::Brace)) {
let sp = self.token.span;
let tok = self.this_token_descr();
let mut e = self.span_fatal(sp, &format!("expected `{{`, found {}", tok));
let do_not_suggest_help =
self.token.is_keyword(kw::In) || self.token == token::Colon;
if self.token.is_ident_named(sym::and) {
e.span_suggestion_short(
self.token.span,
"use `&&` instead of `and` for the boolean operator",
"&&".to_string(),
Applicability::MaybeIncorrect,
);
}
if self.token.is_ident_named(sym::or) {
e.span_suggestion_short(
self.token.span,
"use `||` instead of `or` for the boolean operator",
"||".to_string(),
Applicability::MaybeIncorrect,
);
}
// Check to see if the user has written something like
//
// if (cond)
// bar;
//
// which is valid in other languages, but not Rust.
match self.parse_stmt_without_recovery(false) {
Ok(Some(stmt)) => {
if self.look_ahead(1, |t| t == &token::OpenDelim(token::Brace))
|| do_not_suggest_help {
// If the next token is an open brace (e.g., `if a b {`), the place-
// inside-a-block suggestion would be more likely wrong than right.
e.span_label(sp, "expected `{`");
return Err(e);
}
let mut stmt_span = stmt.span;
// Expand the span to include the semicolon, if it exists.
if self.eat(&token::Semi) {
stmt_span = stmt_span.with_hi(self.prev_span.hi());
}
if let Ok(snippet) = self.span_to_snippet(stmt_span) {
e.span_suggestion(
stmt_span,
"try placing this code inside a block",
format!("{{ {} }}", snippet),
// Speculative; has been misleading in the past (#46836).
Applicability::MaybeIncorrect,
);
}
}
Err(mut e) => {
self.recover_stmt_(SemiColonMode::Break, BlockMode::Ignore);
e.cancel();
}
_ => ()
}
e.span_label(sp, "expected `{`");
return Err(e);
}
self.parse_block_tail(lo, BlockCheckMode::Default)
}
/// Parses a block. Inner attributes are allowed.
pub(super) fn parse_inner_attrs_and_block(
&mut self
) -> PResult<'a, (Vec<Attribute>, P<Block>)> {
maybe_whole!(self, NtBlock, |x| (Vec::new(), x));
let lo = self.token.span;
self.expect(&token::OpenDelim(token::Brace))?;
Ok((self.parse_inner_attributes()?,
self.parse_block_tail(lo, BlockCheckMode::Default)?))
}
/// Parses the rest of a block expression or function body.
/// Precondition: already parsed the '{'.
pub(super) fn parse_block_tail(
&mut self,
lo: Span,
s: BlockCheckMode
) -> PResult<'a, P<Block>> {
let mut stmts = vec![];
while !self.eat(&token::CloseDelim(token::Brace)) {
if self.token == token::Eof {
break;
}
let stmt = match self.parse_full_stmt(false) {
Err(mut err) => {
self.maybe_annotate_with_ascription(&mut err, false);
err.emit();
self.recover_stmt_(SemiColonMode::Ignore, BlockMode::Ignore);
Some(Stmt {
id: DUMMY_NODE_ID,
kind: StmtKind::Expr(self.mk_expr_err(self.token.span)),
span: self.token.span,
})
}
Ok(stmt) => stmt,
};
if let Some(stmt) = stmt {
stmts.push(stmt);
} else {
// Found only `;` or `}`.
continue;
};
}
Ok(P(ast::Block {
stmts,
id: DUMMY_NODE_ID,
rules: s,
span: lo.to(self.prev_span),
}))
}
/// Parses a statement, including the trailing semicolon.
pub fn parse_full_stmt(&mut self, macro_legacy_warnings: bool) -> PResult<'a, Option<Stmt>> {
// Skip looking for a trailing semicolon when we have an interpolated statement.
maybe_whole!(self, NtStmt, |x| Some(x));
let mut stmt = match self.parse_stmt_without_recovery(macro_legacy_warnings)? {
Some(stmt) => stmt,
None => return Ok(None),
};
let mut eat_semi = true;
match stmt.kind {
StmtKind::Expr(ref expr) if self.token != token::Eof => {
// expression without semicolon
if classify::expr_requires_semi_to_be_stmt(expr) {
// Just check for errors and recover; do not eat semicolon yet.
if let Err(mut e) =
self.expect_one_of(&[], &[token::Semi, token::CloseDelim(token::Brace)])
{
e.emit();
self.recover_stmt();
// Don't complain about type errors in body tail after parse error (#57383).
let sp = expr.span.to(self.prev_span);
stmt.kind = StmtKind::Expr(self.mk_expr_err(sp));
}
}
}
StmtKind::Local(..) => {
// We used to incorrectly allow a macro-expanded let statement to lack a semicolon.
if macro_legacy_warnings && self.token != token::Semi {
self.warn_missing_semicolon();
} else {
self.expect_semi()?;
eat_semi = false;
}
}
_ => {}
}
if eat_semi && self.eat(&token::Semi) {
stmt = stmt.add_trailing_semicolon();
}
stmt.span = stmt.span.to(self.prev_span);
Ok(Some(stmt))
}
fn warn_missing_semicolon(&self) {
self.diagnostic().struct_span_warn(self.token.span, {
&format!("expected `;`, found {}", self.this_token_descr())
}).note({
"this was erroneously allowed and will become a hard error in a future release"
}).emit();
}
}