blob: d609ad84a83831dd8920ab84b60e9791231f93f3 [file] [log] [blame]
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This module contains the "cleaned" pieces of the AST, and the functions
//! that clean them.
pub use self::Type::*;
pub use self::PrimitiveType::*;
pub use self::TypeKind::*;
pub use self::VariantKind::*;
pub use self::Mutability::*;
pub use self::Import::*;
pub use self::ItemEnum::*;
pub use self::Attribute::*;
pub use self::TyParamBound::*;
pub use self::SelfTy::*;
pub use self::FunctionRetTy::*;
pub use self::Visibility::*;
use syntax::abi::Abi;
use syntax::ast;
use syntax::attr;
use syntax::attr::{AttributeMethods, AttrMetaMethods};
use syntax::codemap::Spanned;
use syntax::parse::token::{self, InternedString, keywords};
use syntax::ptr::P;
use syntax_pos::{self, DUMMY_SP, Pos};
use rustc_trans::back::link;
use rustc::middle::cstore;
use rustc::middle::privacy::AccessLevels;
use rustc::hir::def::Def;
use rustc::hir::def_id::{DefId, DefIndex, CRATE_DEF_INDEX};
use rustc::hir::print as pprust;
use rustc::ty::subst::{self, ParamSpace, VecPerParamSpace};
use rustc::ty;
use rustc::middle::stability;
use rustc::hir;
use std::collections::{HashMap, HashSet};
use std::path::PathBuf;
use std::rc::Rc;
use std::sync::Arc;
use std::u32;
use std::env::current_dir;
use std::mem;
use core::DocContext;
use doctree;
use visit_ast;
use html::item_type::ItemType;
pub mod inline;
mod simplify;
// extract the stability index for a node from tcx, if possible
fn get_stability(cx: &DocContext, def_id: DefId) -> Option<Stability> {
cx.tcx_opt().and_then(|tcx| tcx.lookup_stability(def_id)).clean(cx)
}
fn get_deprecation(cx: &DocContext, def_id: DefId) -> Option<Deprecation> {
cx.tcx_opt().and_then(|tcx| tcx.lookup_deprecation(def_id)).clean(cx)
}
pub trait Clean<T> {
fn clean(&self, cx: &DocContext) -> T;
}
impl<T: Clean<U>, U> Clean<Vec<U>> for [T] {
fn clean(&self, cx: &DocContext) -> Vec<U> {
self.iter().map(|x| x.clean(cx)).collect()
}
}
impl<T: Clean<U>, U> Clean<VecPerParamSpace<U>> for VecPerParamSpace<T> {
fn clean(&self, cx: &DocContext) -> VecPerParamSpace<U> {
self.map(|x| x.clean(cx))
}
}
impl<T: Clean<U>, U> Clean<U> for P<T> {
fn clean(&self, cx: &DocContext) -> U {
(**self).clean(cx)
}
}
impl<T: Clean<U>, U> Clean<U> for Rc<T> {
fn clean(&self, cx: &DocContext) -> U {
(**self).clean(cx)
}
}
impl<T: Clean<U>, U> Clean<Option<U>> for Option<T> {
fn clean(&self, cx: &DocContext) -> Option<U> {
self.as_ref().map(|v| v.clean(cx))
}
}
impl<T, U> Clean<U> for ty::Binder<T> where T: Clean<U> {
fn clean(&self, cx: &DocContext) -> U {
self.0.clean(cx)
}
}
impl<T: Clean<U>, U> Clean<Vec<U>> for P<[T]> {
fn clean(&self, cx: &DocContext) -> Vec<U> {
self.iter().map(|x| x.clean(cx)).collect()
}
}
#[derive(Clone, Debug)]
pub struct Crate {
pub name: String,
pub src: PathBuf,
pub module: Option<Item>,
pub externs: Vec<(ast::CrateNum, ExternalCrate)>,
pub primitives: Vec<PrimitiveType>,
pub access_levels: Arc<AccessLevels<DefId>>,
// These are later on moved into `CACHEKEY`, leaving the map empty.
// Only here so that they can be filtered through the rustdoc passes.
pub external_traits: HashMap<DefId, Trait>,
}
struct CrateNum(ast::CrateNum);
impl<'a, 'tcx> Clean<Crate> for visit_ast::RustdocVisitor<'a, 'tcx> {
fn clean(&self, cx: &DocContext) -> Crate {
use rustc::session::config::Input;
use ::visit_lib::LibEmbargoVisitor;
if let Some(t) = cx.tcx_opt() {
cx.deref_trait_did.set(t.lang_items.deref_trait());
cx.renderinfo.borrow_mut().deref_trait_did = cx.deref_trait_did.get();
}
let mut externs = Vec::new();
for cnum in cx.sess().cstore.crates() {
externs.push((cnum, CrateNum(cnum).clean(cx)));
if cx.tcx_opt().is_some() {
// Analyze doc-reachability for extern items
LibEmbargoVisitor::new(cx).visit_lib(cnum);
}
}
externs.sort_by(|&(a, _), &(b, _)| a.cmp(&b));
// Figure out the name of this crate
let input = &cx.input;
let name = link::find_crate_name(None, &self.attrs, input);
// Clean the crate, translating the entire libsyntax AST to one that is
// understood by rustdoc.
let mut module = self.module.clean(cx);
// Collect all inner modules which are tagged as implementations of
// primitives.
//
// Note that this loop only searches the top-level items of the crate,
// and this is intentional. If we were to search the entire crate for an
// item tagged with `#[doc(primitive)]` then we would also have to
// search the entirety of external modules for items tagged
// `#[doc(primitive)]`, which is a pretty inefficient process (decoding
// all that metadata unconditionally).
//
// In order to keep the metadata load under control, the
// `#[doc(primitive)]` feature is explicitly designed to only allow the
// primitive tags to show up as the top level items in a crate.
//
// Also note that this does not attempt to deal with modules tagged
// duplicately for the same primitive. This is handled later on when
// rendering by delegating everything to a hash map.
let mut primitives = Vec::new();
{
let m = match module.inner {
ModuleItem(ref mut m) => m,
_ => unreachable!(),
};
let mut tmp = Vec::new();
for child in &mut m.items {
if !child.is_mod() {
continue;
}
let prim = match PrimitiveType::find(&child.attrs) {
Some(prim) => prim,
None => continue,
};
primitives.push(prim);
tmp.push(Item {
source: Span::empty(),
name: Some(prim.to_url_str().to_string()),
attrs: child.attrs.clone(),
visibility: Some(Public),
stability: None,
deprecation: None,
def_id: DefId::local(prim.to_def_index()),
inner: PrimitiveItem(prim),
});
}
m.items.extend(tmp);
}
let src = match cx.input {
Input::File(ref path) => {
if path.is_absolute() {
path.clone()
} else {
current_dir().unwrap().join(path)
}
},
Input::Str { ref name, .. } => PathBuf::from(name.clone()),
};
let mut access_levels = cx.access_levels.borrow_mut();
let mut external_traits = cx.external_traits.borrow_mut();
Crate {
name: name.to_string(),
src: src,
module: Some(module),
externs: externs,
primitives: primitives,
access_levels: Arc::new(mem::replace(&mut access_levels, Default::default())),
external_traits: mem::replace(&mut external_traits, Default::default()),
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct ExternalCrate {
pub name: String,
pub attrs: Vec<Attribute>,
pub primitives: Vec<PrimitiveType>,
}
impl Clean<ExternalCrate> for CrateNum {
fn clean(&self, cx: &DocContext) -> ExternalCrate {
let mut primitives = Vec::new();
cx.tcx_opt().map(|tcx| {
for item in tcx.sess.cstore.crate_top_level_items(self.0) {
let did = match item.def {
cstore::DlDef(Def::Mod(did)) => did,
_ => continue
};
let attrs = inline::load_attrs(cx, tcx, did);
PrimitiveType::find(&attrs).map(|prim| primitives.push(prim));
}
});
ExternalCrate {
name: (&cx.sess().cstore.crate_name(self.0)[..]).to_owned(),
attrs: cx.sess().cstore.crate_attrs(self.0).clean(cx),
primitives: primitives,
}
}
}
/// Anything with a source location and set of attributes and, optionally, a
/// name. That is, anything that can be documented. This doesn't correspond
/// directly to the AST's concept of an item; it's a strict superset.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Item {
/// Stringified span
pub source: Span,
/// Not everything has a name. E.g., impls
pub name: Option<String>,
pub attrs: Vec<Attribute>,
pub inner: ItemEnum,
pub visibility: Option<Visibility>,
pub def_id: DefId,
pub stability: Option<Stability>,
pub deprecation: Option<Deprecation>,
}
impl Item {
/// Finds the `doc` attribute as a NameValue and returns the corresponding
/// value found.
pub fn doc_value<'a>(&'a self) -> Option<&'a str> {
self.attrs.value("doc")
}
pub fn is_crate(&self) -> bool {
match self.inner {
StrippedItem(box ModuleItem(Module { is_crate: true, ..})) |
ModuleItem(Module { is_crate: true, ..}) => true,
_ => false,
}
}
pub fn is_mod(&self) -> bool {
ItemType::from_item(self) == ItemType::Module
}
pub fn is_trait(&self) -> bool {
ItemType::from_item(self) == ItemType::Trait
}
pub fn is_struct(&self) -> bool {
ItemType::from_item(self) == ItemType::Struct
}
pub fn is_enum(&self) -> bool {
ItemType::from_item(self) == ItemType::Module
}
pub fn is_fn(&self) -> bool {
ItemType::from_item(self) == ItemType::Function
}
pub fn is_associated_type(&self) -> bool {
ItemType::from_item(self) == ItemType::AssociatedType
}
pub fn is_associated_const(&self) -> bool {
ItemType::from_item(self) == ItemType::AssociatedConst
}
pub fn is_method(&self) -> bool {
ItemType::from_item(self) == ItemType::Method
}
pub fn is_ty_method(&self) -> bool {
ItemType::from_item(self) == ItemType::TyMethod
}
pub fn is_primitive(&self) -> bool {
ItemType::from_item(self) == ItemType::Primitive
}
pub fn is_stripped(&self) -> bool {
match self.inner { StrippedItem(..) => true, _ => false }
}
pub fn has_stripped_fields(&self) -> Option<bool> {
match self.inner {
StructItem(ref _struct) => Some(_struct.fields_stripped),
VariantItem(Variant { kind: StructVariant(ref vstruct)} ) => {
Some(vstruct.fields_stripped)
},
_ => None,
}
}
pub fn stability_class(&self) -> String {
self.stability.as_ref().map(|ref s| {
let mut base = match s.level {
stability::Unstable => "unstable".to_string(),
stability::Stable => String::new(),
};
if !s.deprecated_since.is_empty() {
base.push_str(" deprecated");
}
base
}).unwrap_or(String::new())
}
pub fn stable_since(&self) -> Option<&str> {
self.stability.as_ref().map(|s| &s.since[..])
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum ItemEnum {
ExternCrateItem(String, Option<String>),
ImportItem(Import),
StructItem(Struct),
EnumItem(Enum),
FunctionItem(Function),
ModuleItem(Module),
TypedefItem(Typedef, bool /* is associated type */),
StaticItem(Static),
ConstantItem(Constant),
TraitItem(Trait),
ImplItem(Impl),
/// A method signature only. Used for required methods in traits (ie,
/// non-default-methods).
TyMethodItem(TyMethod),
/// A method with a body.
MethodItem(Method),
StructFieldItem(Type),
VariantItem(Variant),
/// `fn`s from an extern block
ForeignFunctionItem(Function),
/// `static`s from an extern block
ForeignStaticItem(Static),
MacroItem(Macro),
PrimitiveItem(PrimitiveType),
AssociatedConstItem(Type, Option<String>),
AssociatedTypeItem(Vec<TyParamBound>, Option<Type>),
DefaultImplItem(DefaultImpl),
/// An item that has been stripped by a rustdoc pass
StrippedItem(Box<ItemEnum>),
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Module {
pub items: Vec<Item>,
pub is_crate: bool,
}
impl Clean<Item> for doctree::Module {
fn clean(&self, cx: &DocContext) -> Item {
let name = if self.name.is_some() {
self.name.unwrap().clean(cx)
} else {
"".to_string()
};
let mut items: Vec<Item> = vec![];
items.extend(self.extern_crates.iter().map(|x| x.clean(cx)));
items.extend(self.imports.iter().flat_map(|x| x.clean(cx)));
items.extend(self.structs.iter().map(|x| x.clean(cx)));
items.extend(self.enums.iter().map(|x| x.clean(cx)));
items.extend(self.fns.iter().map(|x| x.clean(cx)));
items.extend(self.foreigns.iter().flat_map(|x| x.clean(cx)));
items.extend(self.mods.iter().map(|x| x.clean(cx)));
items.extend(self.typedefs.iter().map(|x| x.clean(cx)));
items.extend(self.statics.iter().map(|x| x.clean(cx)));
items.extend(self.constants.iter().map(|x| x.clean(cx)));
items.extend(self.traits.iter().map(|x| x.clean(cx)));
items.extend(self.impls.iter().flat_map(|x| x.clean(cx)));
items.extend(self.macros.iter().map(|x| x.clean(cx)));
items.extend(self.def_traits.iter().map(|x| x.clean(cx)));
// determine if we should display the inner contents or
// the outer `mod` item for the source code.
let whence = {
let cm = cx.sess().codemap();
let outer = cm.lookup_char_pos(self.where_outer.lo);
let inner = cm.lookup_char_pos(self.where_inner.lo);
if outer.file.start_pos == inner.file.start_pos {
// mod foo { ... }
self.where_outer
} else {
// mod foo; (and a separate FileMap for the contents)
self.where_inner
}
};
Item {
name: Some(name),
attrs: self.attrs.clean(cx),
source: whence.clean(cx),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
deprecation: self.depr.clean(cx),
def_id: cx.map.local_def_id(self.id),
inner: ModuleItem(Module {
is_crate: self.is_crate,
items: items
})
}
}
}
pub trait Attributes {
fn has_word(&self, &str) -> bool;
fn value<'a>(&'a self, &str) -> Option<&'a str>;
fn list<'a>(&'a self, &str) -> &'a [Attribute];
}
impl Attributes for [Attribute] {
/// Returns whether the attribute list contains a specific `Word`
fn has_word(&self, word: &str) -> bool {
for attr in self {
if let Word(ref w) = *attr {
if word == *w {
return true;
}
}
}
false
}
/// Finds an attribute as NameValue and returns the corresponding value found.
fn value<'a>(&'a self, name: &str) -> Option<&'a str> {
for attr in self {
if let NameValue(ref x, ref v) = *attr {
if name == *x {
return Some(v);
}
}
}
None
}
/// Finds an attribute as List and returns the list of attributes nested inside.
fn list<'a>(&'a self, name: &str) -> &'a [Attribute] {
for attr in self {
if let List(ref x, ref list) = *attr {
if name == *x {
return &list[..];
}
}
}
&[]
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub enum Attribute {
Word(String),
List(String, Vec<Attribute>),
NameValue(String, String)
}
impl Clean<Attribute> for ast::MetaItem {
fn clean(&self, cx: &DocContext) -> Attribute {
if self.is_word() {
Word(self.name().to_string())
} else if let Some(v) = self.value_str() {
NameValue(self.name().to_string(), v.to_string())
} else { // must be a list
let l = self.meta_item_list().unwrap();
List(self.name().to_string(), l.clean(cx))
}
}
}
impl Clean<Attribute> for ast::Attribute {
fn clean(&self, cx: &DocContext) -> Attribute {
self.with_desugared_doc(|a| a.meta().clean(cx))
}
}
// This is a rough approximation that gets us what we want.
impl attr::AttrMetaMethods for Attribute {
fn name(&self) -> InternedString {
match *self {
Word(ref n) | List(ref n, _) | NameValue(ref n, _) => {
token::intern_and_get_ident(n)
}
}
}
fn value_str(&self) -> Option<InternedString> {
match *self {
NameValue(_, ref v) => {
Some(token::intern_and_get_ident(v))
}
_ => None,
}
}
fn meta_item_list<'a>(&'a self) -> Option<&'a [P<ast::MetaItem>]> { None }
fn is_word(&self) -> bool {
match *self {
Word(_) => true,
_ => false,
}
}
fn is_value_str(&self) -> bool {
match *self {
NameValue(..) => true,
_ => false,
}
}
fn is_meta_item_list(&self) -> bool {
match *self {
List(..) => true,
_ => false,
}
}
fn span(&self) -> syntax_pos::Span { unimplemented!() }
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub struct TyParam {
pub name: String,
pub did: DefId,
pub bounds: Vec<TyParamBound>,
pub default: Option<Type>,
}
impl Clean<TyParam> for hir::TyParam {
fn clean(&self, cx: &DocContext) -> TyParam {
TyParam {
name: self.name.clean(cx),
did: cx.map.local_def_id(self.id),
bounds: self.bounds.clean(cx),
default: self.default.clean(cx),
}
}
}
impl<'tcx> Clean<TyParam> for ty::TypeParameterDef<'tcx> {
fn clean(&self, cx: &DocContext) -> TyParam {
cx.renderinfo.borrow_mut().external_typarams.insert(self.def_id, self.name.clean(cx));
TyParam {
name: self.name.clean(cx),
did: self.def_id,
bounds: vec![], // these are filled in from the where-clauses
default: self.default.clean(cx),
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub enum TyParamBound {
RegionBound(Lifetime),
TraitBound(PolyTrait, hir::TraitBoundModifier)
}
impl TyParamBound {
fn maybe_sized(cx: &DocContext) -> TyParamBound {
use rustc::hir::TraitBoundModifier as TBM;
let mut sized_bound = ty::BoundSized.clean(cx);
if let TyParamBound::TraitBound(_, ref mut tbm) = sized_bound {
*tbm = TBM::Maybe
};
sized_bound
}
fn is_sized_bound(&self, cx: &DocContext) -> bool {
use rustc::hir::TraitBoundModifier as TBM;
if let Some(tcx) = cx.tcx_opt() {
if let TyParamBound::TraitBound(PolyTrait { ref trait_, .. }, TBM::None) = *self {
if trait_.def_id() == tcx.lang_items.sized_trait() {
return true;
}
}
}
false
}
}
impl Clean<TyParamBound> for hir::TyParamBound {
fn clean(&self, cx: &DocContext) -> TyParamBound {
match *self {
hir::RegionTyParamBound(lt) => RegionBound(lt.clean(cx)),
hir::TraitTyParamBound(ref t, modifier) => TraitBound(t.clean(cx), modifier),
}
}
}
impl<'tcx> Clean<(Vec<TyParamBound>, Vec<TypeBinding>)> for ty::ExistentialBounds<'tcx> {
fn clean(&self, cx: &DocContext) -> (Vec<TyParamBound>, Vec<TypeBinding>) {
let mut tp_bounds = vec![];
self.region_bound.clean(cx).map(|b| tp_bounds.push(RegionBound(b)));
for bb in &self.builtin_bounds {
tp_bounds.push(bb.clean(cx));
}
let mut bindings = vec![];
for &ty::Binder(ref pb) in &self.projection_bounds {
bindings.push(TypeBinding {
name: pb.projection_ty.item_name.clean(cx),
ty: pb.ty.clean(cx)
});
}
(tp_bounds, bindings)
}
}
fn external_path_params(cx: &DocContext, trait_did: Option<DefId>,
bindings: Vec<TypeBinding>, substs: &subst::Substs) -> PathParameters {
let lifetimes = substs.regions.get_slice(subst::TypeSpace)
.iter()
.filter_map(|v| v.clean(cx))
.collect();
let types = substs.types.get_slice(subst::TypeSpace).to_vec();
match (trait_did, cx.tcx_opt()) {
// Attempt to sugar an external path like Fn<(A, B,), C> to Fn(A, B) -> C
(Some(did), Some(ref tcx)) if tcx.lang_items.fn_trait_kind(did).is_some() => {
assert_eq!(types.len(), 1);
let inputs = match types[0].sty {
ty::TyTuple(ref tys) => tys.iter().map(|t| t.clean(cx)).collect(),
_ => {
return PathParameters::AngleBracketed {
lifetimes: lifetimes,
types: types.clean(cx),
bindings: bindings
}
}
};
let output = None;
// FIXME(#20299) return type comes from a projection now
// match types[1].sty {
// ty::TyTuple(ref v) if v.is_empty() => None, // -> ()
// _ => Some(types[1].clean(cx))
// };
PathParameters::Parenthesized {
inputs: inputs,
output: output
}
},
(_, _) => {
PathParameters::AngleBracketed {
lifetimes: lifetimes,
types: types.clean(cx),
bindings: bindings
}
}
}
}
// trait_did should be set to a trait's DefId if called on a TraitRef, in order to sugar
// from Fn<(A, B,), C> to Fn(A, B) -> C
fn external_path(cx: &DocContext, name: &str, trait_did: Option<DefId>,
bindings: Vec<TypeBinding>, substs: &subst::Substs) -> Path {
Path {
global: false,
segments: vec![PathSegment {
name: name.to_string(),
params: external_path_params(cx, trait_did, bindings, substs)
}],
}
}
impl Clean<TyParamBound> for ty::BuiltinBound {
fn clean(&self, cx: &DocContext) -> TyParamBound {
let tcx = match cx.tcx_opt() {
Some(tcx) => tcx,
None => return RegionBound(Lifetime::statik())
};
let empty = subst::Substs::empty();
let (did, path) = match *self {
ty::BoundSend =>
(tcx.lang_items.send_trait().unwrap(),
external_path(cx, "Send", None, vec![], &empty)),
ty::BoundSized =>
(tcx.lang_items.sized_trait().unwrap(),
external_path(cx, "Sized", None, vec![], &empty)),
ty::BoundCopy =>
(tcx.lang_items.copy_trait().unwrap(),
external_path(cx, "Copy", None, vec![], &empty)),
ty::BoundSync =>
(tcx.lang_items.sync_trait().unwrap(),
external_path(cx, "Sync", None, vec![], &empty)),
};
inline::record_extern_fqn(cx, did, TypeTrait);
TraitBound(PolyTrait {
trait_: ResolvedPath {
path: path,
typarams: None,
did: did,
is_generic: false,
},
lifetimes: vec![]
}, hir::TraitBoundModifier::None)
}
}
impl<'tcx> Clean<TyParamBound> for ty::TraitRef<'tcx> {
fn clean(&self, cx: &DocContext) -> TyParamBound {
let tcx = match cx.tcx_opt() {
Some(tcx) => tcx,
None => return RegionBound(Lifetime::statik())
};
inline::record_extern_fqn(cx, self.def_id, TypeTrait);
let path = external_path(cx, &tcx.item_name(self.def_id).as_str(),
Some(self.def_id), vec![], self.substs);
debug!("ty::TraitRef\n substs.types(TypeSpace): {:?}\n",
self.substs.types.get_slice(ParamSpace::TypeSpace));
// collect any late bound regions
let mut late_bounds = vec![];
for &ty_s in self.substs.types.get_slice(ParamSpace::TypeSpace) {
if let ty::TyTuple(ts) = ty_s.sty {
for &ty_s in ts {
if let ty::TyRef(ref reg, _) = ty_s.sty {
if let &ty::Region::ReLateBound(_, _) = *reg {
debug!(" hit an ReLateBound {:?}", reg);
if let Some(lt) = reg.clean(cx) {
late_bounds.push(lt);
}
}
}
}
}
}
TraitBound(
PolyTrait {
trait_: ResolvedPath {
path: path,
typarams: None,
did: self.def_id,
is_generic: false,
},
lifetimes: late_bounds,
},
hir::TraitBoundModifier::None
)
}
}
impl<'tcx> Clean<Option<Vec<TyParamBound>>> for subst::Substs<'tcx> {
fn clean(&self, cx: &DocContext) -> Option<Vec<TyParamBound>> {
let mut v = Vec::new();
v.extend(self.regions.iter().filter_map(|r| r.clean(cx)).map(RegionBound));
v.extend(self.types.iter().map(|t| TraitBound(PolyTrait {
trait_: t.clean(cx),
lifetimes: vec![]
}, hir::TraitBoundModifier::None)));
if !v.is_empty() {Some(v)} else {None}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub struct Lifetime(String);
impl Lifetime {
pub fn get_ref<'a>(&'a self) -> &'a str {
let Lifetime(ref s) = *self;
let s: &'a str = s;
return s;
}
pub fn statik() -> Lifetime {
Lifetime("'static".to_string())
}
}
impl Clean<Lifetime> for hir::Lifetime {
fn clean(&self, _: &DocContext) -> Lifetime {
Lifetime(self.name.to_string())
}
}
impl Clean<Lifetime> for hir::LifetimeDef {
fn clean(&self, _: &DocContext) -> Lifetime {
if self.bounds.len() > 0 {
let mut s = format!("{}: {}",
self.lifetime.name.to_string(),
self.bounds[0].name.to_string());
for bound in self.bounds.iter().skip(1) {
s.push_str(&format!(" + {}", bound.name.to_string()));
}
Lifetime(s)
} else {
Lifetime(self.lifetime.name.to_string())
}
}
}
impl Clean<Lifetime> for ty::RegionParameterDef {
fn clean(&self, _: &DocContext) -> Lifetime {
Lifetime(self.name.to_string())
}
}
impl Clean<Option<Lifetime>> for ty::Region {
fn clean(&self, cx: &DocContext) -> Option<Lifetime> {
match *self {
ty::ReStatic => Some(Lifetime::statik()),
ty::ReLateBound(_, ty::BrNamed(_, name, _)) => Some(Lifetime(name.to_string())),
ty::ReEarlyBound(ref data) => Some(Lifetime(data.name.clean(cx))),
ty::ReLateBound(..) |
ty::ReFree(..) |
ty::ReScope(..) |
ty::ReVar(..) |
ty::ReSkolemized(..) |
ty::ReEmpty |
ty::ReErased => None
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub enum WherePredicate {
BoundPredicate { ty: Type, bounds: Vec<TyParamBound> },
RegionPredicate { lifetime: Lifetime, bounds: Vec<Lifetime>},
EqPredicate { lhs: Type, rhs: Type }
}
impl Clean<WherePredicate> for hir::WherePredicate {
fn clean(&self, cx: &DocContext) -> WherePredicate {
match *self {
hir::WherePredicate::BoundPredicate(ref wbp) => {
WherePredicate::BoundPredicate {
ty: wbp.bounded_ty.clean(cx),
bounds: wbp.bounds.clean(cx)
}
}
hir::WherePredicate::RegionPredicate(ref wrp) => {
WherePredicate::RegionPredicate {
lifetime: wrp.lifetime.clean(cx),
bounds: wrp.bounds.clean(cx)
}
}
hir::WherePredicate::EqPredicate(_) => {
unimplemented!() // FIXME(#20041)
}
}
}
}
impl<'a> Clean<WherePredicate> for ty::Predicate<'a> {
fn clean(&self, cx: &DocContext) -> WherePredicate {
use rustc::ty::Predicate;
match *self {
Predicate::Trait(ref pred) => pred.clean(cx),
Predicate::Equate(ref pred) => pred.clean(cx),
Predicate::RegionOutlives(ref pred) => pred.clean(cx),
Predicate::TypeOutlives(ref pred) => pred.clean(cx),
Predicate::Projection(ref pred) => pred.clean(cx),
Predicate::WellFormed(_) => panic!("not user writable"),
Predicate::ObjectSafe(_) => panic!("not user writable"),
Predicate::ClosureKind(..) => panic!("not user writable"),
Predicate::Rfc1592(..) => panic!("not user writable"),
}
}
}
impl<'a> Clean<WherePredicate> for ty::TraitPredicate<'a> {
fn clean(&self, cx: &DocContext) -> WherePredicate {
WherePredicate::BoundPredicate {
ty: self.trait_ref.substs.self_ty().clean(cx).unwrap(),
bounds: vec![self.trait_ref.clean(cx)]
}
}
}
impl<'tcx> Clean<WherePredicate> for ty::EquatePredicate<'tcx> {
fn clean(&self, cx: &DocContext) -> WherePredicate {
let ty::EquatePredicate(ref lhs, ref rhs) = *self;
WherePredicate::EqPredicate {
lhs: lhs.clean(cx),
rhs: rhs.clean(cx)
}
}
}
impl Clean<WherePredicate> for ty::OutlivesPredicate<ty::Region, ty::Region> {
fn clean(&self, cx: &DocContext) -> WherePredicate {
let ty::OutlivesPredicate(ref a, ref b) = *self;
WherePredicate::RegionPredicate {
lifetime: a.clean(cx).unwrap(),
bounds: vec![b.clean(cx).unwrap()]
}
}
}
impl<'tcx> Clean<WherePredicate> for ty::OutlivesPredicate<ty::Ty<'tcx>, ty::Region> {
fn clean(&self, cx: &DocContext) -> WherePredicate {
let ty::OutlivesPredicate(ref ty, ref lt) = *self;
WherePredicate::BoundPredicate {
ty: ty.clean(cx),
bounds: vec![TyParamBound::RegionBound(lt.clean(cx).unwrap())]
}
}
}
impl<'tcx> Clean<WherePredicate> for ty::ProjectionPredicate<'tcx> {
fn clean(&self, cx: &DocContext) -> WherePredicate {
WherePredicate::EqPredicate {
lhs: self.projection_ty.clean(cx),
rhs: self.ty.clean(cx)
}
}
}
impl<'tcx> Clean<Type> for ty::ProjectionTy<'tcx> {
fn clean(&self, cx: &DocContext) -> Type {
let trait_ = match self.trait_ref.clean(cx) {
TyParamBound::TraitBound(t, _) => t.trait_,
TyParamBound::RegionBound(_) => {
panic!("cleaning a trait got a region")
}
};
Type::QPath {
name: self.item_name.clean(cx),
self_type: box self.trait_ref.self_ty().clean(cx),
trait_: box trait_
}
}
}
// maybe use a Generic enum and use Vec<Generic>?
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub struct Generics {
pub lifetimes: Vec<Lifetime>,
pub type_params: Vec<TyParam>,
pub where_predicates: Vec<WherePredicate>
}
impl Clean<Generics> for hir::Generics {
fn clean(&self, cx: &DocContext) -> Generics {
Generics {
lifetimes: self.lifetimes.clean(cx),
type_params: self.ty_params.clean(cx),
where_predicates: self.where_clause.predicates.clean(cx)
}
}
}
impl<'a, 'tcx> Clean<Generics> for (&'a ty::Generics<'tcx>,
&'a ty::GenericPredicates<'tcx>,
subst::ParamSpace) {
fn clean(&self, cx: &DocContext) -> Generics {
use self::WherePredicate as WP;
let (gens, preds, space) = *self;
// Bounds in the type_params and lifetimes fields are repeated in the
// predicates field (see rustc_typeck::collect::ty_generics), so remove
// them.
let stripped_typarams = gens.types.get_slice(space).iter().map(|tp| {
tp.clean(cx)
}).collect::<Vec<_>>();
let stripped_lifetimes = gens.regions.get_slice(space).iter().map(|rp| {
let mut srp = rp.clone();
srp.bounds = Vec::new();
srp.clean(cx)
}).collect::<Vec<_>>();
let mut where_predicates = preds.predicates.get_slice(space)
.to_vec().clean(cx);
// Type parameters and have a Sized bound by default unless removed with
// ?Sized. Scan through the predicates and mark any type parameter with
// a Sized bound, removing the bounds as we find them.
//
// Note that associated types also have a sized bound by default, but we
// don't actually know the set of associated types right here so that's
// handled in cleaning associated types
let mut sized_params = HashSet::new();
where_predicates.retain(|pred| {
match *pred {
WP::BoundPredicate { ty: Generic(ref g), ref bounds } => {
if bounds.iter().any(|b| b.is_sized_bound(cx)) {
sized_params.insert(g.clone());
false
} else {
true
}
}
_ => true,
}
});
// Run through the type parameters again and insert a ?Sized
// unbound for any we didn't find to be Sized.
for tp in &stripped_typarams {
if !sized_params.contains(&tp.name) {
where_predicates.push(WP::BoundPredicate {
ty: Type::Generic(tp.name.clone()),
bounds: vec![TyParamBound::maybe_sized(cx)],
})
}
}
// It would be nice to collect all of the bounds on a type and recombine
// them if possible, to avoid e.g. `where T: Foo, T: Bar, T: Sized, T: 'a`
// and instead see `where T: Foo + Bar + Sized + 'a`
Generics {
type_params: simplify::ty_params(stripped_typarams),
lifetimes: stripped_lifetimes,
where_predicates: simplify::where_clauses(cx, where_predicates),
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Method {
pub generics: Generics,
pub unsafety: hir::Unsafety,
pub constness: hir::Constness,
pub decl: FnDecl,
pub abi: Abi,
}
impl Clean<Method> for hir::MethodSig {
fn clean(&self, cx: &DocContext) -> Method {
let decl = FnDecl {
inputs: Arguments {
values: self.decl.inputs.clean(cx),
},
output: self.decl.output.clean(cx),
variadic: false,
attrs: Vec::new()
};
Method {
generics: self.generics.clean(cx),
unsafety: self.unsafety,
constness: self.constness,
decl: decl,
abi: self.abi
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct TyMethod {
pub unsafety: hir::Unsafety,
pub decl: FnDecl,
pub generics: Generics,
pub abi: Abi,
}
impl Clean<TyMethod> for hir::MethodSig {
fn clean(&self, cx: &DocContext) -> TyMethod {
let decl = FnDecl {
inputs: Arguments {
values: self.decl.inputs.clean(cx),
},
output: self.decl.output.clean(cx),
variadic: false,
attrs: Vec::new()
};
TyMethod {
unsafety: self.unsafety.clone(),
decl: decl,
generics: self.generics.clean(cx),
abi: self.abi
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Function {
pub decl: FnDecl,
pub generics: Generics,
pub unsafety: hir::Unsafety,
pub constness: hir::Constness,
pub abi: Abi,
}
impl Clean<Item> for doctree::Function {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
deprecation: self.depr.clean(cx),
def_id: cx.map.local_def_id(self.id),
inner: FunctionItem(Function {
decl: self.decl.clean(cx),
generics: self.generics.clean(cx),
unsafety: self.unsafety,
constness: self.constness,
abi: self.abi,
}),
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub struct FnDecl {
pub inputs: Arguments,
pub output: FunctionRetTy,
pub variadic: bool,
pub attrs: Vec<Attribute>,
}
impl FnDecl {
pub fn has_self(&self) -> bool {
return self.inputs.values.len() > 0 && self.inputs.values[0].name == "self";
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub struct Arguments {
pub values: Vec<Argument>,
}
impl Clean<FnDecl> for hir::FnDecl {
fn clean(&self, cx: &DocContext) -> FnDecl {
FnDecl {
inputs: Arguments {
values: self.inputs.clean(cx),
},
output: self.output.clean(cx),
variadic: self.variadic,
attrs: Vec::new()
}
}
}
impl<'tcx> Clean<Type> for ty::FnOutput<'tcx> {
fn clean(&self, cx: &DocContext) -> Type {
match *self {
ty::FnConverging(ty) => ty.clean(cx),
ty::FnDiverging => Bottom
}
}
}
impl<'a, 'tcx> Clean<FnDecl> for (DefId, &'a ty::PolyFnSig<'tcx>) {
fn clean(&self, cx: &DocContext) -> FnDecl {
let (did, sig) = *self;
let mut names = if cx.map.as_local_node_id(did).is_some() {
vec![].into_iter()
} else {
cx.tcx().sess.cstore.method_arg_names(did).into_iter()
}.peekable();
FnDecl {
output: Return(sig.0.output.clean(cx)),
attrs: Vec::new(),
variadic: sig.0.variadic,
inputs: Arguments {
values: sig.0.inputs.iter().map(|t| {
Argument {
type_: t.clean(cx),
id: 0,
name: names.next().unwrap_or("".to_string()),
}
}).collect(),
},
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub struct Argument {
pub type_: Type,
pub name: String,
pub id: ast::NodeId,
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub enum SelfTy {
SelfValue,
SelfBorrowed(Option<Lifetime>, Mutability),
SelfExplicit(Type),
}
impl Argument {
pub fn to_self(&self) -> Option<SelfTy> {
if self.name == "self" {
match self.type_ {
Infer => Some(SelfValue),
BorrowedRef{ref lifetime, mutability, ref type_} if **type_ == Infer => {
Some(SelfBorrowed(lifetime.clone(), mutability))
}
_ => Some(SelfExplicit(self.type_.clone()))
}
} else {
None
}
}
}
impl Clean<Argument> for hir::Arg {
fn clean(&self, cx: &DocContext) -> Argument {
Argument {
name: name_from_pat(&*self.pat),
type_: (self.ty.clean(cx)),
id: self.id
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub enum FunctionRetTy {
Return(Type),
DefaultReturn,
NoReturn
}
impl Clean<FunctionRetTy> for hir::FunctionRetTy {
fn clean(&self, cx: &DocContext) -> FunctionRetTy {
match *self {
hir::Return(ref typ) => Return(typ.clean(cx)),
hir::DefaultReturn(..) => DefaultReturn,
hir::NoReturn(..) => NoReturn
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Trait {
pub unsafety: hir::Unsafety,
pub items: Vec<Item>,
pub generics: Generics,
pub bounds: Vec<TyParamBound>,
}
impl Clean<Item> for doctree::Trait {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.map.local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
deprecation: self.depr.clean(cx),
inner: TraitItem(Trait {
unsafety: self.unsafety,
items: self.items.clean(cx),
generics: self.generics.clean(cx),
bounds: self.bounds.clean(cx),
}),
}
}
}
impl Clean<Type> for hir::TraitRef {
fn clean(&self, cx: &DocContext) -> Type {
resolve_type(cx, self.path.clean(cx), self.ref_id)
}
}
impl Clean<PolyTrait> for hir::PolyTraitRef {
fn clean(&self, cx: &DocContext) -> PolyTrait {
PolyTrait {
trait_: self.trait_ref.clean(cx),
lifetimes: self.bound_lifetimes.clean(cx)
}
}
}
impl Clean<Item> for hir::TraitItem {
fn clean(&self, cx: &DocContext) -> Item {
let inner = match self.node {
hir::ConstTraitItem(ref ty, ref default) => {
AssociatedConstItem(ty.clean(cx),
default.as_ref().map(|e| pprust::expr_to_string(&e)))
}
hir::MethodTraitItem(ref sig, Some(_)) => {
MethodItem(sig.clean(cx))
}
hir::MethodTraitItem(ref sig, None) => {
TyMethodItem(sig.clean(cx))
}
hir::TypeTraitItem(ref bounds, ref default) => {
AssociatedTypeItem(bounds.clean(cx), default.clean(cx))
}
};
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.span.clean(cx),
def_id: cx.map.local_def_id(self.id),
visibility: None,
stability: get_stability(cx, cx.map.local_def_id(self.id)),
deprecation: get_deprecation(cx, cx.map.local_def_id(self.id)),
inner: inner
}
}
}
impl Clean<Item> for hir::ImplItem {
fn clean(&self, cx: &DocContext) -> Item {
let inner = match self.node {
hir::ImplItemKind::Const(ref ty, ref expr) => {
AssociatedConstItem(ty.clean(cx),
Some(pprust::expr_to_string(expr)))
}
hir::ImplItemKind::Method(ref sig, _) => {
MethodItem(sig.clean(cx))
}
hir::ImplItemKind::Type(ref ty) => TypedefItem(Typedef {
type_: ty.clean(cx),
generics: Generics {
lifetimes: Vec::new(),
type_params: Vec::new(),
where_predicates: Vec::new()
},
}, true),
};
Item {
name: Some(self.name.clean(cx)),
source: self.span.clean(cx),
attrs: self.attrs.clean(cx),
def_id: cx.map.local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: get_stability(cx, cx.map.local_def_id(self.id)),
deprecation: get_deprecation(cx, cx.map.local_def_id(self.id)),
inner: inner
}
}
}
impl<'tcx> Clean<Item> for ty::Method<'tcx> {
fn clean(&self, cx: &DocContext) -> Item {
let generics = (&self.generics, &self.predicates,
subst::FnSpace).clean(cx);
let mut decl = (self.def_id, &self.fty.sig).clean(cx);
match self.explicit_self {
ty::ExplicitSelfCategory::ByValue => {
decl.inputs.values[0].type_ = Infer;
}
ty::ExplicitSelfCategory::ByReference(..) => {
match decl.inputs.values[0].type_ {
BorrowedRef{ref mut type_, ..} => **type_ = Infer,
_ => unreachable!(),
}
}
_ => {}
}
let provided = match self.container {
ty::ImplContainer(..) => false,
ty::TraitContainer(did) => {
cx.tcx().provided_trait_methods(did).iter().any(|m| {
m.def_id == self.def_id
})
}
};
let inner = if provided {
MethodItem(Method {
unsafety: self.fty.unsafety,
generics: generics,
decl: decl,
abi: self.fty.abi,
// trait methods canot (currently, at least) be const
constness: hir::Constness::NotConst,
})
} else {
TyMethodItem(TyMethod {
unsafety: self.fty.unsafety,
generics: generics,
decl: decl,
abi: self.fty.abi,
})
};
Item {
name: Some(self.name.clean(cx)),
visibility: Some(Inherited),
stability: get_stability(cx, self.def_id),
deprecation: get_deprecation(cx, self.def_id),
def_id: self.def_id,
attrs: inline::load_attrs(cx, cx.tcx(), self.def_id),
source: Span::empty(),
inner: inner,
}
}
}
impl<'tcx> Clean<Item> for ty::ImplOrTraitItem<'tcx> {
fn clean(&self, cx: &DocContext) -> Item {
match *self {
ty::ConstTraitItem(ref cti) => cti.clean(cx),
ty::MethodTraitItem(ref mti) => mti.clean(cx),
ty::TypeTraitItem(ref tti) => tti.clean(cx),
}
}
}
/// A trait reference, which may have higher ranked lifetimes.
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub struct PolyTrait {
pub trait_: Type,
pub lifetimes: Vec<Lifetime>
}
/// A representation of a Type suitable for hyperlinking purposes. Ideally one can get the original
/// type out of the AST/TyCtxt given one of these, if more information is needed. Most importantly
/// it does not preserve mutability or boxes.
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub enum Type {
/// structs/enums/traits (most that'd be an hir::TyPath)
ResolvedPath {
path: Path,
typarams: Option<Vec<TyParamBound>>,
did: DefId,
/// true if is a `T::Name` path for associated types
is_generic: bool,
},
/// For parameterized types, so the consumer of the JSON don't go
/// looking for types which don't exist anywhere.
Generic(String),
/// Primitives are the fixed-size numeric types (plus int/usize/float), char,
/// arrays, slices, and tuples.
Primitive(PrimitiveType),
/// extern "ABI" fn
BareFunction(Box<BareFunctionDecl>),
Tuple(Vec<Type>),
Vector(Box<Type>),
FixedVector(Box<Type>, String),
/// aka TyBot
Bottom,
Unique(Box<Type>),
RawPointer(Mutability, Box<Type>),
BorrowedRef {
lifetime: Option<Lifetime>,
mutability: Mutability,
type_: Box<Type>,
},
// <Type as Trait>::Name
QPath {
name: String,
self_type: Box<Type>,
trait_: Box<Type>
},
// _
Infer,
// for<'a> Foo(&'a)
PolyTraitRef(Vec<TyParamBound>),
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Eq, Hash, Copy, Debug)]
pub enum PrimitiveType {
Isize, I8, I16, I32, I64,
Usize, U8, U16, U32, U64,
F32, F64,
Char,
Bool,
Str,
Slice,
Array,
PrimitiveTuple,
PrimitiveRawPointer,
}
#[derive(Clone, RustcEncodable, RustcDecodable, Copy, Debug)]
pub enum TypeKind {
TypeEnum,
TypeFunction,
TypeModule,
TypeConst,
TypeStatic,
TypeStruct,
TypeTrait,
TypeVariant,
TypeTypedef,
}
pub trait GetDefId {
fn def_id(&self) -> Option<DefId>;
}
impl<T: GetDefId> GetDefId for Option<T> {
fn def_id(&self) -> Option<DefId> {
self.as_ref().and_then(|d| d.def_id())
}
}
impl Type {
pub fn primitive_type(&self) -> Option<PrimitiveType> {
match *self {
Primitive(p) | BorrowedRef { type_: box Primitive(p), ..} => Some(p),
Vector(..) | BorrowedRef{ type_: box Vector(..), .. } => Some(Slice),
FixedVector(..) | BorrowedRef { type_: box FixedVector(..), .. } => {
Some(Array)
}
Tuple(..) => Some(PrimitiveTuple),
RawPointer(..) => Some(PrimitiveRawPointer),
_ => None,
}
}
pub fn is_generic(&self) -> bool {
match *self {
ResolvedPath { is_generic, .. } => is_generic,
_ => false,
}
}
}
impl GetDefId for Type {
fn def_id(&self) -> Option<DefId> {
match *self {
ResolvedPath { did, .. } => Some(did),
_ => None,
}
}
}
impl PrimitiveType {
fn from_str(s: &str) -> Option<PrimitiveType> {
match s {
"isize" => Some(Isize),
"i8" => Some(I8),
"i16" => Some(I16),
"i32" => Some(I32),
"i64" => Some(I64),
"usize" => Some(Usize),
"u8" => Some(U8),
"u16" => Some(U16),
"u32" => Some(U32),
"u64" => Some(U64),
"bool" => Some(Bool),
"char" => Some(Char),
"str" => Some(Str),
"f32" => Some(F32),
"f64" => Some(F64),
"array" => Some(Array),
"slice" => Some(Slice),
"tuple" => Some(PrimitiveTuple),
"pointer" => Some(PrimitiveRawPointer),
_ => None,
}
}
fn find(attrs: &[Attribute]) -> Option<PrimitiveType> {
for attr in attrs.list("doc") {
if let NameValue(ref k, ref v) = *attr {
if "primitive" == *k {
if let ret@Some(..) = PrimitiveType::from_str(v) {
return ret;
}
}
}
}
None
}
pub fn to_string(&self) -> &'static str {
match *self {
Isize => "isize",
I8 => "i8",
I16 => "i16",
I32 => "i32",
I64 => "i64",
Usize => "usize",
U8 => "u8",
U16 => "u16",
U32 => "u32",
U64 => "u64",
F32 => "f32",
F64 => "f64",
Str => "str",
Bool => "bool",
Char => "char",
Array => "array",
Slice => "slice",
PrimitiveTuple => "tuple",
PrimitiveRawPointer => "pointer",
}
}
pub fn to_url_str(&self) -> &'static str {
self.to_string()
}
/// Creates a rustdoc-specific node id for primitive types.
///
/// These node ids are generally never used by the AST itself.
pub fn to_def_index(&self) -> DefIndex {
let x = u32::MAX - 1 - (*self as u32);
DefIndex::new(x as usize)
}
}
impl Clean<Type> for hir::Ty {
fn clean(&self, cx: &DocContext) -> Type {
use rustc::hir::*;
match self.node {
TyPtr(ref m) => RawPointer(m.mutbl.clean(cx), box m.ty.clean(cx)),
TyRptr(ref l, ref m) =>
BorrowedRef {lifetime: l.clean(cx), mutability: m.mutbl.clean(cx),
type_: box m.ty.clean(cx)},
TyVec(ref ty) => Vector(box ty.clean(cx)),
TyFixedLengthVec(ref ty, ref e) => {
let n = if let Some(tcx) = cx.tcx_opt() {
use rustc_const_math::{ConstInt, ConstUsize};
use rustc_const_eval::eval_const_expr;
use rustc::middle::const_val::ConstVal;
match eval_const_expr(tcx, e) {
ConstVal::Integral(ConstInt::Usize(u)) => match u {
ConstUsize::Us16(u) => u.to_string(),
ConstUsize::Us32(u) => u.to_string(),
ConstUsize::Us64(u) => u.to_string(),
},
// after type checking this can't fail
_ => unreachable!(),
}
} else {
pprust::expr_to_string(e)
};
FixedVector(box ty.clean(cx), n)
},
TyTup(ref tys) => Tuple(tys.clean(cx)),
TyPath(None, ref p) => {
resolve_type(cx, p.clean(cx), self.id)
}
TyPath(Some(ref qself), ref p) => {
let mut segments: Vec<_> = p.segments.clone().into();
segments.pop();
let trait_path = hir::Path {
span: p.span,
global: p.global,
segments: segments.into(),
};
Type::QPath {
name: p.segments.last().unwrap().name.clean(cx),
self_type: box qself.ty.clean(cx),
trait_: box resolve_type(cx, trait_path.clean(cx), self.id)
}
}
TyObjectSum(ref lhs, ref bounds) => {
let lhs_ty = lhs.clean(cx);
match lhs_ty {
ResolvedPath { path, typarams: None, did, is_generic } => {
ResolvedPath {
path: path,
typarams: Some(bounds.clean(cx)),
did: did,
is_generic: is_generic,
}
}
_ => {
lhs_ty // shouldn't happen
}
}
}
TyBareFn(ref barefn) => BareFunction(box barefn.clean(cx)),
TyPolyTraitRef(ref bounds) => PolyTraitRef(bounds.clean(cx)),
TyInfer => Infer,
TyTypeof(..) => panic!("Unimplemented type {:?}", self.node),
}
}
}
impl<'tcx> Clean<Type> for ty::Ty<'tcx> {
fn clean(&self, cx: &DocContext) -> Type {
match self.sty {
ty::TyBool => Primitive(Bool),
ty::TyChar => Primitive(Char),
ty::TyInt(ast::IntTy::Is) => Primitive(Isize),
ty::TyInt(ast::IntTy::I8) => Primitive(I8),
ty::TyInt(ast::IntTy::I16) => Primitive(I16),
ty::TyInt(ast::IntTy::I32) => Primitive(I32),
ty::TyInt(ast::IntTy::I64) => Primitive(I64),
ty::TyUint(ast::UintTy::Us) => Primitive(Usize),
ty::TyUint(ast::UintTy::U8) => Primitive(U8),
ty::TyUint(ast::UintTy::U16) => Primitive(U16),
ty::TyUint(ast::UintTy::U32) => Primitive(U32),
ty::TyUint(ast::UintTy::U64) => Primitive(U64),
ty::TyFloat(ast::FloatTy::F32) => Primitive(F32),
ty::TyFloat(ast::FloatTy::F64) => Primitive(F64),
ty::TyStr => Primitive(Str),
ty::TyBox(t) => {
let box_did = cx.tcx_opt().and_then(|tcx| {
tcx.lang_items.owned_box()
});
lang_struct(cx, box_did, t, "Box", Unique)
}
ty::TySlice(ty) => Vector(box ty.clean(cx)),
ty::TyArray(ty, i) => FixedVector(box ty.clean(cx),
format!("{}", i)),
ty::TyRawPtr(mt) => RawPointer(mt.mutbl.clean(cx), box mt.ty.clean(cx)),
ty::TyRef(r, mt) => BorrowedRef {
lifetime: r.clean(cx),
mutability: mt.mutbl.clean(cx),
type_: box mt.ty.clean(cx),
},
ty::TyFnDef(_, _, ref fty) |
ty::TyFnPtr(ref fty) => BareFunction(box BareFunctionDecl {
unsafety: fty.unsafety,
generics: Generics {
lifetimes: Vec::new(),
type_params: Vec::new(),
where_predicates: Vec::new()
},
decl: (cx.map.local_def_id(0), &fty.sig).clean(cx),
abi: fty.abi,
}),
ty::TyStruct(def, substs) |
ty::TyEnum(def, substs) => {
let did = def.did;
let kind = match self.sty {
ty::TyStruct(..) => TypeStruct,
_ => TypeEnum,
};
inline::record_extern_fqn(cx, did, kind);
let path = external_path(cx, &cx.tcx().item_name(did).as_str(),
None, vec![], substs);
ResolvedPath {
path: path,
typarams: None,
did: did,
is_generic: false,
}
}
ty::TyTrait(box ty::TraitTy { ref principal, ref bounds }) => {
let did = principal.def_id();
inline::record_extern_fqn(cx, did, TypeTrait);
let (typarams, bindings) = bounds.clean(cx);
let path = external_path(cx, &cx.tcx().item_name(did).as_str(),
Some(did), bindings, principal.substs());
ResolvedPath {
path: path,
typarams: Some(typarams),
did: did,
is_generic: false,
}
}
ty::TyTuple(ref t) => Tuple(t.clean(cx)),
ty::TyProjection(ref data) => data.clean(cx),
ty::TyParam(ref p) => Generic(p.name.to_string()),
ty::TyClosure(..) => Tuple(vec![]), // FIXME(pcwalton)
ty::TyInfer(..) => panic!("TyInfer"),
ty::TyError => panic!("TyError"),
}
}
}
impl Clean<Item> for hir::StructField {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name).clean(cx),
attrs: self.attrs.clean(cx),
source: self.span.clean(cx),
visibility: self.vis.clean(cx),
stability: get_stability(cx, cx.map.local_def_id(self.id)),
deprecation: get_deprecation(cx, cx.map.local_def_id(self.id)),
def_id: cx.map.local_def_id(self.id),
inner: StructFieldItem(self.ty.clean(cx)),
}
}
}
impl<'tcx> Clean<Item> for ty::FieldDefData<'tcx, 'static> {
fn clean(&self, cx: &DocContext) -> Item {
// FIXME: possible O(n^2)-ness! Not my fault.
let attr_map = cx.tcx().sess.cstore.crate_struct_field_attrs(self.did.krate);
Item {
name: Some(self.name).clean(cx),
attrs: attr_map.get(&self.did).unwrap_or(&Vec::new()).clean(cx),
source: Span::empty(),
visibility: self.vis.clean(cx),
stability: get_stability(cx, self.did),
deprecation: get_deprecation(cx, self.did),
def_id: self.did,
inner: StructFieldItem(self.unsubst_ty().clean(cx)),
}
}
}
#[derive(Clone, PartialEq, Eq, RustcDecodable, RustcEncodable, Debug)]
pub enum Visibility {
Public,
Inherited,
}
impl Clean<Option<Visibility>> for hir::Visibility {
fn clean(&self, _: &DocContext) -> Option<Visibility> {
Some(if *self == hir::Visibility::Public { Public } else { Inherited })
}
}
impl Clean<Option<Visibility>> for ty::Visibility {
fn clean(&self, _: &DocContext) -> Option<Visibility> {
Some(if *self == ty::Visibility::Public { Public } else { Inherited })
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Struct {
pub struct_type: doctree::StructType,
pub generics: Generics,
pub fields: Vec<Item>,
pub fields_stripped: bool,
}
impl Clean<Item> for doctree::Struct {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.map.local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
deprecation: self.depr.clean(cx),
inner: StructItem(Struct {
struct_type: self.struct_type,
generics: self.generics.clean(cx),
fields: self.fields.clean(cx),
fields_stripped: false,
}),
}
}
}
/// This is a more limited form of the standard Struct, different in that
/// it lacks the things most items have (name, id, parameterization). Found
/// only as a variant in an enum.
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct VariantStruct {
pub struct_type: doctree::StructType,
pub fields: Vec<Item>,
pub fields_stripped: bool,
}
impl Clean<VariantStruct> for ::rustc::hir::VariantData {
fn clean(&self, cx: &DocContext) -> VariantStruct {
VariantStruct {
struct_type: doctree::struct_type_from_def(self),
fields: self.fields().iter().map(|x| x.clean(cx)).collect(),
fields_stripped: false,
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Enum {
pub variants: Vec<Item>,
pub generics: Generics,
pub variants_stripped: bool,
}
impl Clean<Item> for doctree::Enum {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.map.local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
deprecation: self.depr.clean(cx),
inner: EnumItem(Enum {
variants: self.variants.clean(cx),
generics: self.generics.clean(cx),
variants_stripped: false,
}),
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Variant {
pub kind: VariantKind,
}
impl Clean<Item> for doctree::Variant {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: None,
stability: self.stab.clean(cx),
deprecation: self.depr.clean(cx),
def_id: cx.map.local_def_id(self.def.id()),
inner: VariantItem(Variant {
kind: struct_def_to_variant_kind(&self.def, cx),
}),
}
}
}
impl<'tcx> Clean<Item> for ty::VariantDefData<'tcx, 'static> {
fn clean(&self, cx: &DocContext) -> Item {
let kind = match self.kind {
ty::VariantKind::Unit => CLikeVariant,
ty::VariantKind::Tuple => {
TupleVariant(
self.fields.iter().map(|f| f.unsubst_ty().clean(cx)).collect()
)
}
ty::VariantKind::Struct => {
StructVariant(VariantStruct {
struct_type: doctree::Plain,
fields_stripped: false,
fields: self.fields.iter().map(|field| {
Item {
source: Span::empty(),
name: Some(field.name.clean(cx)),
attrs: cx.tcx().get_attrs(field.did).clean(cx),
visibility: field.vis.clean(cx),
def_id: field.did,
stability: get_stability(cx, field.did),
deprecation: get_deprecation(cx, field.did),
inner: StructFieldItem(field.unsubst_ty().clean(cx))
}
}).collect()
})
}
};
Item {
name: Some(self.name.clean(cx)),
attrs: inline::load_attrs(cx, cx.tcx(), self.did),
source: Span::empty(),
visibility: Some(Inherited),
def_id: self.did,
inner: VariantItem(Variant { kind: kind }),
stability: get_stability(cx, self.did),
deprecation: get_deprecation(cx, self.did),
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum VariantKind {
CLikeVariant,
TupleVariant(Vec<Type>),
StructVariant(VariantStruct),
}
fn struct_def_to_variant_kind(struct_def: &hir::VariantData, cx: &DocContext) -> VariantKind {
if struct_def.is_struct() {
StructVariant(struct_def.clean(cx))
} else if struct_def.is_unit() {
CLikeVariant
} else {
TupleVariant(struct_def.fields().iter().map(|x| x.ty.clean(cx)).collect())
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Span {
pub filename: String,
pub loline: usize,
pub locol: usize,
pub hiline: usize,
pub hicol: usize,
}
impl Span {
fn empty() -> Span {
Span {
filename: "".to_string(),
loline: 0, locol: 0,
hiline: 0, hicol: 0,
}
}
}
impl Clean<Span> for syntax_pos::Span {
fn clean(&self, cx: &DocContext) -> Span {
if *self == DUMMY_SP {
return Span::empty();
}
let cm = cx.sess().codemap();
let filename = cm.span_to_filename(*self);
let lo = cm.lookup_char_pos(self.lo);
let hi = cm.lookup_char_pos(self.hi);
Span {
filename: filename.to_string(),
loline: lo.line,
locol: lo.col.to_usize(),
hiline: hi.line,
hicol: hi.col.to_usize(),
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub struct Path {
pub global: bool,
pub segments: Vec<PathSegment>,
}
impl Path {
pub fn singleton(name: String) -> Path {
Path {
global: false,
segments: vec![PathSegment {
name: name,
params: PathParameters::AngleBracketed {
lifetimes: Vec::new(),
types: Vec::new(),
bindings: Vec::new()
}
}]
}
}
pub fn last_name(&self) -> String {
self.segments.last().unwrap().name.clone()
}
}
impl Clean<Path> for hir::Path {
fn clean(&self, cx: &DocContext) -> Path {
Path {
global: self.global,
segments: self.segments.clean(cx),
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub enum PathParameters {
AngleBracketed {
lifetimes: Vec<Lifetime>,
types: Vec<Type>,
bindings: Vec<TypeBinding>
},
Parenthesized {
inputs: Vec<Type>,
output: Option<Type>
}
}
impl Clean<PathParameters> for hir::PathParameters {
fn clean(&self, cx: &DocContext) -> PathParameters {
match *self {
hir::AngleBracketedParameters(ref data) => {
PathParameters::AngleBracketed {
lifetimes: data.lifetimes.clean(cx),
types: data.types.clean(cx),
bindings: data.bindings.clean(cx)
}
}
hir::ParenthesizedParameters(ref data) => {
PathParameters::Parenthesized {
inputs: data.inputs.clean(cx),
output: data.output.clean(cx)
}
}
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub struct PathSegment {
pub name: String,
pub params: PathParameters
}
impl Clean<PathSegment> for hir::PathSegment {
fn clean(&self, cx: &DocContext) -> PathSegment {
PathSegment {
name: self.name.clean(cx),
params: self.parameters.clean(cx)
}
}
}
fn path_to_string(p: &hir::Path) -> String {
let mut s = String::new();
let mut first = true;
for i in p.segments.iter().map(|x| x.name.as_str()) {
if !first || p.global {
s.push_str("::");
} else {
first = false;
}
s.push_str(&i);
}
s
}
impl Clean<String> for ast::Name {
fn clean(&self, _: &DocContext) -> String {
self.to_string()
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Typedef {
pub type_: Type,
pub generics: Generics,
}
impl Clean<Item> for doctree::Typedef {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.map.local_def_id(self.id.clone()),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
deprecation: self.depr.clean(cx),
inner: TypedefItem(Typedef {
type_: self.ty.clean(cx),
generics: self.gen.clean(cx),
}, false),
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Debug)]
pub struct BareFunctionDecl {
pub unsafety: hir::Unsafety,
pub generics: Generics,
pub decl: FnDecl,
pub abi: Abi,
}
impl Clean<BareFunctionDecl> for hir::BareFnTy {
fn clean(&self, cx: &DocContext) -> BareFunctionDecl {
BareFunctionDecl {
unsafety: self.unsafety,
generics: Generics {
lifetimes: self.lifetimes.clean(cx),
type_params: Vec::new(),
where_predicates: Vec::new()
},
decl: self.decl.clean(cx),
abi: self.abi,
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Static {
pub type_: Type,
pub mutability: Mutability,
/// It's useful to have the value of a static documented, but I have no
/// desire to represent expressions (that'd basically be all of the AST,
/// which is huge!). So, have a string.
pub expr: String,
}
impl Clean<Item> for doctree::Static {
fn clean(&self, cx: &DocContext) -> Item {
debug!("cleaning static {}: {:?}", self.name.clean(cx), self);
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.map.local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
deprecation: self.depr.clean(cx),
inner: StaticItem(Static {
type_: self.type_.clean(cx),
mutability: self.mutability.clean(cx),
expr: pprust::expr_to_string(&self.expr),
}),
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Constant {
pub type_: Type,
pub expr: String,
}
impl Clean<Item> for doctree::Constant {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.map.local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
deprecation: self.depr.clean(cx),
inner: ConstantItem(Constant {
type_: self.type_.clean(cx),
expr: pprust::expr_to_string(&self.expr),
}),
}
}
}
#[derive(Debug, Clone, RustcEncodable, RustcDecodable, PartialEq, Copy)]
pub enum Mutability {
Mutable,
Immutable,
}
impl Clean<Mutability> for hir::Mutability {
fn clean(&self, _: &DocContext) -> Mutability {
match self {
&hir::MutMutable => Mutable,
&hir::MutImmutable => Immutable,
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, PartialEq, Copy, Debug)]
pub enum ImplPolarity {
Positive,
Negative,
}
impl Clean<ImplPolarity> for hir::ImplPolarity {
fn clean(&self, _: &DocContext) -> ImplPolarity {
match self {
&hir::ImplPolarity::Positive => ImplPolarity::Positive,
&hir::ImplPolarity::Negative => ImplPolarity::Negative,
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Impl {
pub unsafety: hir::Unsafety,
pub generics: Generics,
pub provided_trait_methods: HashSet<String>,
pub trait_: Option<Type>,
pub for_: Type,
pub items: Vec<Item>,
pub polarity: Option<ImplPolarity>,
}
impl Clean<Vec<Item>> for doctree::Impl {
fn clean(&self, cx: &DocContext) -> Vec<Item> {
let mut ret = Vec::new();
let trait_ = self.trait_.clean(cx);
let items = self.items.clean(cx);
// If this impl block is an implementation of the Deref trait, then we
// need to try inlining the target's inherent impl blocks as well.
if trait_.def_id() == cx.deref_trait_did.get() {
build_deref_target_impls(cx, &items, &mut ret);
}
let provided = trait_.def_id().and_then(|did| {
cx.tcx_opt().map(|tcx| {
tcx.provided_trait_methods(did)
.into_iter()
.map(|meth| meth.name.to_string())
.collect()
})
}).unwrap_or(HashSet::new());
ret.push(Item {
name: None,
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.map.local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: self.stab.clean(cx),
deprecation: self.depr.clean(cx),
inner: ImplItem(Impl {
unsafety: self.unsafety,
generics: self.generics.clean(cx),
provided_trait_methods: provided,
trait_: trait_,
for_: self.for_.clean(cx),
items: items,
polarity: Some(self.polarity.clean(cx)),
}),
});
ret
}
}
fn build_deref_target_impls(cx: &DocContext,
items: &[Item],
ret: &mut Vec<Item>) {
let tcx = match cx.tcx_opt() {
Some(t) => t,
None => return,
};
for item in items {
let target = match item.inner {
TypedefItem(ref t, true) => &t.type_,
_ => continue,
};
let primitive = match *target {
ResolvedPath { did, .. } if did.is_local() => continue,
ResolvedPath { did, .. } => {
ret.extend(inline::build_impls(cx, tcx, did));
continue
}
_ => match target.primitive_type() {
Some(prim) => prim,
None => continue,
}
};
let did = match primitive {
Isize => tcx.lang_items.isize_impl(),
I8 => tcx.lang_items.i8_impl(),
I16 => tcx.lang_items.i16_impl(),
I32 => tcx.lang_items.i32_impl(),
I64 => tcx.lang_items.i64_impl(),
Usize => tcx.lang_items.usize_impl(),
U8 => tcx.lang_items.u8_impl(),
U16 => tcx.lang_items.u16_impl(),
U32 => tcx.lang_items.u32_impl(),
U64 => tcx.lang_items.u64_impl(),
F32 => tcx.lang_items.f32_impl(),
F64 => tcx.lang_items.f64_impl(),
Char => tcx.lang_items.char_impl(),
Bool => None,
Str => tcx.lang_items.str_impl(),
Slice => tcx.lang_items.slice_impl(),
Array => tcx.lang_items.slice_impl(),
PrimitiveTuple => None,
PrimitiveRawPointer => tcx.lang_items.const_ptr_impl(),
};
if let Some(did) = did {
if !did.is_local() {
inline::build_impl(cx, tcx, did, ret);
}
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct DefaultImpl {
pub unsafety: hir::Unsafety,
pub trait_: Type,
}
impl Clean<Item> for doctree::DefaultImpl {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: None,
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.map.local_def_id(self.id),
visibility: Some(Public),
stability: None,
deprecation: None,
inner: DefaultImplItem(DefaultImpl {
unsafety: self.unsafety,
trait_: self.trait_.clean(cx),
}),
}
}
}
impl Clean<Item> for doctree::ExternCrate {
fn clean(&self, cx: &DocContext) -> Item {
Item {
name: None,
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: DefId { krate: self.cnum, index: CRATE_DEF_INDEX },
visibility: self.vis.clean(cx),
stability: None,
deprecation: None,
inner: ExternCrateItem(self.name.clean(cx), self.path.clone())
}
}
}
impl Clean<Vec<Item>> for doctree::Import {
fn clean(&self, cx: &DocContext) -> Vec<Item> {
// We consider inlining the documentation of `pub use` statements, but we
// forcefully don't inline if this is not public or if the
// #[doc(no_inline)] attribute is present.
// Don't inline doc(hidden) imports so they can be stripped at a later stage.
let denied = self.vis != hir::Public || self.attrs.iter().any(|a| {
&a.name()[..] == "doc" && match a.meta_item_list() {
Some(l) => attr::contains_name(l, "no_inline") ||
attr::contains_name(l, "hidden"),
None => false,
}
});
let (mut ret, inner) = match self.node {
hir::ViewPathGlob(ref p) => {
(vec![], GlobImport(resolve_use_source(cx, p.clean(cx), self.id)))
}
hir::ViewPathList(ref p, ref list) => {
// Attempt to inline all reexported items, but be sure
// to keep any non-inlineable reexports so they can be
// listed in the documentation.
let mut ret = vec![];
let remaining = if !denied {
let mut remaining = vec![];
for path in list {
match inline::try_inline(cx, path.node.id(), path.node.rename()) {
Some(items) => {
ret.extend(items);
}
None => {
remaining.push(path.clean(cx));
}
}
}
remaining
} else {
list.clean(cx)
};
if remaining.is_empty() {
return ret;
}
(ret, ImportList(resolve_use_source(cx, p.clean(cx), self.id),
remaining))
}
hir::ViewPathSimple(name, ref p) => {
if !denied {
if let Some(items) = inline::try_inline(cx, self.id, Some(name)) {
return items;
}
}
(vec![], SimpleImport(name.clean(cx),
resolve_use_source(cx, p.clean(cx), self.id)))
}
};
ret.push(Item {
name: None,
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.map.local_def_id(0),
visibility: self.vis.clean(cx),
stability: None,
deprecation: None,
inner: ImportItem(inner)
});
ret
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub enum Import {
// use source as str;
SimpleImport(String, ImportSource),
// use source::*;
GlobImport(ImportSource),
// use source::{a, b, c};
ImportList(ImportSource, Vec<ViewListIdent>),
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct ImportSource {
pub path: Path,
pub did: Option<DefId>,
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct ViewListIdent {
pub name: String,
pub rename: Option<String>,
pub source: Option<DefId>,
}
impl Clean<ViewListIdent> for hir::PathListItem {
fn clean(&self, cx: &DocContext) -> ViewListIdent {
match self.node {
hir::PathListIdent { id, name, rename } => ViewListIdent {
name: name.clean(cx),
rename: rename.map(|r| r.clean(cx)),
source: resolve_def(cx, id)
},
hir::PathListMod { id, rename } => ViewListIdent {
name: "self".to_string(),
rename: rename.map(|r| r.clean(cx)),
source: resolve_def(cx, id)
}
}
}
}
impl Clean<Vec<Item>> for hir::ForeignMod {
fn clean(&self, cx: &DocContext) -> Vec<Item> {
let mut items = self.items.clean(cx);
for item in &mut items {
if let ForeignFunctionItem(ref mut f) = item.inner {
f.abi = self.abi;
}
}
items
}
}
impl Clean<Item> for hir::ForeignItem {
fn clean(&self, cx: &DocContext) -> Item {
let inner = match self.node {
hir::ForeignItemFn(ref decl, ref generics) => {
ForeignFunctionItem(Function {
decl: decl.clean(cx),
generics: generics.clean(cx),
unsafety: hir::Unsafety::Unsafe,
abi: Abi::Rust,
constness: hir::Constness::NotConst,
})
}
hir::ForeignItemStatic(ref ty, mutbl) => {
ForeignStaticItem(Static {
type_: ty.clean(cx),
mutability: if mutbl {Mutable} else {Immutable},
expr: "".to_string(),
})
}
};
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.span.clean(cx),
def_id: cx.map.local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: get_stability(cx, cx.map.local_def_id(self.id)),
deprecation: get_deprecation(cx, cx.map.local_def_id(self.id)),
inner: inner,
}
}
}
// Utilities
trait ToSource {
fn to_src(&self, cx: &DocContext) -> String;
}
impl ToSource for syntax_pos::Span {
fn to_src(&self, cx: &DocContext) -> String {
debug!("converting span {:?} to snippet", self.clean(cx));
let sn = match cx.sess().codemap().span_to_snippet(*self) {
Ok(x) => x.to_string(),
Err(_) => "".to_string()
};
debug!("got snippet {}", sn);
sn
}
}
fn name_from_pat(p: &hir::Pat) -> String {
use rustc::hir::*;
debug!("Trying to get a name from pattern: {:?}", p);
match p.node {
PatKind::Wild => "_".to_string(),
PatKind::Binding(_, ref p, _) => p.node.to_string(),
PatKind::TupleStruct(ref p, _, _) | PatKind::Path(None, ref p) => path_to_string(p),
PatKind::Path(..) => panic!("tried to get argument name from qualified PatKind::Path, \
which is not allowed in function arguments"),
PatKind::Struct(ref name, ref fields, etc) => {
format!("{} {{ {}{} }}", path_to_string(name),
fields.iter().map(|&Spanned { node: ref fp, .. }|
format!("{}: {}", fp.name, name_from_pat(&*fp.pat)))
.collect::<Vec<String>>().join(", "),
if etc { ", ..." } else { "" }
)
},
PatKind::Tuple(ref elts, _) => format!("({})", elts.iter().map(|p| name_from_pat(&**p))
.collect::<Vec<String>>().join(", ")),
PatKind::Box(ref p) => name_from_pat(&**p),
PatKind::Ref(ref p, _) => name_from_pat(&**p),
PatKind::Lit(..) => {
warn!("tried to get argument name from PatKind::Lit, \
which is silly in function arguments");
"()".to_string()
},
PatKind::Range(..) => panic!("tried to get argument name from PatKind::Range, \
which is not allowed in function arguments"),
PatKind::Vec(ref begin, ref mid, ref end) => {
let begin = begin.iter().map(|p| name_from_pat(&**p));
let mid = mid.as_ref().map(|p| format!("..{}", name_from_pat(&**p))).into_iter();
let end = end.iter().map(|p| name_from_pat(&**p));
format!("[{}]", begin.chain(mid).chain(end).collect::<Vec<_>>().join(", "))
},
}
}
/// Given a Type, resolve it using the def_map
fn resolve_type(cx: &DocContext,
path: Path,
id: ast::NodeId) -> Type {
debug!("resolve_type({:?},{:?})", path, id);
let tcx = match cx.tcx_opt() {
Some(tcx) => tcx,
// If we're extracting tests, this return value's accuracy is not
// important, all we want is a string representation to help people
// figure out what doctests are failing.
None => {
let did = DefId::local(DefIndex::from_u32(0));
return ResolvedPath {
path: path,
typarams: None,
did: did,
is_generic: false
};
}
};
let def = tcx.expect_def(id);
debug!("resolve_type: def={:?}", def);
let is_generic = match def {
Def::PrimTy(p) => match p {
hir::TyStr => return Primitive(Str),
hir::TyBool => return Primitive(Bool),
hir::TyChar => return Primitive(Char),
hir::TyInt(ast::IntTy::Is) => return Primitive(Isize),
hir::TyInt(ast::IntTy::I8) => return Primitive(I8),
hir::TyInt(ast::IntTy::I16) => return Primitive(I16),
hir::TyInt(ast::IntTy::I32) => return Primitive(I32),
hir::TyInt(ast::IntTy::I64) => return Primitive(I64),
hir::TyUint(ast::UintTy::Us) => return Primitive(Usize),
hir::TyUint(ast::UintTy::U8) => return Primitive(U8),
hir::TyUint(ast::UintTy::U16) => return Primitive(U16),
hir::TyUint(ast::UintTy::U32) => return Primitive(U32),
hir::TyUint(ast::UintTy::U64) => return Primitive(U64),
hir::TyFloat(ast::FloatTy::F32) => return Primitive(F32),
hir::TyFloat(ast::FloatTy::F64) => return Primitive(F64),
},
Def::SelfTy(..) if path.segments.len() == 1 => {
return Generic(keywords::SelfType.name().to_string());
}
Def::SelfTy(..) | Def::TyParam(..) | Def::AssociatedTy(..) => true,
_ => false,
};
let did = register_def(&*cx, def);
ResolvedPath { path: path, typarams: None, did: did, is_generic: is_generic }
}
fn register_def(cx: &DocContext, def: Def) -> DefId {
debug!("register_def({:?})", def);
let (did, kind) = match def {
Def::Fn(i) => (i, TypeFunction),
Def::TyAlias(i) => (i, TypeTypedef),
Def::Enum(i) => (i, TypeEnum),
Def::Trait(i) => (i, TypeTrait),
Def::Struct(i) => (i, TypeStruct),
Def::Mod(i) => (i, TypeModule),
Def::Static(i, _) => (i, TypeStatic),
Def::Variant(i, _) => (i, TypeEnum),
Def::SelfTy(Some(def_id), _) => (def_id, TypeTrait),
Def::SelfTy(_, Some(impl_id)) => {
// For Def::SelfTy() values inlined from another crate, the
// impl_id will be DUMMY_NODE_ID, which would cause problems.
// But we should never run into an impl from another crate here.
return cx.map.local_def_id(impl_id)
}
_ => return def.def_id()
};
if did.is_local() { return did }
let tcx = match cx.tcx_opt() {
Some(tcx) => tcx,
None => return did
};
inline::record_extern_fqn(cx, did, kind);
if let TypeTrait = kind {
let t = inline::build_external_trait(cx, tcx, did);
cx.external_traits.borrow_mut().insert(did, t);
}
did
}
fn resolve_use_source(cx: &DocContext, path: Path, id: ast::NodeId) -> ImportSource {
ImportSource {
path: path,
did: resolve_def(cx, id),
}
}
fn resolve_def(cx: &DocContext, id: ast::NodeId) -> Option<DefId> {
cx.tcx_opt().and_then(|tcx| {
tcx.expect_def_or_none(id).map(|def| register_def(cx, def))
})
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Macro {
pub source: String,
pub imported_from: Option<String>,
}
impl Clean<Item> for doctree::Macro {
fn clean(&self, cx: &DocContext) -> Item {
let name = format!("{}!", self.name.clean(cx));
Item {
name: Some(name.clone()),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: Some(Public),
stability: self.stab.clean(cx),
deprecation: self.depr.clean(cx),
def_id: cx.map.local_def_id(self.id),
inner: MacroItem(Macro {
source: format!("macro_rules! {} {{\n{}}}",
name.trim_right_matches('!'), self.matchers.iter().map(|span|
format!(" {} => {{ ... }};\n", span.to_src(cx))).collect::<String>()),
imported_from: self.imported_from.clean(cx),
}),
}
}
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Stability {
pub level: stability::StabilityLevel,
pub feature: String,
pub since: String,
pub deprecated_since: String,
pub reason: String,
pub issue: Option<u32>
}
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Deprecation {
pub since: String,
pub note: String,
}
impl Clean<Stability> for attr::Stability {
fn clean(&self, _: &DocContext) -> Stability {
Stability {
level: stability::StabilityLevel::from_attr_level(&self.level),
feature: self.feature.to_string(),
since: match self.level {
attr::Stable {ref since} => since.to_string(),
_ => "".to_string(),
},
deprecated_since: match self.rustc_depr {
Some(attr::RustcDeprecation {ref since, ..}) => since.to_string(),
_=> "".to_string(),
},
reason: {
match (&self.rustc_depr, &self.level) {
(&Some(ref depr), _) => depr.reason.to_string(),
(&None, &attr::Unstable {reason: Some(ref reason), ..}) => reason.to_string(),
_ => "".to_string(),
}
},
issue: match self.level {
attr::Unstable {issue, ..} => Some(issue),
_ => None,
}
}
}
}
impl<'a> Clean<Stability> for &'a attr::Stability {
fn clean(&self, dc: &DocContext) -> Stability {
(**self).clean(dc)
}
}
impl Clean<Deprecation> for attr::Deprecation {
fn clean(&self, _: &DocContext) -> Deprecation {
Deprecation {
since: self.since.as_ref().map_or("".to_string(), |s| s.to_string()),
note: self.note.as_ref().map_or("".to_string(), |s| s.to_string()),
}
}
}
impl<'tcx> Clean<Item> for ty::AssociatedConst<'tcx> {
fn clean(&self, cx: &DocContext) -> Item {
Item {
source: DUMMY_SP.clean(cx),
name: Some(self.name.clean(cx)),
attrs: Vec::new(),
inner: AssociatedConstItem(self.ty.clean(cx), None),
visibility: None,
def_id: self.def_id,
stability: None,
deprecation: None,
}
}
}
impl<'tcx> Clean<Item> for ty::AssociatedType<'tcx> {
fn clean(&self, cx: &DocContext) -> Item {
let my_name = self.name.clean(cx);
let mut bounds = if let ty::TraitContainer(did) = self.container {
// When loading a cross-crate associated type, the bounds for this type
// are actually located on the trait/impl itself, so we need to load
// all of the generics from there and then look for bounds that are
// applied to this associated type in question.
let def = cx.tcx().lookup_trait_def(did);
let predicates = cx.tcx().lookup_predicates(did);
let generics = (&def.generics, &predicates, subst::TypeSpace).clean(cx);
generics.where_predicates.iter().filter_map(|pred| {
let (name, self_type, trait_, bounds) = match *pred {
WherePredicate::BoundPredicate {
ty: QPath { ref name, ref self_type, ref trait_ },
ref bounds
} => (name, self_type, trait_, bounds),
_ => return None,
};
if *name != my_name { return None }
match **trait_ {
ResolvedPath { did, .. } if did == self.container.id() => {}
_ => return None,
}
match **self_type {
Generic(ref s) if *s == "Self" => {}
_ => return None,
}
Some(bounds)
}).flat_map(|i| i.iter().cloned()).collect::<Vec<_>>()
} else {
vec![]
};
// Our Sized/?Sized bound didn't get handled when creating the generics
// because we didn't actually get our whole set of bounds until just now
// (some of them may have come from the trait). If we do have a sized
// bound, we remove it, and if we don't then we add the `?Sized` bound
// at the end.
match bounds.iter().position(|b| b.is_sized_bound(cx)) {
Some(i) => { bounds.remove(i); }
None => bounds.push(TyParamBound::maybe_sized(cx)),
}
Item {
source: DUMMY_SP.clean(cx),
name: Some(self.name.clean(cx)),
attrs: inline::load_attrs(cx, cx.tcx(), self.def_id),
inner: AssociatedTypeItem(bounds, self.ty.clean(cx)),
visibility: self.vis.clean(cx),
def_id: self.def_id,
stability: cx.tcx().lookup_stability(self.def_id).clean(cx),
deprecation: cx.tcx().lookup_deprecation(self.def_id).clean(cx),
}
}
}
impl<'a> Clean<Typedef> for (ty::TypeScheme<'a>, ty::GenericPredicates<'a>,
ParamSpace) {
fn clean(&self, cx: &DocContext) -> Typedef {
let (ref ty_scheme, ref predicates, ps) = *self;
Typedef {
type_: ty_scheme.ty.clean(cx),
generics: (&ty_scheme.generics, predicates, ps).clean(cx)
}
}
}
fn lang_struct(cx: &DocContext, did: Option<DefId>,
t: ty::Ty, name: &str,
fallback: fn(Box<Type>) -> Type) -> Type {
let did = match did {
Some(did) => did,
None => return fallback(box t.clean(cx)),
};
inline::record_extern_fqn(cx, did, TypeStruct);
ResolvedPath {
typarams: None,
did: did,
path: Path {
global: false,
segments: vec![PathSegment {
name: name.to_string(),
params: PathParameters::AngleBracketed {
lifetimes: vec![],
types: vec![t.clean(cx)],
bindings: vec![]
}
}],
},
is_generic: false,
}
}
/// An equality constraint on an associated type, e.g. `A=Bar` in `Foo<A=Bar>`
#[derive(Clone, PartialEq, RustcDecodable, RustcEncodable, Debug)]
pub struct TypeBinding {
pub name: String,
pub ty: Type
}
impl Clean<TypeBinding> for hir::TypeBinding {
fn clean(&self, cx: &DocContext) -> TypeBinding {
TypeBinding {
name: self.name.clean(cx),
ty: self.ty.clean(cx)
}
}
}