blob: 833090c3ee092342a836cad6eafdc9a059a9fd83 [file] [log] [blame]
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The Rust HIR.
pub use self::BinOp_::*;
pub use self::BlockCheckMode::*;
pub use self::CaptureClause::*;
pub use self::Decl_::*;
pub use self::Expr_::*;
pub use self::FunctionRetTy::*;
pub use self::ForeignItem_::*;
pub use self::Item_::*;
pub use self::Mutability::*;
pub use self::PrimTy::*;
pub use self::Stmt_::*;
pub use self::Ty_::*;
pub use self::TyParamBound::*;
pub use self::UnOp::*;
pub use self::UnsafeSource::*;
pub use self::Visibility::{Public, Inherited};
use hir::def::Def;
use hir::def_id::{DefId, DefIndex, LocalDefId, CRATE_DEF_INDEX};
use util::nodemap::{NodeMap, FxHashSet};
use mir::mono::Linkage;
use syntax_pos::{Span, DUMMY_SP};
use syntax::codemap::{self, Spanned};
use rustc_target::spec::abi::Abi;
use syntax::ast::{self, CrateSugar, Ident, Name, NodeId, DUMMY_NODE_ID, AsmDialect};
use syntax::ast::{Attribute, Lit, StrStyle, FloatTy, IntTy, UintTy, MetaItem};
use syntax::attr::InlineAttr;
use syntax::ext::hygiene::SyntaxContext;
use syntax::ptr::P;
use syntax::symbol::{Symbol, keywords};
use syntax::tokenstream::TokenStream;
use syntax::util::ThinVec;
use syntax::util::parser::ExprPrecedence;
use ty::AdtKind;
use ty::query::Providers;
use rustc_data_structures::indexed_vec;
use rustc_data_structures::sync::{ParallelIterator, par_iter, Send, Sync, scope};
use serialize::{self, Encoder, Encodable, Decoder, Decodable};
use std::collections::BTreeMap;
use std::fmt;
use std::iter;
use std::slice;
/// HIR doesn't commit to a concrete storage type and has its own alias for a vector.
/// It can be `Vec`, `P<[T]>` or potentially `Box<[T]>`, or some other container with similar
/// behavior. Unlike AST, HIR is mostly a static structure, so we can use an owned slice instead
/// of `Vec` to avoid keeping extra capacity.
pub type HirVec<T> = P<[T]>;
macro_rules! hir_vec {
($elem:expr; $n:expr) => (
$crate::hir::HirVec::from(vec![$elem; $n])
);
($($x:expr),*) => (
$crate::hir::HirVec::from(vec![$($x),*])
);
($($x:expr,)*) => (hir_vec![$($x),*])
}
pub mod check_attr;
pub mod def;
pub mod def_id;
pub mod intravisit;
pub mod itemlikevisit;
pub mod lowering;
pub mod map;
pub mod pat_util;
pub mod print;
pub mod svh;
/// A HirId uniquely identifies a node in the HIR of the current crate. It is
/// composed of the `owner`, which is the DefIndex of the directly enclosing
/// hir::Item, hir::TraitItem, or hir::ImplItem (i.e. the closest "item-like"),
/// and the `local_id` which is unique within the given owner.
///
/// This two-level structure makes for more stable values: One can move an item
/// around within the source code, or add or remove stuff before it, without
/// the local_id part of the HirId changing, which is a very useful property in
/// incremental compilation where we have to persist things through changes to
/// the code base.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
pub struct HirId {
pub owner: DefIndex,
pub local_id: ItemLocalId,
}
impl HirId {
pub fn owner_def_id(self) -> DefId {
DefId::local(self.owner)
}
pub fn owner_local_def_id(self) -> LocalDefId {
LocalDefId::from_def_id(DefId::local(self.owner))
}
}
impl serialize::UseSpecializedEncodable for HirId {
fn default_encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
let HirId {
owner,
local_id,
} = *self;
owner.encode(s)?;
local_id.encode(s)
}
}
impl serialize::UseSpecializedDecodable for HirId {
fn default_decode<D: Decoder>(d: &mut D) -> Result<HirId, D::Error> {
let owner = DefIndex::decode(d)?;
let local_id = ItemLocalId::decode(d)?;
Ok(HirId {
owner,
local_id
})
}
}
/// An `ItemLocalId` uniquely identifies something within a given "item-like",
/// that is within a hir::Item, hir::TraitItem, or hir::ImplItem. There is no
/// guarantee that the numerical value of a given `ItemLocalId` corresponds to
/// the node's position within the owning item in any way, but there is a
/// guarantee that the `LocalItemId`s within an owner occupy a dense range of
/// integers starting at zero, so a mapping that maps all or most nodes within
/// an "item-like" to something else can be implement by a `Vec` instead of a
/// tree or hash map.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug,
RustcEncodable, RustcDecodable)]
pub struct ItemLocalId(pub u32);
impl ItemLocalId {
pub fn as_usize(&self) -> usize {
self.0 as usize
}
}
impl indexed_vec::Idx for ItemLocalId {
fn new(idx: usize) -> Self {
debug_assert!((idx as u32) as usize == idx);
ItemLocalId(idx as u32)
}
fn index(self) -> usize {
self.0 as usize
}
}
/// The `HirId` corresponding to CRATE_NODE_ID and CRATE_DEF_INDEX
pub const CRATE_HIR_ID: HirId = HirId {
owner: CRATE_DEF_INDEX,
local_id: ItemLocalId(0)
};
pub const DUMMY_HIR_ID: HirId = HirId {
owner: CRATE_DEF_INDEX,
local_id: DUMMY_ITEM_LOCAL_ID,
};
pub const DUMMY_ITEM_LOCAL_ID: ItemLocalId = ItemLocalId(!0);
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub struct Label {
pub name: Name,
pub span: Span,
}
impl fmt::Debug for Label {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "label({:?})", self.name)
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub struct Lifetime {
pub id: NodeId,
pub span: Span,
/// Either "'a", referring to a named lifetime definition,
/// or "" (aka keywords::Invalid), for elision placeholders.
///
/// HIR lowering inserts these placeholders in type paths that
/// refer to type definitions needing lifetime parameters,
/// `&T` and `&mut T`, and trait objects without `... + 'a`.
pub name: LifetimeName,
}
#[derive(Debug, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Copy)]
pub enum LifetimeName {
/// User typed nothing. e.g. the lifetime in `&u32`.
Implicit,
/// User typed `'_`.
Underscore,
/// Synthetic name generated when user elided a lifetime in an impl header,
/// e.g. the lifetimes in cases like these:
///
/// impl Foo for &u32
/// impl Foo<'_> for u32
///
/// in that case, we rewrite to
///
/// impl<'f> Foo for &'f u32
/// impl<'f> Foo<'f> for u32
///
/// where `'f` is something like `Fresh(0)`. The indices are
/// unique per impl, but not necessarily continuous.
Fresh(usize),
/// User wrote `'static`
Static,
/// Some user-given name like `'x`
Name(Name),
}
impl LifetimeName {
pub fn name(&self) -> Name {
use self::LifetimeName::*;
match *self {
Implicit => keywords::Invalid.name(),
Fresh(_) | Underscore => keywords::UnderscoreLifetime.name(),
Static => keywords::StaticLifetime.name(),
Name(name) => name,
}
}
}
impl fmt::Debug for Lifetime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f,
"lifetime({}: {})",
self.id,
print::to_string(print::NO_ANN, |s| s.print_lifetime(self)))
}
}
impl Lifetime {
pub fn is_elided(&self) -> bool {
use self::LifetimeName::*;
match self.name {
Implicit | Underscore => true,
// It might seem surprising that `Fresh(_)` counts as
// *not* elided -- but this is because, as far as the code
// in the compiler is concerned -- `Fresh(_)` variants act
// equivalently to "some fresh name". They correspond to
// early-bound regions on an impl, in other words.
Fresh(_) | Static | Name(_) => false,
}
}
pub fn is_static(&self) -> bool {
self.name == LifetimeName::Static
}
}
/// A lifetime definition, eg `'a: 'b+'c+'d`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct LifetimeDef {
pub lifetime: Lifetime,
pub bounds: HirVec<Lifetime>,
pub pure_wrt_drop: bool,
// Indicates that the lifetime definition was synthetically added
// as a result of an in-band lifetime usage like
// `fn foo(x: &'a u8) -> &'a u8 { x }`
pub in_band: bool,
}
/// A "Path" is essentially Rust's notion of a name; for instance:
/// `std::cmp::PartialEq`. It's represented as a sequence of identifiers,
/// along with a bunch of supporting information.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Path {
pub span: Span,
/// The definition that the path resolved to.
pub def: Def,
/// The segments in the path: the things separated by `::`.
pub segments: HirVec<PathSegment>,
}
impl Path {
pub fn is_global(&self) -> bool {
!self.segments.is_empty() && self.segments[0].name == keywords::CrateRoot.name()
}
}
impl fmt::Debug for Path {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "path({})", print::to_string(print::NO_ANN, |s| s.print_path(self, false)))
}
}
impl fmt::Display for Path {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", print::to_string(print::NO_ANN, |s| s.print_path(self, false)))
}
}
/// A segment of a path: an identifier, an optional lifetime, and a set of
/// types.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct PathSegment {
/// The identifier portion of this path segment.
pub name: Name,
/// Type/lifetime parameters attached to this path. They come in
/// two flavors: `Path<A,B,C>` and `Path(A,B) -> C`. Note that
/// this is more than just simple syntactic sugar; the use of
/// parens affects the region binding rules, so we preserve the
/// distinction.
pub parameters: Option<P<PathParameters>>,
/// Whether to infer remaining type parameters, if any.
/// This only applies to expression and pattern paths, and
/// out of those only the segments with no type parameters
/// to begin with, e.g. `Vec::new` is `<Vec<..>>::new::<..>`.
pub infer_types: bool,
}
impl PathSegment {
/// Convert an identifier to the corresponding segment.
pub fn from_name(name: Name) -> PathSegment {
PathSegment {
name,
infer_types: true,
parameters: None
}
}
pub fn new(name: Name, parameters: PathParameters, infer_types: bool) -> Self {
PathSegment {
name,
infer_types,
parameters: if parameters.is_empty() {
None
} else {
Some(P(parameters))
}
}
}
// FIXME: hack required because you can't create a static
// PathParameters, so you can't just return a &PathParameters.
pub fn with_parameters<F, R>(&self, f: F) -> R
where F: FnOnce(&PathParameters) -> R
{
let dummy = PathParameters::none();
f(if let Some(ref params) = self.parameters {
&params
} else {
&dummy
})
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct PathParameters {
/// The lifetime parameters for this path segment.
pub lifetimes: HirVec<Lifetime>,
/// The type parameters for this path segment, if present.
pub types: HirVec<P<Ty>>,
/// Bindings (equality constraints) on associated types, if present.
/// E.g., `Foo<A=Bar>`.
pub bindings: HirVec<TypeBinding>,
/// Were parameters written in parenthesized form `Fn(T) -> U`?
/// This is required mostly for pretty-printing and diagnostics,
/// but also for changing lifetime elision rules to be "function-like".
pub parenthesized: bool,
}
impl PathParameters {
pub fn none() -> Self {
Self {
lifetimes: HirVec::new(),
types: HirVec::new(),
bindings: HirVec::new(),
parenthesized: false,
}
}
pub fn is_empty(&self) -> bool {
self.lifetimes.is_empty() && self.types.is_empty() &&
self.bindings.is_empty() && !self.parenthesized
}
pub fn inputs(&self) -> &[P<Ty>] {
if self.parenthesized {
if let Some(ref ty) = self.types.get(0) {
if let TyTup(ref tys) = ty.node {
return tys;
}
}
}
bug!("PathParameters::inputs: not a `Fn(T) -> U`");
}
}
/// The AST represents all type param bounds as types.
/// typeck::collect::compute_bounds matches these against
/// the "special" built-in traits (see middle::lang_items) and
/// detects Copy, Send and Sync.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TyParamBound {
TraitTyParamBound(PolyTraitRef, TraitBoundModifier),
RegionTyParamBound(Lifetime),
}
impl TyParamBound {
pub fn span(&self) -> Span {
match self {
&TraitTyParamBound(ref t, ..) => t.span,
&RegionTyParamBound(ref l) => l.span,
}
}
}
/// A modifier on a bound, currently this is only used for `?Sized`, where the
/// modifier is `Maybe`. Negative bounds should also be handled here.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TraitBoundModifier {
None,
Maybe,
}
pub type TyParamBounds = HirVec<TyParamBound>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TyParam {
pub name: Name,
pub id: NodeId,
pub bounds: TyParamBounds,
pub default: Option<P<Ty>>,
pub span: Span,
pub pure_wrt_drop: bool,
pub synthetic: Option<SyntheticTyParamKind>,
pub attrs: HirVec<Attribute>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum GenericParam {
Lifetime(LifetimeDef),
Type(TyParam),
}
impl GenericParam {
pub fn is_lifetime_param(&self) -> bool {
match *self {
GenericParam::Lifetime(_) => true,
_ => false,
}
}
pub fn is_type_param(&self) -> bool {
match *self {
GenericParam::Type(_) => true,
_ => false,
}
}
}
pub trait GenericParamsExt {
fn lifetimes<'a>(&'a self) -> iter::FilterMap<
slice::Iter<GenericParam>,
fn(&GenericParam) -> Option<&LifetimeDef>,
>;
fn ty_params<'a>(&'a self) -> iter::FilterMap<
slice::Iter<GenericParam>,
fn(&GenericParam) -> Option<&TyParam>,
>;
}
impl GenericParamsExt for [GenericParam] {
fn lifetimes<'a>(&'a self) -> iter::FilterMap<
slice::Iter<GenericParam>,
fn(&GenericParam) -> Option<&LifetimeDef>,
> {
self.iter().filter_map(|param| match *param {
GenericParam::Lifetime(ref l) => Some(l),
_ => None,
})
}
fn ty_params<'a>(&'a self) -> iter::FilterMap<
slice::Iter<GenericParam>,
fn(&GenericParam) -> Option<&TyParam>,
> {
self.iter().filter_map(|param| match *param {
GenericParam::Type(ref t) => Some(t),
_ => None,
})
}
}
/// Represents lifetimes and type parameters attached to a declaration
/// of a function, enum, trait, etc.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Generics {
pub params: HirVec<GenericParam>,
pub where_clause: WhereClause,
pub span: Span,
}
impl Generics {
pub fn empty() -> Generics {
Generics {
params: HirVec::new(),
where_clause: WhereClause {
id: DUMMY_NODE_ID,
predicates: HirVec::new(),
},
span: DUMMY_SP,
}
}
pub fn is_lt_parameterized(&self) -> bool {
self.params.iter().any(|param| param.is_lifetime_param())
}
pub fn is_type_parameterized(&self) -> bool {
self.params.iter().any(|param| param.is_type_param())
}
pub fn lifetimes<'a>(&'a self) -> impl Iterator<Item = &'a LifetimeDef> {
self.params.lifetimes()
}
pub fn ty_params<'a>(&'a self) -> impl Iterator<Item = &'a TyParam> {
self.params.ty_params()
}
}
pub enum UnsafeGeneric {
Region(LifetimeDef, &'static str),
Type(TyParam, &'static str),
}
impl UnsafeGeneric {
pub fn attr_name(&self) -> &'static str {
match *self {
UnsafeGeneric::Region(_, s) => s,
UnsafeGeneric::Type(_, s) => s,
}
}
}
impl Generics {
pub fn carries_unsafe_attr(&self) -> Option<UnsafeGeneric> {
for param in &self.params {
match *param {
GenericParam::Lifetime(ref l) => {
if l.pure_wrt_drop {
return Some(UnsafeGeneric::Region(l.clone(), "may_dangle"));
}
}
GenericParam::Type(ref t) => {
if t.pure_wrt_drop {
return Some(UnsafeGeneric::Type(t.clone(), "may_dangle"));
}
}
}
}
None
}
}
/// Synthetic Type Parameters are converted to an other form during lowering, this allows
/// to track the original form they had. Useful for error messages.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum SyntheticTyParamKind {
ImplTrait
}
/// A `where` clause in a definition
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereClause {
pub id: NodeId,
pub predicates: HirVec<WherePredicate>,
}
impl WhereClause {
pub fn span(&self) -> Option<Span> {
self.predicates.iter().map(|predicate| predicate.span())
.fold(None, |acc, i| match (acc, i) {
(None, i) => Some(i),
(Some(acc), i) => {
Some(acc.to(i))
}
})
}
}
/// A single predicate in a `where` clause
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum WherePredicate {
/// A type binding, eg `for<'c> Foo: Send+Clone+'c`
BoundPredicate(WhereBoundPredicate),
/// A lifetime predicate, e.g. `'a: 'b+'c`
RegionPredicate(WhereRegionPredicate),
/// An equality predicate (unsupported)
EqPredicate(WhereEqPredicate),
}
impl WherePredicate {
pub fn span(&self) -> Span {
match self {
&WherePredicate::BoundPredicate(ref p) => p.span,
&WherePredicate::RegionPredicate(ref p) => p.span,
&WherePredicate::EqPredicate(ref p) => p.span,
}
}
}
/// A type bound, eg `for<'c> Foo: Send+Clone+'c`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereBoundPredicate {
pub span: Span,
/// Any generics from a `for` binding
pub bound_generic_params: HirVec<GenericParam>,
/// The type being bounded
pub bounded_ty: P<Ty>,
/// Trait and lifetime bounds (`Clone+Send+'static`)
pub bounds: TyParamBounds,
}
/// A lifetime predicate, e.g. `'a: 'b+'c`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereRegionPredicate {
pub span: Span,
pub lifetime: Lifetime,
pub bounds: HirVec<Lifetime>,
}
/// An equality predicate (unsupported), e.g. `T=int`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct WhereEqPredicate {
pub id: NodeId,
pub span: Span,
pub lhs_ty: P<Ty>,
pub rhs_ty: P<Ty>,
}
pub type CrateConfig = HirVec<P<MetaItem>>;
/// The top-level data structure that stores the entire contents of
/// the crate currently being compiled.
///
/// For more details, see the [rustc guide].
///
/// [rustc guide]: https://rust-lang-nursery.github.io/rustc-guide/hir.html
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Debug)]
pub struct Crate {
pub module: Mod,
pub attrs: HirVec<Attribute>,
pub span: Span,
pub exported_macros: HirVec<MacroDef>,
// NB: We use a BTreeMap here so that `visit_all_items` iterates
// over the ids in increasing order. In principle it should not
// matter what order we visit things in, but in *practice* it
// does, because it can affect the order in which errors are
// detected, which in turn can make compile-fail tests yield
// slightly different results.
pub items: BTreeMap<NodeId, Item>,
pub trait_items: BTreeMap<TraitItemId, TraitItem>,
pub impl_items: BTreeMap<ImplItemId, ImplItem>,
pub bodies: BTreeMap<BodyId, Body>,
pub trait_impls: BTreeMap<DefId, Vec<NodeId>>,
pub trait_auto_impl: BTreeMap<DefId, NodeId>,
/// A list of the body ids written out in the order in which they
/// appear in the crate. If you're going to process all the bodies
/// in the crate, you should iterate over this list rather than the keys
/// of bodies.
pub body_ids: Vec<BodyId>,
}
impl Crate {
pub fn item(&self, id: NodeId) -> &Item {
&self.items[&id]
}
pub fn trait_item(&self, id: TraitItemId) -> &TraitItem {
&self.trait_items[&id]
}
pub fn impl_item(&self, id: ImplItemId) -> &ImplItem {
&self.impl_items[&id]
}
/// Visits all items in the crate in some deterministic (but
/// unspecified) order. If you just need to process every item,
/// but don't care about nesting, this method is the best choice.
///
/// If you do care about nesting -- usually because your algorithm
/// follows lexical scoping rules -- then you want a different
/// approach. You should override `visit_nested_item` in your
/// visitor and then call `intravisit::walk_crate` instead.
pub fn visit_all_item_likes<'hir, V>(&'hir self, visitor: &mut V)
where V: itemlikevisit::ItemLikeVisitor<'hir>
{
for (_, item) in &self.items {
visitor.visit_item(item);
}
for (_, trait_item) in &self.trait_items {
visitor.visit_trait_item(trait_item);
}
for (_, impl_item) in &self.impl_items {
visitor.visit_impl_item(impl_item);
}
}
/// A parallel version of visit_all_item_likes
pub fn par_visit_all_item_likes<'hir, V>(&'hir self, visitor: &V)
where V: itemlikevisit::ParItemLikeVisitor<'hir> + Sync + Send
{
scope(|s| {
s.spawn(|_| {
par_iter(&self.items).for_each(|(_, item)| {
visitor.visit_item(item);
});
});
s.spawn(|_| {
par_iter(&self.trait_items).for_each(|(_, trait_item)| {
visitor.visit_trait_item(trait_item);
});
});
s.spawn(|_| {
par_iter(&self.impl_items).for_each(|(_, impl_item)| {
visitor.visit_impl_item(impl_item);
});
});
});
}
pub fn body(&self, id: BodyId) -> &Body {
&self.bodies[&id]
}
}
/// A macro definition, in this crate or imported from another.
///
/// Not parsed directly, but created on macro import or `macro_rules!` expansion.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MacroDef {
pub name: Name,
pub vis: Visibility,
pub attrs: HirVec<Attribute>,
pub id: NodeId,
pub span: Span,
pub body: TokenStream,
pub legacy: bool,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Block {
/// Statements in a block
pub stmts: HirVec<Stmt>,
/// An expression at the end of the block
/// without a semicolon, if any
pub expr: Option<P<Expr>>,
pub id: NodeId,
pub hir_id: HirId,
/// Distinguishes between `unsafe { ... }` and `{ ... }`
pub rules: BlockCheckMode,
pub span: Span,
/// If true, then there may exist `break 'a` values that aim to
/// break out of this block early.
/// Used by `'label: {}` blocks and by `catch` statements.
pub targeted_by_break: bool,
/// If true, don't emit return value type errors as the parser had
/// to recover from a parse error so this block will not have an
/// appropriate type. A parse error will have been emitted so the
/// compilation will never succeed if this is true.
pub recovered: bool,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Pat {
pub id: NodeId,
pub hir_id: HirId,
pub node: PatKind,
pub span: Span,
}
impl fmt::Debug for Pat {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "pat({}: {})", self.id,
print::to_string(print::NO_ANN, |s| s.print_pat(self)))
}
}
impl Pat {
// FIXME(#19596) this is a workaround, but there should be a better way
fn walk_<G>(&self, it: &mut G) -> bool
where G: FnMut(&Pat) -> bool
{
if !it(self) {
return false;
}
match self.node {
PatKind::Binding(.., Some(ref p)) => p.walk_(it),
PatKind::Struct(_, ref fields, _) => {
fields.iter().all(|field| field.node.pat.walk_(it))
}
PatKind::TupleStruct(_, ref s, _) | PatKind::Tuple(ref s, _) => {
s.iter().all(|p| p.walk_(it))
}
PatKind::Box(ref s) | PatKind::Ref(ref s, _) => {
s.walk_(it)
}
PatKind::Slice(ref before, ref slice, ref after) => {
before.iter().all(|p| p.walk_(it)) &&
slice.iter().all(|p| p.walk_(it)) &&
after.iter().all(|p| p.walk_(it))
}
PatKind::Wild |
PatKind::Lit(_) |
PatKind::Range(..) |
PatKind::Binding(..) |
PatKind::Path(_) => {
true
}
}
}
pub fn walk<F>(&self, mut it: F) -> bool
where F: FnMut(&Pat) -> bool
{
self.walk_(&mut it)
}
}
/// A single field in a struct pattern
///
/// Patterns like the fields of Foo `{ x, ref y, ref mut z }`
/// are treated the same as` x: x, y: ref y, z: ref mut z`,
/// except is_shorthand is true
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct FieldPat {
pub id: NodeId,
/// The identifier for the field
pub ident: Ident,
/// The pattern the field is destructured to
pub pat: P<Pat>,
pub is_shorthand: bool,
}
/// Explicit binding annotations given in the HIR for a binding. Note
/// that this is not the final binding *mode* that we infer after type
/// inference.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BindingAnnotation {
/// No binding annotation given: this means that the final binding mode
/// will depend on whether we have skipped through a `&` reference
/// when matching. For example, the `x` in `Some(x)` will have binding
/// mode `None`; if you do `let Some(x) = &Some(22)`, it will
/// ultimately be inferred to be by-reference.
///
/// Note that implicit reference skipping is not implemented yet (#42640).
Unannotated,
/// Annotated with `mut x` -- could be either ref or not, similar to `None`.
Mutable,
/// Annotated as `ref`, like `ref x`
Ref,
/// Annotated as `ref mut x`.
RefMut,
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum RangeEnd {
Included,
Excluded,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum PatKind {
/// Represents a wildcard pattern (`_`)
Wild,
/// A fresh binding `ref mut binding @ OPT_SUBPATTERN`.
/// The `NodeId` is the canonical ID for the variable being bound,
/// e.g. in `Ok(x) | Err(x)`, both `x` use the same canonical ID,
/// which is the pattern ID of the first `x`.
Binding(BindingAnnotation, NodeId, Spanned<Name>, Option<P<Pat>>),
/// A struct or struct variant pattern, e.g. `Variant {x, y, ..}`.
/// The `bool` is `true` in the presence of a `..`.
Struct(QPath, HirVec<Spanned<FieldPat>>, bool),
/// A tuple struct/variant pattern `Variant(x, y, .., z)`.
/// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
/// 0 <= position <= subpats.len()
TupleStruct(QPath, HirVec<P<Pat>>, Option<usize>),
/// A path pattern for an unit struct/variant or a (maybe-associated) constant.
Path(QPath),
/// A tuple pattern `(a, b)`.
/// If the `..` pattern fragment is present, then `Option<usize>` denotes its position.
/// 0 <= position <= subpats.len()
Tuple(HirVec<P<Pat>>, Option<usize>),
/// A `box` pattern
Box(P<Pat>),
/// A reference pattern, e.g. `&mut (a, b)`
Ref(P<Pat>, Mutability),
/// A literal
Lit(P<Expr>),
/// A range pattern, e.g. `1...2` or `1..2`
Range(P<Expr>, P<Expr>, RangeEnd),
/// `[a, b, ..i, y, z]` is represented as:
/// `PatKind::Slice(box [a, b], Some(i), box [y, z])`
Slice(HirVec<P<Pat>>, Option<P<Pat>>, HirVec<P<Pat>>),
}
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum Mutability {
MutMutable,
MutImmutable,
}
impl Mutability {
/// Return MutMutable only if both arguments are mutable.
pub fn and(self, other: Self) -> Self {
match self {
MutMutable => other,
MutImmutable => MutImmutable,
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BinOp_ {
/// The `+` operator (addition)
BiAdd,
/// The `-` operator (subtraction)
BiSub,
/// The `*` operator (multiplication)
BiMul,
/// The `/` operator (division)
BiDiv,
/// The `%` operator (modulus)
BiRem,
/// The `&&` operator (logical and)
BiAnd,
/// The `||` operator (logical or)
BiOr,
/// The `^` operator (bitwise xor)
BiBitXor,
/// The `&` operator (bitwise and)
BiBitAnd,
/// The `|` operator (bitwise or)
BiBitOr,
/// The `<<` operator (shift left)
BiShl,
/// The `>>` operator (shift right)
BiShr,
/// The `==` operator (equality)
BiEq,
/// The `<` operator (less than)
BiLt,
/// The `<=` operator (less than or equal to)
BiLe,
/// The `!=` operator (not equal to)
BiNe,
/// The `>=` operator (greater than or equal to)
BiGe,
/// The `>` operator (greater than)
BiGt,
}
impl BinOp_ {
pub fn as_str(self) -> &'static str {
match self {
BiAdd => "+",
BiSub => "-",
BiMul => "*",
BiDiv => "/",
BiRem => "%",
BiAnd => "&&",
BiOr => "||",
BiBitXor => "^",
BiBitAnd => "&",
BiBitOr => "|",
BiShl => "<<",
BiShr => ">>",
BiEq => "==",
BiLt => "<",
BiLe => "<=",
BiNe => "!=",
BiGe => ">=",
BiGt => ">",
}
}
pub fn is_lazy(self) -> bool {
match self {
BiAnd | BiOr => true,
_ => false,
}
}
pub fn is_shift(self) -> bool {
match self {
BiShl | BiShr => true,
_ => false,
}
}
pub fn is_comparison(self) -> bool {
match self {
BiEq | BiLt | BiLe | BiNe | BiGt | BiGe => true,
BiAnd |
BiOr |
BiAdd |
BiSub |
BiMul |
BiDiv |
BiRem |
BiBitXor |
BiBitAnd |
BiBitOr |
BiShl |
BiShr => false,
}
}
/// Returns `true` if the binary operator takes its arguments by value
pub fn is_by_value(self) -> bool {
!self.is_comparison()
}
}
impl Into<ast::BinOpKind> for BinOp_ {
fn into(self) -> ast::BinOpKind {
match self {
BiAdd => ast::BinOpKind::Add,
BiSub => ast::BinOpKind::Sub,
BiMul => ast::BinOpKind::Mul,
BiDiv => ast::BinOpKind::Div,
BiRem => ast::BinOpKind::Rem,
BiAnd => ast::BinOpKind::And,
BiOr => ast::BinOpKind::Or,
BiBitXor => ast::BinOpKind::BitXor,
BiBitAnd => ast::BinOpKind::BitAnd,
BiBitOr => ast::BinOpKind::BitOr,
BiShl => ast::BinOpKind::Shl,
BiShr => ast::BinOpKind::Shr,
BiEq => ast::BinOpKind::Eq,
BiLt => ast::BinOpKind::Lt,
BiLe => ast::BinOpKind::Le,
BiNe => ast::BinOpKind::Ne,
BiGe => ast::BinOpKind::Ge,
BiGt => ast::BinOpKind::Gt,
}
}
}
pub type BinOp = Spanned<BinOp_>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum UnOp {
/// The `*` operator for dereferencing
UnDeref,
/// The `!` operator for logical inversion
UnNot,
/// The `-` operator for negation
UnNeg,
}
impl UnOp {
pub fn as_str(self) -> &'static str {
match self {
UnDeref => "*",
UnNot => "!",
UnNeg => "-",
}
}
/// Returns `true` if the unary operator takes its argument by value
pub fn is_by_value(self) -> bool {
match self {
UnNeg | UnNot => true,
_ => false,
}
}
}
/// A statement
pub type Stmt = Spanned<Stmt_>;
impl fmt::Debug for Stmt_ {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// Sadness.
let spanned = codemap::dummy_spanned(self.clone());
write!(f,
"stmt({}: {})",
spanned.node.id(),
print::to_string(print::NO_ANN, |s| s.print_stmt(&spanned)))
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub enum Stmt_ {
/// Could be an item or a local (let) binding:
StmtDecl(P<Decl>, NodeId),
/// Expr without trailing semi-colon (must have unit type):
StmtExpr(P<Expr>, NodeId),
/// Expr with trailing semi-colon (may have any type):
StmtSemi(P<Expr>, NodeId),
}
impl Stmt_ {
pub fn attrs(&self) -> &[Attribute] {
match *self {
StmtDecl(ref d, _) => d.node.attrs(),
StmtExpr(ref e, _) |
StmtSemi(ref e, _) => &e.attrs,
}
}
pub fn id(&self) -> NodeId {
match *self {
StmtDecl(_, id) => id,
StmtExpr(_, id) => id,
StmtSemi(_, id) => id,
}
}
}
/// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Local {
pub pat: P<Pat>,
pub ty: Option<P<Ty>>,
/// Initializer expression to set the value, if any
pub init: Option<P<Expr>>,
pub id: NodeId,
pub hir_id: HirId,
pub span: Span,
pub attrs: ThinVec<Attribute>,
pub source: LocalSource,
}
pub type Decl = Spanned<Decl_>;
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Decl_ {
/// A local (let) binding:
DeclLocal(P<Local>),
/// An item binding:
DeclItem(ItemId),
}
impl Decl_ {
pub fn attrs(&self) -> &[Attribute] {
match *self {
DeclLocal(ref l) => &l.attrs,
DeclItem(_) => &[]
}
}
pub fn is_local(&self) -> bool {
match *self {
Decl_::DeclLocal(_) => true,
_ => false,
}
}
}
/// represents one arm of a 'match'
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Arm {
pub attrs: HirVec<Attribute>,
pub pats: HirVec<P<Pat>>,
pub guard: Option<P<Expr>>,
pub body: P<Expr>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Field {
pub id: NodeId,
pub ident: Ident,
pub expr: P<Expr>,
pub span: Span,
pub is_shorthand: bool,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum BlockCheckMode {
DefaultBlock,
UnsafeBlock(UnsafeSource),
PushUnsafeBlock(UnsafeSource),
PopUnsafeBlock(UnsafeSource),
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum UnsafeSource {
CompilerGenerated,
UserProvided,
}
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct BodyId {
pub node_id: NodeId,
}
/// The body of a function, closure, or constant value. In the case of
/// a function, the body contains not only the function body itself
/// (which is an expression), but also the argument patterns, since
/// those are something that the caller doesn't really care about.
///
/// # Examples
///
/// ```
/// fn foo((x, y): (u32, u32)) -> u32 {
/// x + y
/// }
/// ```
///
/// Here, the `Body` associated with `foo()` would contain:
///
/// - an `arguments` array containing the `(x, y)` pattern
/// - a `value` containing the `x + y` expression (maybe wrapped in a block)
/// - `is_generator` would be false
///
/// All bodies have an **owner**, which can be accessed via the HIR
/// map using `body_owner_def_id()`.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Body {
pub arguments: HirVec<Arg>,
pub value: Expr,
pub is_generator: bool,
}
impl Body {
pub fn id(&self) -> BodyId {
BodyId {
node_id: self.value.id
}
}
}
#[derive(Copy, Clone, Debug)]
pub enum BodyOwnerKind {
/// Functions and methods.
Fn,
/// Constants and associated constants.
Const,
/// Initializer of a `static` item.
Static(Mutability),
}
/// A constant (expression) that's not an item or associated item,
/// but needs its own `DefId` for type-checking, const-eval, etc.
/// These are usually found nested inside types (e.g. array lengths)
/// or expressions (e.g. repeat counts), and also used to define
/// explicit discriminant values for enum variants.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct AnonConst {
pub id: NodeId,
pub hir_id: HirId,
pub body: BodyId,
}
/// An expression
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Expr {
pub id: NodeId,
pub span: Span,
pub node: Expr_,
pub attrs: ThinVec<Attribute>,
pub hir_id: HirId,
}
impl Expr {
pub fn precedence(&self) -> ExprPrecedence {
match self.node {
ExprBox(_) => ExprPrecedence::Box,
ExprArray(_) => ExprPrecedence::Array,
ExprCall(..) => ExprPrecedence::Call,
ExprMethodCall(..) => ExprPrecedence::MethodCall,
ExprTup(_) => ExprPrecedence::Tup,
ExprBinary(op, ..) => ExprPrecedence::Binary(op.node.into()),
ExprUnary(..) => ExprPrecedence::Unary,
ExprLit(_) => ExprPrecedence::Lit,
ExprType(..) | ExprCast(..) => ExprPrecedence::Cast,
ExprIf(..) => ExprPrecedence::If,
ExprWhile(..) => ExprPrecedence::While,
ExprLoop(..) => ExprPrecedence::Loop,
ExprMatch(..) => ExprPrecedence::Match,
ExprClosure(..) => ExprPrecedence::Closure,
ExprBlock(..) => ExprPrecedence::Block,
ExprAssign(..) => ExprPrecedence::Assign,
ExprAssignOp(..) => ExprPrecedence::AssignOp,
ExprField(..) => ExprPrecedence::Field,
ExprIndex(..) => ExprPrecedence::Index,
ExprPath(..) => ExprPrecedence::Path,
ExprAddrOf(..) => ExprPrecedence::AddrOf,
ExprBreak(..) => ExprPrecedence::Break,
ExprAgain(..) => ExprPrecedence::Continue,
ExprRet(..) => ExprPrecedence::Ret,
ExprInlineAsm(..) => ExprPrecedence::InlineAsm,
ExprStruct(..) => ExprPrecedence::Struct,
ExprRepeat(..) => ExprPrecedence::Repeat,
ExprYield(..) => ExprPrecedence::Yield,
}
}
}
impl fmt::Debug for Expr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "expr({}: {})", self.id,
print::to_string(print::NO_ANN, |s| s.print_expr(self)))
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Expr_ {
/// A `box x` expression.
ExprBox(P<Expr>),
/// An array (`[a, b, c, d]`)
ExprArray(HirVec<Expr>),
/// A function call
///
/// The first field resolves to the function itself (usually an `ExprPath`),
/// and the second field is the list of arguments.
/// This also represents calling the constructor of
/// tuple-like ADTs such as tuple structs and enum variants.
ExprCall(P<Expr>, HirVec<Expr>),
/// A method call (`x.foo::<'static, Bar, Baz>(a, b, c, d)`)
///
/// The `PathSegment`/`Span` represent the method name and its generic arguments
/// (within the angle brackets).
/// The first element of the vector of `Expr`s is the expression that evaluates
/// to the object on which the method is being called on (the receiver),
/// and the remaining elements are the rest of the arguments.
/// Thus, `x.foo::<Bar, Baz>(a, b, c, d)` is represented as
/// `ExprKind::MethodCall(PathSegment { foo, [Bar, Baz] }, [x, a, b, c, d])`.
ExprMethodCall(PathSegment, Span, HirVec<Expr>),
/// A tuple (`(a, b, c ,d)`)
ExprTup(HirVec<Expr>),
/// A binary operation (For example: `a + b`, `a * b`)
ExprBinary(BinOp, P<Expr>, P<Expr>),
/// A unary operation (For example: `!x`, `*x`)
ExprUnary(UnOp, P<Expr>),
/// A literal (For example: `1`, `"foo"`)
ExprLit(P<Lit>),
/// A cast (`foo as f64`)
ExprCast(P<Expr>, P<Ty>),
ExprType(P<Expr>, P<Ty>),
/// An `if` block, with an optional else block
///
/// `if expr { expr } else { expr }`
ExprIf(P<Expr>, P<Expr>, Option<P<Expr>>),
/// A while loop, with an optional label
///
/// `'label: while expr { block }`
ExprWhile(P<Expr>, P<Block>, Option<Label>),
/// Conditionless loop (can be exited with break, continue, or return)
///
/// `'label: loop { block }`
ExprLoop(P<Block>, Option<Label>, LoopSource),
/// A `match` block, with a source that indicates whether or not it is
/// the result of a desugaring, and if so, which kind.
ExprMatch(P<Expr>, HirVec<Arm>, MatchSource),
/// A closure (for example, `move |a, b, c| {a + b + c}`).
///
/// The final span is the span of the argument block `|...|`
///
/// This may also be a generator literal, indicated by the final boolean,
/// in that case there is an GeneratorClause.
ExprClosure(CaptureClause, P<FnDecl>, BodyId, Span, Option<GeneratorMovability>),
/// A block (`'label: { ... }`)
ExprBlock(P<Block>, Option<Label>),
/// An assignment (`a = foo()`)
ExprAssign(P<Expr>, P<Expr>),
/// An assignment with an operator
///
/// For example, `a += 1`.
ExprAssignOp(BinOp, P<Expr>, P<Expr>),
/// Access of a named (`obj.foo`) or unnamed (`obj.0`) struct or tuple field
ExprField(P<Expr>, Ident),
/// An indexing operation (`foo[2]`)
ExprIndex(P<Expr>, P<Expr>),
/// Path to a definition, possibly containing lifetime or type parameters.
ExprPath(QPath),
/// A referencing operation (`&a` or `&mut a`)
ExprAddrOf(Mutability, P<Expr>),
/// A `break`, with an optional label to break
ExprBreak(Destination, Option<P<Expr>>),
/// A `continue`, with an optional label
ExprAgain(Destination),
/// A `return`, with an optional value to be returned
ExprRet(Option<P<Expr>>),
/// Inline assembly (from `asm!`), with its outputs and inputs.
ExprInlineAsm(P<InlineAsm>, HirVec<Expr>, HirVec<Expr>),
/// A struct or struct-like variant literal expression.
///
/// For example, `Foo {x: 1, y: 2}`, or
/// `Foo {x: 1, .. base}`, where `base` is the `Option<Expr>`.
ExprStruct(QPath, HirVec<Field>, Option<P<Expr>>),
/// An array literal constructed from one repeated element.
///
/// For example, `[1; 5]`. The first expression is the element
/// to be repeated; the second is the number of times to repeat it.
ExprRepeat(P<Expr>, AnonConst),
/// A suspension point for generators. This is `yield <expr>` in Rust.
ExprYield(P<Expr>),
}
/// Optionally `Self`-qualified value/type path or associated extension.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum QPath {
/// Path to a definition, optionally "fully-qualified" with a `Self`
/// type, if the path points to an associated item in a trait.
///
/// E.g. an unqualified path like `Clone::clone` has `None` for `Self`,
/// while `<Vec<T> as Clone>::clone` has `Some(Vec<T>)` for `Self`,
/// even though they both have the same two-segment `Clone::clone` `Path`.
Resolved(Option<P<Ty>>, P<Path>),
/// Type-related paths, e.g. `<T>::default` or `<T>::Output`.
/// Will be resolved by type-checking to an associated item.
///
/// UFCS source paths can desugar into this, with `Vec::new` turning into
/// `<Vec>::new`, and `T::X::Y::method` into `<<<T>::X>::Y>::method`,
/// the `X` and `Y` nodes each being a `TyPath(QPath::TypeRelative(..))`.
TypeRelative(P<Ty>, P<PathSegment>)
}
/// Hints at the original code for a let statement
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum LocalSource {
/// A `match _ { .. }`
Normal,
/// A desugared `for _ in _ { .. }` loop
ForLoopDesugar,
}
/// Hints at the original code for a `match _ { .. }`
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum MatchSource {
/// A `match _ { .. }`
Normal,
/// An `if let _ = _ { .. }` (optionally with `else { .. }`)
IfLetDesugar {
contains_else_clause: bool,
},
/// A `while let _ = _ { .. }` (which was desugared to a
/// `loop { match _ { .. } }`)
WhileLetDesugar,
/// A desugared `for _ in _ { .. }` loop
ForLoopDesugar,
/// A desugared `?` operator
TryDesugar,
}
/// The loop type that yielded an ExprLoop
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum LoopSource {
/// A `loop { .. }` loop
Loop,
/// A `while let _ = _ { .. }` loop
WhileLet,
/// A `for _ in _ { .. }` loop
ForLoop,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum LoopIdError {
OutsideLoopScope,
UnlabeledCfInWhileCondition,
UnresolvedLabel,
}
impl fmt::Display for LoopIdError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(match *self {
LoopIdError::OutsideLoopScope => "not inside loop scope",
LoopIdError::UnlabeledCfInWhileCondition =>
"unlabeled control flow (break or continue) in while condition",
LoopIdError::UnresolvedLabel => "label not found",
}, f)
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub struct Destination {
// This is `Some(_)` iff there is an explicit user-specified `label
pub label: Option<Label>,
// These errors are caught and then reported during the diagnostics pass in
// librustc_passes/loops.rs
pub target_id: Result<NodeId, LoopIdError>,
}
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum GeneratorMovability {
Static,
Movable,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum CaptureClause {
CaptureByValue,
CaptureByRef,
}
// NB: If you change this, you'll probably want to change the corresponding
// type structure in middle/ty.rs as well.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MutTy {
pub ty: P<Ty>,
pub mutbl: Mutability,
}
/// Represents a method's signature in a trait declaration or implementation.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct MethodSig {
pub unsafety: Unsafety,
pub constness: Constness,
pub abi: Abi,
pub decl: P<FnDecl>,
}
// The bodies for items are stored "out of line", in a separate
// hashmap in the `Crate`. Here we just record the node-id of the item
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TraitItemId {
pub node_id: NodeId,
}
/// Represents an item declaration within a trait declaration,
/// possibly including a default implementation. A trait item is
/// either required (meaning it doesn't have an implementation, just a
/// signature) or provided (meaning it has a default implementation).
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TraitItem {
pub id: NodeId,
pub name: Name,
pub hir_id: HirId,
pub attrs: HirVec<Attribute>,
pub generics: Generics,
pub node: TraitItemKind,
pub span: Span,
}
/// A trait method's body (or just argument names).
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TraitMethod {
/// No default body in the trait, just a signature.
Required(HirVec<Spanned<Name>>),
/// Both signature and body are provided in the trait.
Provided(BodyId),
}
/// Represents a trait method or associated constant or type
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum TraitItemKind {
/// An associated constant with an optional value (otherwise `impl`s
/// must contain a value)
Const(P<Ty>, Option<BodyId>),
/// A method with an optional body
Method(MethodSig, TraitMethod),
/// An associated type with (possibly empty) bounds and optional concrete
/// type
Type(TyParamBounds, Option<P<Ty>>),
}
// The bodies for items are stored "out of line", in a separate
// hashmap in the `Crate`. Here we just record the node-id of the item
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ImplItemId {
pub node_id: NodeId,
}
/// Represents anything within an `impl` block
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ImplItem {
pub id: NodeId,
pub name: Name,
pub hir_id: HirId,
pub vis: Visibility,
pub defaultness: Defaultness,
pub attrs: HirVec<Attribute>,
pub generics: Generics,
pub node: ImplItemKind,
pub span: Span,
}
/// Represents different contents within `impl`s
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum ImplItemKind {
/// An associated constant of the given type, set to the constant result
/// of the expression
Const(P<Ty>, BodyId),
/// A method implementation with the given signature and body
Method(MethodSig, BodyId),
/// An associated type
Type(P<Ty>),
}
// Bind a type to an associated type: `A=Foo`.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TypeBinding {
pub id: NodeId,
pub name: Name,
pub ty: P<Ty>,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub struct Ty {
pub id: NodeId,
pub node: Ty_,
pub span: Span,
pub hir_id: HirId,
}
impl fmt::Debug for Ty {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "type({})",
print::to_string(print::NO_ANN, |s| s.print_type(self)))
}
}
/// Not represented directly in the AST, referred to by name through a ty_path.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
pub enum PrimTy {
TyInt(IntTy),
TyUint(UintTy),
TyFloat(FloatTy),
TyStr,
TyBool,
TyChar,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct BareFnTy {
pub unsafety: Unsafety,
pub abi: Abi,
pub generic_params: HirVec<GenericParam>,
pub decl: P<FnDecl>,
pub arg_names: HirVec<Spanned<Name>>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ExistTy {
pub generics: Generics,
pub bounds: TyParamBounds,
pub impl_trait_fn: Option<DefId>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
/// The different kinds of types recognized by the compiler
pub enum Ty_ {
/// A variable length slice (`[T]`)
TySlice(P<Ty>),
/// A fixed length array (`[T; n]`)
TyArray(P<Ty>, AnonConst),
/// A raw pointer (`*const T` or `*mut T`)
TyPtr(MutTy),
/// A reference (`&'a T` or `&'a mut T`)
TyRptr(Lifetime, MutTy),
/// A bare function (e.g. `fn(usize) -> bool`)
TyBareFn(P<BareFnTy>),
/// The never type (`!`)
TyNever,
/// A tuple (`(A, B, C, D,...)`)
TyTup(HirVec<P<Ty>>),
/// A path to a type definition (`module::module::...::Type`), or an
/// associated type, e.g. `<Vec<T> as Trait>::Type` or `<T>::Target`.
///
/// Type parameters may be stored in each `PathSegment`.
TyPath(QPath),
/// A trait object type `Bound1 + Bound2 + Bound3`
/// where `Bound` is a trait or a lifetime.
TyTraitObject(HirVec<PolyTraitRef>, Lifetime),
/// An existentially quantified (there exists a type satisfying) `impl
/// Bound1 + Bound2 + Bound3` type where `Bound` is a trait or a lifetime.
///
/// The `Item` is the generated
/// `existential type Foo<'a, 'b>: MyTrait<'a, 'b>;`.
///
/// The `HirVec<Lifetime>` is the list of lifetimes applied as parameters
/// to the `abstract type`, e.g. the `'c` and `'d` in `-> Foo<'c, 'd>`.
/// This list is only a list of lifetimes and not type parameters
/// because all in-scope type parameters are captured by `impl Trait`,
/// so they are resolved directly through the parent `Generics`.
TyImplTraitExistential(ItemId, DefId, HirVec<Lifetime>),
/// Unused for now
TyTypeof(AnonConst),
/// TyInfer means the type should be inferred instead of it having been
/// specified. This can appear anywhere in a type.
TyInfer,
/// Placeholder for a type that has failed to be defined.
TyErr,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct InlineAsmOutput {
pub constraint: Symbol,
pub is_rw: bool,
pub is_indirect: bool,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct InlineAsm {
pub asm: Symbol,
pub asm_str_style: StrStyle,
pub outputs: HirVec<InlineAsmOutput>,
pub inputs: HirVec<Symbol>,
pub clobbers: HirVec<Symbol>,
pub volatile: bool,
pub alignstack: bool,
pub dialect: AsmDialect,
pub ctxt: SyntaxContext,
}
/// represents an argument in a function header
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Arg {
pub pat: P<Pat>,
pub id: NodeId,
pub hir_id: HirId,
}
/// Represents the header (not the body) of a function declaration
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct FnDecl {
pub inputs: HirVec<P<Ty>>,
pub output: FunctionRetTy,
pub variadic: bool,
/// True if this function has an `self`, `&self` or `&mut self` receiver
/// (but not a `self: Xxx` one).
pub has_implicit_self: bool,
}
/// Is the trait definition an auto trait?
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum IsAuto {
Yes,
No
}
#[derive(Copy, Clone, PartialEq, Eq,PartialOrd, Ord, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Unsafety {
Unsafe,
Normal,
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Constness {
Const,
NotConst,
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Defaultness {
Default { has_value: bool },
Final,
}
impl Defaultness {
pub fn has_value(&self) -> bool {
match *self {
Defaultness::Default { has_value, .. } => has_value,
Defaultness::Final => true,
}
}
pub fn is_final(&self) -> bool {
*self == Defaultness::Final
}
pub fn is_default(&self) -> bool {
match *self {
Defaultness::Default { .. } => true,
_ => false,
}
}
}
impl fmt::Display for Unsafety {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(match *self {
Unsafety::Normal => "normal",
Unsafety::Unsafe => "unsafe",
},
f)
}
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash)]
pub enum ImplPolarity {
/// `impl Trait for Type`
Positive,
/// `impl !Trait for Type`
Negative,
}
impl fmt::Debug for ImplPolarity {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ImplPolarity::Positive => "positive".fmt(f),
ImplPolarity::Negative => "negative".fmt(f),
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum FunctionRetTy {
/// Return type is not specified.
///
/// Functions default to `()` and
/// closures default to inference. Span points to where return
/// type would be inserted.
DefaultReturn(Span),
/// Everything else
Return(P<Ty>),
}
impl FunctionRetTy {
pub fn span(&self) -> Span {
match *self {
DefaultReturn(span) => span,
Return(ref ty) => ty.span,
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Mod {
/// A span from the first token past `{` to the last token until `}`.
/// For `mod foo;`, the inner span ranges from the first token
/// to the last token in the external file.
pub inner: Span,
pub item_ids: HirVec<ItemId>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ForeignMod {
pub abi: Abi,
pub items: HirVec<ForeignItem>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct GlobalAsm {
pub asm: Symbol,
pub ctxt: SyntaxContext,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct EnumDef {
pub variants: HirVec<Variant>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Variant_ {
pub name: Name,
pub attrs: HirVec<Attribute>,
pub data: VariantData,
/// Explicit discriminant, eg `Foo = 1`
pub disr_expr: Option<AnonConst>,
}
pub type Variant = Spanned<Variant_>;
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum UseKind {
/// One import, e.g. `use foo::bar` or `use foo::bar as baz`.
/// Also produced for each element of a list `use`, e.g.
// `use foo::{a, b}` lowers to `use foo::a; use foo::b;`.
Single,
/// Glob import, e.g. `use foo::*`.
Glob,
/// Degenerate list import, e.g. `use foo::{a, b}` produces
/// an additional `use foo::{}` for performing checks such as
/// unstable feature gating. May be removed in the future.
ListStem,
}
/// TraitRef's appear in impls.
///
/// resolve maps each TraitRef's ref_id to its defining trait; that's all
/// that the ref_id is for. Note that ref_id's value is not the NodeId of the
/// trait being referred to but just a unique NodeId that serves as a key
/// within the DefMap.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TraitRef {
pub path: Path,
pub ref_id: NodeId,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct PolyTraitRef {
/// The `'a` in `<'a> Foo<&'a T>`
pub bound_generic_params: HirVec<GenericParam>,
/// The `Foo<&'a T>` in `<'a> Foo<&'a T>`
pub trait_ref: TraitRef,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Visibility {
Public,
Crate(CrateSugar),
Restricted { path: P<Path>, id: NodeId },
Inherited,
}
impl Visibility {
pub fn is_pub_restricted(&self) -> bool {
use self::Visibility::*;
match self {
&Public |
&Inherited => false,
&Crate(_) |
&Restricted { .. } => true,
}
}
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct StructField {
pub span: Span,
pub ident: Ident,
pub vis: Visibility,
pub id: NodeId,
pub ty: P<Ty>,
pub attrs: HirVec<Attribute>,
}
impl StructField {
// Still necessary in couple of places
pub fn is_positional(&self) -> bool {
let first = self.ident.as_str().as_bytes()[0];
first >= b'0' && first <= b'9'
}
}
/// Fields and Ids of enum variants and structs
///
/// For enum variants: `NodeId` represents both an Id of the variant itself (relevant for all
/// variant kinds) and an Id of the variant's constructor (not relevant for `Struct`-variants).
/// One shared Id can be successfully used for these two purposes.
/// Id of the whole enum lives in `Item`.
///
/// For structs: `NodeId` represents an Id of the structure's constructor, so it is not actually
/// used for `Struct`-structs (but still presents). Structures don't have an analogue of "Id of
/// the variant itself" from enum variants.
/// Id of the whole struct lives in `Item`.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum VariantData {
Struct(HirVec<StructField>, NodeId),
Tuple(HirVec<StructField>, NodeId),
Unit(NodeId),
}
impl VariantData {
pub fn fields(&self) -> &[StructField] {
match *self {
VariantData::Struct(ref fields, _) | VariantData::Tuple(ref fields, _) => fields,
_ => &[],
}
}
pub fn id(&self) -> NodeId {
match *self {
VariantData::Struct(_, id) | VariantData::Tuple(_, id) | VariantData::Unit(id) => id,
}
}
pub fn is_struct(&self) -> bool {
if let VariantData::Struct(..) = *self {
true
} else {
false
}
}
pub fn is_tuple(&self) -> bool {
if let VariantData::Tuple(..) = *self {
true
} else {
false
}
}
pub fn is_unit(&self) -> bool {
if let VariantData::Unit(..) = *self {
true
} else {
false
}
}
}
// The bodies for items are stored "out of line", in a separate
// hashmap in the `Crate`. Here we just record the node-id of the item
// so it can fetched later.
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ItemId {
pub id: NodeId,
}
/// An item
///
/// The name might be a dummy name in case of anonymous items
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct Item {
pub name: Name,
pub id: NodeId,
pub hir_id: HirId,
pub attrs: HirVec<Attribute>,
pub node: Item_,
pub vis: Visibility,
pub span: Span,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum Item_ {
/// An `extern crate` item, with optional *original* crate name if the crate was renamed.
///
/// E.g. `extern crate foo` or `extern crate foo_bar as foo`
ItemExternCrate(Option<Name>),
/// `use foo::bar::*;` or `use foo::bar::baz as quux;`
///
/// or just
///
/// `use foo::bar::baz;` (with `as baz` implicitly on the right)
ItemUse(P<Path>, UseKind),
/// A `static` item
ItemStatic(P<Ty>, Mutability, BodyId),
/// A `const` item
ItemConst(P<Ty>, BodyId),
/// A function declaration
ItemFn(P<FnDecl>, Unsafety, Constness, Abi, Generics, BodyId),
/// A module
ItemMod(Mod),
/// An external module
ItemForeignMod(ForeignMod),
/// Module-level inline assembly (from global_asm!)
ItemGlobalAsm(P<GlobalAsm>),
/// A type alias, e.g. `type Foo = Bar<u8>`
ItemTy(P<Ty>, Generics),
/// A type alias, e.g. `type Foo = Bar<u8>`
ItemExistential(ExistTy),
/// An enum definition, e.g. `enum Foo<A, B> {C<A>, D<B>}`
ItemEnum(EnumDef, Generics),
/// A struct definition, e.g. `struct Foo<A> {x: A}`
ItemStruct(VariantData, Generics),
/// A union definition, e.g. `union Foo<A, B> {x: A, y: B}`
ItemUnion(VariantData, Generics),
/// Represents a Trait Declaration
ItemTrait(IsAuto, Unsafety, Generics, TyParamBounds, HirVec<TraitItemRef>),
/// Represents a Trait Alias Declaration
ItemTraitAlias(Generics, TyParamBounds),
/// An implementation, eg `impl<A> Trait for Foo { .. }`
ItemImpl(Unsafety,
ImplPolarity,
Defaultness,
Generics,
Option<TraitRef>, // (optional) trait this impl implements
P<Ty>, // self
HirVec<ImplItemRef>),
}
impl Item_ {
pub fn descriptive_variant(&self) -> &str {
match *self {
ItemExternCrate(..) => "extern crate",
ItemUse(..) => "use",
ItemStatic(..) => "static item",
ItemConst(..) => "constant item",
ItemFn(..) => "function",
ItemMod(..) => "module",
ItemForeignMod(..) => "foreign module",
ItemGlobalAsm(..) => "global asm",
ItemTy(..) => "type alias",
ItemExistential(..) => "existential type",
ItemEnum(..) => "enum",
ItemStruct(..) => "struct",
ItemUnion(..) => "union",
ItemTrait(..) => "trait",
ItemTraitAlias(..) => "trait alias",
ItemImpl(..) => "item",
}
}
pub fn adt_kind(&self) -> Option<AdtKind> {
match *self {
ItemStruct(..) => Some(AdtKind::Struct),
ItemUnion(..) => Some(AdtKind::Union),
ItemEnum(..) => Some(AdtKind::Enum),
_ => None,
}
}
pub fn generics(&self) -> Option<&Generics> {
Some(match *self {
ItemFn(_, _, _, _, ref generics, _) |
ItemTy(_, ref generics) |
ItemEnum(_, ref generics) |
ItemStruct(_, ref generics) |
ItemUnion(_, ref generics) |
ItemTrait(_, _, ref generics, _, _) |
ItemImpl(_, _, _, ref generics, _, _, _)=> generics,
_ => return None
})
}
}
/// A reference from an trait to one of its associated items. This
/// contains the item's id, naturally, but also the item's name and
/// some other high-level details (like whether it is an associated
/// type or method, and whether it is public). This allows other
/// passes to find the impl they want without loading the id (which
/// means fewer edges in the incremental compilation graph).
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct TraitItemRef {
pub id: TraitItemId,
pub name: Name,
pub kind: AssociatedItemKind,
pub span: Span,
pub defaultness: Defaultness,
}
/// A reference from an impl to one of its associated items. This
/// contains the item's id, naturally, but also the item's name and
/// some other high-level details (like whether it is an associated
/// type or method, and whether it is public). This allows other
/// passes to find the impl they want without loading the id (which
/// means fewer edges in the incremental compilation graph).
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ImplItemRef {
pub id: ImplItemId,
pub name: Name,
pub kind: AssociatedItemKind,
pub span: Span,
pub vis: Visibility,
pub defaultness: Defaultness,
}
#[derive(Copy, Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum AssociatedItemKind {
Const,
Method { has_self: bool },
Type,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub struct ForeignItem {
pub name: Name,
pub attrs: HirVec<Attribute>,
pub node: ForeignItem_,
pub id: NodeId,
pub span: Span,
pub vis: Visibility,
}
/// An item within an `extern` block
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, Hash, Debug)]
pub enum ForeignItem_ {
/// A foreign function
ForeignItemFn(P<FnDecl>, HirVec<Spanned<Name>>, Generics),
/// A foreign static item (`static ext: u8`), with optional mutability
/// (the boolean is true when mutable)
ForeignItemStatic(P<Ty>, bool),
/// A foreign type
ForeignItemType,
}
impl ForeignItem_ {
pub fn descriptive_variant(&self) -> &str {
match *self {
ForeignItemFn(..) => "foreign function",
ForeignItemStatic(..) => "foreign static item",
ForeignItemType => "foreign type",
}
}
}
/// A free variable referred to in a function.
#[derive(Debug, Copy, Clone, RustcEncodable, RustcDecodable)]
pub struct Freevar {
/// The variable being accessed free.
pub def: Def,
// First span where it is accessed (there can be multiple).
pub span: Span
}
impl Freevar {
pub fn var_id(&self) -> NodeId {
match self.def {
Def::Local(id) | Def::Upvar(id, ..) => id,
_ => bug!("Freevar::var_id: bad def ({:?})", self.def)
}
}
}
pub type FreevarMap = NodeMap<Vec<Freevar>>;
pub type CaptureModeMap = NodeMap<CaptureClause>;
#[derive(Clone, Debug)]
pub struct TraitCandidate {
pub def_id: DefId,
pub import_id: Option<NodeId>,
}
// Trait method resolution
pub type TraitMap = NodeMap<Vec<TraitCandidate>>;
// Map from the NodeId of a glob import to a list of items which are actually
// imported.
pub type GlobMap = NodeMap<FxHashSet<Name>>;
pub fn provide(providers: &mut Providers) {
providers.describe_def = map::describe_def;
}
#[derive(Clone, RustcEncodable, RustcDecodable, Hash)]
pub struct CodegenFnAttrs {
pub flags: CodegenFnAttrFlags,
pub inline: InlineAttr,
pub export_name: Option<Symbol>,
pub target_features: Vec<Symbol>,
pub linkage: Option<Linkage>,
}
bitflags! {
#[derive(RustcEncodable, RustcDecodable)]
pub struct CodegenFnAttrFlags: u8 {
const COLD = 0b0000_0001;
const ALLOCATOR = 0b0000_0010;
const UNWIND = 0b0000_0100;
const RUSTC_ALLOCATOR_NOUNWIND = 0b0000_1000;
const NAKED = 0b0001_0000;
const NO_MANGLE = 0b0010_0000;
const RUSTC_STD_INTERNAL_SYMBOL = 0b0100_0000;
const NO_DEBUG = 0b1000_0000;
}
}
impl CodegenFnAttrs {
pub fn new() -> CodegenFnAttrs {
CodegenFnAttrs {
flags: CodegenFnAttrFlags::empty(),
inline: InlineAttr::None,
export_name: None,
target_features: vec![],
linkage: None,
}
}
/// True if `#[inline]` or `#[inline(always)]` is present.
pub fn requests_inline(&self) -> bool {
match self.inline {
InlineAttr::Hint | InlineAttr::Always => true,
InlineAttr::None | InlineAttr::Never => false,
}
}
/// True if `#[no_mangle]` or `#[export_name(...)]` is present.
pub fn contains_extern_indicator(&self) -> bool {
self.flags.contains(CodegenFnAttrFlags::NO_MANGLE) || self.export_name.is_some()
}
}