blob: 813afb935762e9e7d9a40ac40e8ee6d6fb29882f [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This is an Earley-like parser, without support for in-grammar nonterminals,
//! only by calling out to the main rust parser for named nonterminals (which it
//! commits to fully when it hits one in a grammar). This means that there are no
//! completer or predictor rules, and therefore no need to store one column per
//! token: instead, there's a set of current Earley items and a set of next
//! ones. Instead of NTs, we have a special case for Kleene star. The big-O, in
//! pathological cases, is worse than traditional Earley parsing, but it's an
//! easier fit for Macro-by-Example-style rules, and I think the overhead is
//! lower. (In order to prevent the pathological case, we'd need to lazily
//! construct the resulting `NamedMatch`es at the very end. It'd be a pain,
//! and require more memory to keep around old items, but it would also save
//! overhead)
//!
//! Quick intro to how the parser works:
//!
//! A 'position' is a dot in the middle of a matcher, usually represented as a
//! dot. For example `· a $( a )* a b` is a position, as is `a $( · a )* a b`.
//!
//! The parser walks through the input a character at a time, maintaining a list
//! of items consistent with the current position in the input string: `cur_eis`.
//!
//! As it processes them, it fills up `eof_eis` with items that would be valid if
//! the macro invocation is now over, `bb_eis` with items that are waiting on
//! a Rust nonterminal like `$e:expr`, and `next_eis` with items that are waiting
//! on a particular token. Most of the logic concerns moving the · through the
//! repetitions indicated by Kleene stars. It only advances or calls out to the
//! real Rust parser when no `cur_eis` items remain
//!
//! Example: Start parsing `a a a a b` against [· a $( a )* a b].
//!
//! Remaining input: `a a a a b`
//! next_eis: [· a $( a )* a b]
//!
//! - - - Advance over an `a`. - - -
//!
//! Remaining input: `a a a b`
//! cur: [a · $( a )* a b]
//! Descend/Skip (first item).
//! next: [a $( · a )* a b] [a $( a )* · a b].
//!
//! - - - Advance over an `a`. - - -
//!
//! Remaining input: `a a b`
//! cur: [a $( a · )* a b] next: [a $( a )* a · b]
//! Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an `a`. - - - (this looks exactly like the last step)
//!
//! Remaining input: `a b`
//! cur: [a $( a · )* a b] next: [a $( a )* a · b]
//! Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b] [a $( a )* a · b]
//!
//! - - - Advance over an `a`. - - - (this looks exactly like the last step)
//!
//! Remaining input: `b`
//! cur: [a $( a · )* a b] next: [a $( a )* a · b]
//! Finish/Repeat (first item)
//! next: [a $( a )* · a b] [a $( · a )* a b]
//!
//! - - - Advance over a `b`. - - -
//!
//! Remaining input: ``
//! eof: [a $( a )* a b ·]
pub use self::NamedMatch::*;
pub use self::ParseResult::*;
use self::TokenTreeOrTokenTreeVec::*;
use ast;
use ast::{Name, Ident};
use syntax_pos::{self, BytePos, mk_sp, Span};
use codemap::Spanned;
use errors::FatalError;
use parse::lexer::*; //resolve bug?
use parse::ParseSess;
use parse::parser::{PathStyle, Parser};
use parse::token::{DocComment, MatchNt, SubstNt};
use parse::token::{Token, Nonterminal};
use parse::token;
use print::pprust;
use ptr::P;
use tokenstream::{self, TokenTree};
use std::mem;
use std::rc::Rc;
use std::collections::HashMap;
use std::collections::hash_map::Entry::{Vacant, Occupied};
// To avoid costly uniqueness checks, we require that `MatchSeq` always has
// a nonempty body.
#[derive(Clone)]
enum TokenTreeOrTokenTreeVec {
Tt(tokenstream::TokenTree),
TtSeq(Rc<Vec<tokenstream::TokenTree>>),
}
impl TokenTreeOrTokenTreeVec {
fn len(&self) -> usize {
match *self {
TtSeq(ref v) => v.len(),
Tt(ref tt) => tt.len(),
}
}
fn get_tt(&self, index: usize) -> TokenTree {
match *self {
TtSeq(ref v) => v[index].clone(),
Tt(ref tt) => tt.get_tt(index),
}
}
}
/// an unzipping of `TokenTree`s
#[derive(Clone)]
struct MatcherTtFrame {
elts: TokenTreeOrTokenTreeVec,
idx: usize,
}
#[derive(Clone)]
pub struct MatcherPos {
stack: Vec<MatcherTtFrame>,
top_elts: TokenTreeOrTokenTreeVec,
sep: Option<Token>,
idx: usize,
up: Option<Box<MatcherPos>>,
matches: Vec<Vec<Rc<NamedMatch>>>,
match_lo: usize,
match_cur: usize,
match_hi: usize,
sp_lo: BytePos,
}
pub fn count_names(ms: &[TokenTree]) -> usize {
ms.iter().fold(0, |count, elt| {
count + match *elt {
TokenTree::Sequence(_, ref seq) => {
seq.num_captures
}
TokenTree::Delimited(_, ref delim) => {
count_names(&delim.tts)
}
TokenTree::Token(_, MatchNt(..)) => {
1
}
TokenTree::Token(_, _) => 0,
}
})
}
pub fn initial_matcher_pos(ms: Rc<Vec<TokenTree>>, sep: Option<Token>, lo: BytePos)
-> Box<MatcherPos> {
let match_idx_hi = count_names(&ms[..]);
let matches: Vec<_> = (0..match_idx_hi).map(|_| Vec::new()).collect();
Box::new(MatcherPos {
stack: vec![],
top_elts: TtSeq(ms),
sep: sep,
idx: 0,
up: None,
matches: matches,
match_lo: 0,
match_cur: 0,
match_hi: match_idx_hi,
sp_lo: lo
})
}
/// NamedMatch is a pattern-match result for a single token::MATCH_NONTERMINAL:
/// so it is associated with a single ident in a parse, and all
/// `MatchedNonterminal`s in the NamedMatch have the same nonterminal type
/// (expr, item, etc). Each leaf in a single NamedMatch corresponds to a
/// single token::MATCH_NONTERMINAL in the TokenTree that produced it.
///
/// The in-memory structure of a particular NamedMatch represents the match
/// that occurred when a particular subset of a matcher was applied to a
/// particular token tree.
///
/// The width of each MatchedSeq in the NamedMatch, and the identity of the
/// `MatchedNonterminal`s, will depend on the token tree it was applied to:
/// each MatchedSeq corresponds to a single TTSeq in the originating
/// token tree. The depth of the NamedMatch structure will therefore depend
/// only on the nesting depth of `ast::TTSeq`s in the originating
/// token tree it was derived from.
pub enum NamedMatch {
MatchedSeq(Vec<Rc<NamedMatch>>, syntax_pos::Span),
MatchedNonterminal(Nonterminal)
}
pub fn nameize(p_s: &ParseSess, ms: &[TokenTree], res: &[Rc<NamedMatch>])
-> ParseResult<HashMap<Name, Rc<NamedMatch>>> {
fn n_rec(p_s: &ParseSess, m: &TokenTree, res: &[Rc<NamedMatch>],
ret_val: &mut HashMap<Name, Rc<NamedMatch>>, idx: &mut usize)
-> Result<(), (syntax_pos::Span, String)> {
match *m {
TokenTree::Sequence(_, ref seq) => {
for next_m in &seq.tts {
n_rec(p_s, next_m, res, ret_val, idx)?
}
}
TokenTree::Delimited(_, ref delim) => {
for next_m in &delim.tts {
n_rec(p_s, next_m, res, ret_val, idx)?;
}
}
TokenTree::Token(sp, MatchNt(bind_name, _)) => {
match ret_val.entry(bind_name.name) {
Vacant(spot) => {
spot.insert(res[*idx].clone());
*idx += 1;
}
Occupied(..) => {
return Err((sp, format!("duplicated bind name: {}", bind_name)))
}
}
}
TokenTree::Token(sp, SubstNt(..)) => {
return Err((sp, "missing fragment specifier".to_string()))
}
TokenTree::Token(_, _) => (),
}
Ok(())
}
let mut ret_val = HashMap::new();
let mut idx = 0;
for m in ms {
match n_rec(p_s, m, res, &mut ret_val, &mut idx) {
Ok(_) => {},
Err((sp, msg)) => return Error(sp, msg),
}
}
Success(ret_val)
}
pub enum ParseResult<T> {
Success(T),
/// Arm failed to match
Failure(syntax_pos::Span, String),
/// Fatal error (malformed macro?). Abort compilation.
Error(syntax_pos::Span, String)
}
pub type NamedParseResult = ParseResult<HashMap<Name, Rc<NamedMatch>>>;
pub type PositionalParseResult = ParseResult<Vec<Rc<NamedMatch>>>;
/// Perform a token equality check, ignoring syntax context (that is, an
/// unhygienic comparison)
pub fn token_name_eq(t1 : &Token, t2 : &Token) -> bool {
match (t1,t2) {
(&token::Ident(id1),&token::Ident(id2))
| (&token::Lifetime(id1),&token::Lifetime(id2)) =>
id1.name == id2.name,
_ => *t1 == *t2
}
}
pub fn parse(sess: &ParseSess,
cfg: ast::CrateConfig,
mut rdr: TtReader,
ms: &[TokenTree])
-> NamedParseResult {
let mut cur_eis = Vec::new();
cur_eis.push(initial_matcher_pos(Rc::new(ms.iter()
.cloned()
.collect()),
None,
rdr.peek().sp.lo));
loop {
let mut bb_eis = Vec::new(); // black-box parsed by parser.rs
let mut next_eis = Vec::new(); // or proceed normally
let mut eof_eis = Vec::new();
let TokenAndSpan { tok, sp } = rdr.peek();
/* we append new items to this while we go */
loop {
let mut ei = match cur_eis.pop() {
None => break, /* for each Earley Item */
Some(ei) => ei,
};
// When unzipped trees end, remove them
while ei.idx >= ei.top_elts.len() {
match ei.stack.pop() {
Some(MatcherTtFrame { elts, idx }) => {
ei.top_elts = elts;
ei.idx = idx + 1;
}
None => break
}
}
let idx = ei.idx;
let len = ei.top_elts.len();
/* at end of sequence */
if idx >= len {
// can't move out of `match`es, so:
if ei.up.is_some() {
// hack: a matcher sequence is repeating iff it has a
// parent (the top level is just a container)
// disregard separator, try to go up
// (remove this condition to make trailing seps ok)
if idx == len {
// pop from the matcher position
let mut new_pos = ei.up.clone().unwrap();
// update matches (the MBE "parse tree") by appending
// each tree as a subtree.
// I bet this is a perf problem: we're preemptively
// doing a lot of array work that will get thrown away
// most of the time.
// Only touch the binders we have actually bound
for idx in ei.match_lo..ei.match_hi {
let sub = (ei.matches[idx]).clone();
(&mut new_pos.matches[idx])
.push(Rc::new(MatchedSeq(sub, mk_sp(ei.sp_lo,
sp.hi))));
}
new_pos.match_cur = ei.match_hi;
new_pos.idx += 1;
cur_eis.push(new_pos);
}
// can we go around again?
// the *_t vars are workarounds for the lack of unary move
match ei.sep {
Some(ref t) if idx == len => { // we need a separator
// i'm conflicted about whether this should be hygienic....
// though in this case, if the separators are never legal
// idents, it shouldn't matter.
if token_name_eq(&tok, t) { //pass the separator
let mut ei_t = ei.clone();
// ei_t.match_cur = ei_t.match_lo;
ei_t.idx += 1;
next_eis.push(ei_t);
}
}
_ => { // we don't need a separator
let mut ei_t = ei;
ei_t.match_cur = ei_t.match_lo;
ei_t.idx = 0;
cur_eis.push(ei_t);
}
}
} else {
eof_eis.push(ei);
}
} else {
match ei.top_elts.get_tt(idx) {
/* need to descend into sequence */
TokenTree::Sequence(sp, seq) => {
if seq.op == tokenstream::KleeneOp::ZeroOrMore {
let mut new_ei = ei.clone();
new_ei.match_cur += seq.num_captures;
new_ei.idx += 1;
//we specifically matched zero repeats.
for idx in ei.match_cur..ei.match_cur + seq.num_captures {
(&mut new_ei.matches[idx]).push(Rc::new(MatchedSeq(vec![], sp)));
}
cur_eis.push(new_ei);
}
let matches: Vec<_> = (0..ei.matches.len())
.map(|_| Vec::new()).collect();
let ei_t = ei;
cur_eis.push(Box::new(MatcherPos {
stack: vec![],
sep: seq.separator.clone(),
idx: 0,
matches: matches,
match_lo: ei_t.match_cur,
match_cur: ei_t.match_cur,
match_hi: ei_t.match_cur + seq.num_captures,
up: Some(ei_t),
sp_lo: sp.lo,
top_elts: Tt(TokenTree::Sequence(sp, seq)),
}));
}
TokenTree::Token(_, MatchNt(..)) => {
// Built-in nonterminals never start with these tokens,
// so we can eliminate them from consideration.
match tok {
token::CloseDelim(_) => {},
_ => bb_eis.push(ei),
}
}
TokenTree::Token(sp, SubstNt(..)) => {
return Error(sp, "missing fragment specifier".to_string())
}
seq @ TokenTree::Delimited(..) | seq @ TokenTree::Token(_, DocComment(..)) => {
let lower_elts = mem::replace(&mut ei.top_elts, Tt(seq));
let idx = ei.idx;
ei.stack.push(MatcherTtFrame {
elts: lower_elts,
idx: idx,
});
ei.idx = 0;
cur_eis.push(ei);
}
TokenTree::Token(_, ref t) => {
let mut ei_t = ei.clone();
if token_name_eq(t,&tok) {
ei_t.idx += 1;
next_eis.push(ei_t);
}
}
}
}
}
/* error messages here could be improved with links to orig. rules */
if token_name_eq(&tok, &token::Eof) {
if eof_eis.len() == 1 {
let mut v = Vec::new();
for dv in &mut (&mut eof_eis[0]).matches {
v.push(dv.pop().unwrap());
}
return nameize(sess, ms, &v[..]);
} else if eof_eis.len() > 1 {
return Error(sp, "ambiguity: multiple successful parses".to_string());
} else {
return Failure(sp, "unexpected end of macro invocation".to_string());
}
} else {
if (!bb_eis.is_empty() && !next_eis.is_empty())
|| bb_eis.len() > 1 {
let nts = bb_eis.iter().map(|ei| match ei.top_elts.get_tt(ei.idx) {
TokenTree::Token(_, MatchNt(bind, name)) => {
format!("{} ('{}')", name, bind)
}
_ => panic!()
}).collect::<Vec<String>>().join(" or ");
return Error(sp, format!(
"local ambiguity: multiple parsing options: {}",
match next_eis.len() {
0 => format!("built-in NTs {}.", nts),
1 => format!("built-in NTs {} or 1 other option.", nts),
n => format!("built-in NTs {} or {} other options.", nts, n),
}
))
} else if bb_eis.is_empty() && next_eis.is_empty() {
return Failure(sp, format!("no rules expected the token `{}`",
pprust::token_to_string(&tok)));
} else if !next_eis.is_empty() {
/* Now process the next token */
while !next_eis.is_empty() {
cur_eis.push(next_eis.pop().unwrap());
}
rdr.next_token();
} else /* bb_eis.len() == 1 */ {
let mut rust_parser = Parser::new(sess, cfg.clone(), Box::new(rdr.clone()));
let mut ei = bb_eis.pop().unwrap();
match ei.top_elts.get_tt(ei.idx) {
TokenTree::Token(span, MatchNt(_, ident)) => {
let match_cur = ei.match_cur;
(&mut ei.matches[match_cur]).push(Rc::new(MatchedNonterminal(
parse_nt(&mut rust_parser, span, &ident.name.as_str()))));
ei.idx += 1;
ei.match_cur += 1;
}
_ => panic!()
}
cur_eis.push(ei);
for _ in 0..rust_parser.tokens_consumed {
let _ = rdr.next_token();
}
}
}
assert!(!cur_eis.is_empty());
}
}
pub fn parse_nt<'a>(p: &mut Parser<'a>, sp: Span, name: &str) -> Nonterminal {
match name {
"tt" => {
p.quote_depth += 1; //but in theory, non-quoted tts might be useful
let res: ::parse::PResult<'a, _> = p.parse_token_tree();
let res = token::NtTT(P(panictry!(res)));
p.quote_depth -= 1;
return res;
}
_ => {}
}
// check at the beginning and the parser checks after each bump
p.check_unknown_macro_variable();
match name {
"item" => match panictry!(p.parse_item()) {
Some(i) => token::NtItem(i),
None => {
p.fatal("expected an item keyword").emit();
panic!(FatalError);
}
},
"block" => token::NtBlock(panictry!(p.parse_block())),
"stmt" => match panictry!(p.parse_stmt()) {
Some(s) => token::NtStmt(P(s)),
None => {
p.fatal("expected a statement").emit();
panic!(FatalError);
}
},
"pat" => token::NtPat(panictry!(p.parse_pat())),
"expr" => token::NtExpr(panictry!(p.parse_expr())),
"ty" => token::NtTy(panictry!(p.parse_ty())),
// this could be handled like a token, since it is one
"ident" => match p.token {
token::Ident(sn) => {
p.bump();
token::NtIdent(Box::new(Spanned::<Ident>{node: sn, span: p.span}))
}
_ => {
let token_str = pprust::token_to_string(&p.token);
p.fatal(&format!("expected ident, found {}",
&token_str[..])).emit();
panic!(FatalError)
}
},
"path" => {
token::NtPath(Box::new(panictry!(p.parse_path(PathStyle::Type))))
},
"meta" => token::NtMeta(panictry!(p.parse_meta_item())),
// this is not supposed to happen, since it has been checked
// when compiling the macro.
_ => p.span_bug(sp, "invalid fragment specifier")
}
}