blob: 8011347d3eb12c76770dd9c447b03147653d5214 [file] [log] [blame]
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use self::RecursiveTypeDescription::*;
use self::MemberOffset::*;
use self::MemberDescriptionFactory::*;
use self::EnumDiscriminantInfo::*;
use super::utils::{debug_context, DIB, span_start, bytes_to_bits, size_and_align_of,
get_namespace_and_span_for_item, create_DIArray,
fn_should_be_ignored, is_node_local_to_unit};
use super::namespace::mangled_name_of_item;
use super::type_names::{compute_debuginfo_type_name, push_debuginfo_type_name};
use super::{declare_local, VariableKind, VariableAccess, CrateDebugContext};
use context::SharedCrateContext;
use session::Session;
use llvm::{self, ValueRef};
use llvm::debuginfo::{DIType, DIFile, DIScope, DIDescriptor, DICompositeType};
use rustc::hir::def_id::DefId;
use rustc::hir::pat_util;
use rustc::ty::subst;
use rustc::hir::map as hir_map;
use rustc::hir::{self, PatKind};
use {type_of, adt, machine, monomorphize};
use common::{self, CrateContext, FunctionContext, Block};
use _match::{BindingInfo, TransBindingMode};
use type_::Type;
use rustc::ty::{self, Ty};
use session::config::{self, FullDebugInfo};
use util::nodemap::FnvHashMap;
use util::common::path2cstr;
use libc::{c_uint, c_longlong};
use std::ffi::CString;
use std::path::Path;
use std::ptr;
use std::rc::Rc;
use syntax;
use syntax::util::interner::Interner;
use syntax::ast;
use syntax::parse::token;
use syntax_pos::{self, Span};
// From DWARF 5.
// See http://www.dwarfstd.org/ShowIssue.php?issue=140129.1
const DW_LANG_RUST: c_uint = 0x1c;
#[allow(non_upper_case_globals)]
const DW_ATE_boolean: c_uint = 0x02;
#[allow(non_upper_case_globals)]
const DW_ATE_float: c_uint = 0x04;
#[allow(non_upper_case_globals)]
const DW_ATE_signed: c_uint = 0x05;
#[allow(non_upper_case_globals)]
const DW_ATE_unsigned: c_uint = 0x07;
#[allow(non_upper_case_globals)]
const DW_ATE_unsigned_char: c_uint = 0x08;
pub const UNKNOWN_LINE_NUMBER: c_uint = 0;
pub const UNKNOWN_COLUMN_NUMBER: c_uint = 0;
// ptr::null() doesn't work :(
pub const NO_SCOPE_METADATA: DIScope = (0 as DIScope);
const FLAGS_NONE: c_uint = 0;
#[derive(Copy, Debug, Hash, Eq, PartialEq, Clone)]
pub struct UniqueTypeId(ast::Name);
// The TypeMap is where the CrateDebugContext holds the type metadata nodes
// created so far. The metadata nodes are indexed by UniqueTypeId, and, for
// faster lookup, also by Ty. The TypeMap is responsible for creating
// UniqueTypeIds.
pub struct TypeMap<'tcx> {
// The UniqueTypeIds created so far
unique_id_interner: Interner,
// A map from UniqueTypeId to debuginfo metadata for that type. This is a 1:1 mapping.
unique_id_to_metadata: FnvHashMap<UniqueTypeId, DIType>,
// A map from types to debuginfo metadata. This is a N:1 mapping.
type_to_metadata: FnvHashMap<Ty<'tcx>, DIType>,
// A map from types to UniqueTypeId. This is a N:1 mapping.
type_to_unique_id: FnvHashMap<Ty<'tcx>, UniqueTypeId>
}
impl<'tcx> TypeMap<'tcx> {
pub fn new() -> TypeMap<'tcx> {
TypeMap {
unique_id_interner: Interner::new(),
type_to_metadata: FnvHashMap(),
unique_id_to_metadata: FnvHashMap(),
type_to_unique_id: FnvHashMap(),
}
}
// Adds a Ty to metadata mapping to the TypeMap. The method will fail if
// the mapping already exists.
fn register_type_with_metadata<'a>(&mut self,
type_: Ty<'tcx>,
metadata: DIType) {
if self.type_to_metadata.insert(type_, metadata).is_some() {
bug!("Type metadata for Ty '{}' is already in the TypeMap!", type_);
}
}
// Adds a UniqueTypeId to metadata mapping to the TypeMap. The method will
// fail if the mapping already exists.
fn register_unique_id_with_metadata(&mut self,
unique_type_id: UniqueTypeId,
metadata: DIType) {
if self.unique_id_to_metadata.insert(unique_type_id, metadata).is_some() {
let unique_type_id_str = self.get_unique_type_id_as_string(unique_type_id);
bug!("Type metadata for unique id '{}' is already in the TypeMap!",
&unique_type_id_str[..]);
}
}
fn find_metadata_for_type(&self, type_: Ty<'tcx>) -> Option<DIType> {
self.type_to_metadata.get(&type_).cloned()
}
fn find_metadata_for_unique_id(&self, unique_type_id: UniqueTypeId) -> Option<DIType> {
self.unique_id_to_metadata.get(&unique_type_id).cloned()
}
// Get the string representation of a UniqueTypeId. This method will fail if
// the id is unknown.
fn get_unique_type_id_as_string(&self, unique_type_id: UniqueTypeId) -> Rc<String> {
let UniqueTypeId(interner_key) = unique_type_id;
self.unique_id_interner.get(interner_key)
}
// Get the UniqueTypeId for the given type. If the UniqueTypeId for the given
// type has been requested before, this is just a table lookup. Otherwise an
// ID will be generated and stored for later lookup.
fn get_unique_type_id_of_type<'a>(&mut self, cx: &CrateContext<'a, 'tcx>,
type_: Ty<'tcx>) -> UniqueTypeId {
// basic type -> {:name of the type:}
// tuple -> {tuple_(:param-uid:)*}
// struct -> {struct_:svh: / :node-id:_<(:param-uid:),*> }
// enum -> {enum_:svh: / :node-id:_<(:param-uid:),*> }
// enum variant -> {variant_:variant-name:_:enum-uid:}
// reference (&) -> {& :pointee-uid:}
// mut reference (&mut) -> {&mut :pointee-uid:}
// ptr (*) -> {* :pointee-uid:}
// mut ptr (*mut) -> {*mut :pointee-uid:}
// unique ptr (box) -> {box :pointee-uid:}
// @-ptr (@) -> {@ :pointee-uid:}
// sized vec ([T; x]) -> {[:size:] :element-uid:}
// unsized vec ([T]) -> {[] :element-uid:}
// trait (T) -> {trait_:svh: / :node-id:_<(:param-uid:),*> }
// closure -> {<unsafe_> <once_> :store-sigil: |(:param-uid:),* <,_...>| -> \
// :return-type-uid: : (:bounds:)*}
// function -> {<unsafe_> <abi_> fn( (:param-uid:)* <,_...> ) -> \
// :return-type-uid:}
match self.type_to_unique_id.get(&type_).cloned() {
Some(unique_type_id) => return unique_type_id,
None => { /* generate one */}
};
let mut unique_type_id = String::with_capacity(256);
unique_type_id.push('{');
match type_.sty {
ty::TyBool |
ty::TyChar |
ty::TyStr |
ty::TyInt(_) |
ty::TyUint(_) |
ty::TyFloat(_) => {
push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
},
ty::TyEnum(def, substs) => {
unique_type_id.push_str("enum ");
from_def_id_and_substs(self, cx, def.did, substs, &mut unique_type_id);
},
ty::TyStruct(def, substs) => {
unique_type_id.push_str("struct ");
from_def_id_and_substs(self, cx, def.did, substs, &mut unique_type_id);
},
ty::TyTuple(component_types) if component_types.is_empty() => {
push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
},
ty::TyTuple(component_types) => {
unique_type_id.push_str("tuple ");
for &component_type in component_types {
let component_type_id =
self.get_unique_type_id_of_type(cx, component_type);
let component_type_id =
self.get_unique_type_id_as_string(component_type_id);
unique_type_id.push_str(&component_type_id[..]);
}
},
ty::TyBox(inner_type) => {
unique_type_id.push_str("box ");
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
unique_type_id.push_str(&inner_type_id[..]);
},
ty::TyRawPtr(ty::TypeAndMut { ty: inner_type, mutbl } ) => {
unique_type_id.push('*');
if mutbl == hir::MutMutable {
unique_type_id.push_str("mut");
}
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
unique_type_id.push_str(&inner_type_id[..]);
},
ty::TyRef(_, ty::TypeAndMut { ty: inner_type, mutbl }) => {
unique_type_id.push('&');
if mutbl == hir::MutMutable {
unique_type_id.push_str("mut");
}
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
unique_type_id.push_str(&inner_type_id[..]);
},
ty::TyArray(inner_type, len) => {
unique_type_id.push_str(&format!("[{}]", len));
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
unique_type_id.push_str(&inner_type_id[..]);
},
ty::TySlice(inner_type) => {
unique_type_id.push_str("[]");
let inner_type_id = self.get_unique_type_id_of_type(cx, inner_type);
let inner_type_id = self.get_unique_type_id_as_string(inner_type_id);
unique_type_id.push_str(&inner_type_id[..]);
},
ty::TyTrait(ref trait_data) => {
unique_type_id.push_str("trait ");
let principal = cx.tcx().erase_late_bound_regions(&trait_data.principal);
from_def_id_and_substs(self,
cx,
principal.def_id,
principal.substs,
&mut unique_type_id);
},
ty::TyFnDef(_, _, &ty::BareFnTy{ unsafety, abi, ref sig } ) |
ty::TyFnPtr(&ty::BareFnTy{ unsafety, abi, ref sig } ) => {
if unsafety == hir::Unsafety::Unsafe {
unique_type_id.push_str("unsafe ");
}
unique_type_id.push_str(abi.name());
unique_type_id.push_str(" fn(");
let sig = cx.tcx().erase_late_bound_regions(sig);
let sig = cx.tcx().normalize_associated_type(&sig);
for &parameter_type in &sig.inputs {
let parameter_type_id =
self.get_unique_type_id_of_type(cx, parameter_type);
let parameter_type_id =
self.get_unique_type_id_as_string(parameter_type_id);
unique_type_id.push_str(&parameter_type_id[..]);
unique_type_id.push(',');
}
if sig.variadic {
unique_type_id.push_str("...");
}
unique_type_id.push_str(")->");
match sig.output {
ty::FnConverging(ret_ty) => {
let return_type_id = self.get_unique_type_id_of_type(cx, ret_ty);
let return_type_id = self.get_unique_type_id_as_string(return_type_id);
unique_type_id.push_str(&return_type_id[..]);
}
ty::FnDiverging => {
unique_type_id.push_str("!");
}
}
},
ty::TyClosure(_, substs) if substs.upvar_tys.is_empty() => {
push_debuginfo_type_name(cx, type_, false, &mut unique_type_id);
},
ty::TyClosure(_, substs) => {
unique_type_id.push_str("closure ");
for upvar_type in substs.upvar_tys {
let upvar_type_id =
self.get_unique_type_id_of_type(cx, upvar_type);
let upvar_type_id =
self.get_unique_type_id_as_string(upvar_type_id);
unique_type_id.push_str(&upvar_type_id[..]);
}
},
_ => {
bug!("get_unique_type_id_of_type() - unexpected type: {:?}",
type_)
}
};
unique_type_id.push('}');
// Trim to size before storing permanently
unique_type_id.shrink_to_fit();
let key = self.unique_id_interner.intern(unique_type_id);
self.type_to_unique_id.insert(type_, UniqueTypeId(key));
return UniqueTypeId(key);
fn from_def_id_and_substs<'a, 'tcx>(type_map: &mut TypeMap<'tcx>,
cx: &CrateContext<'a, 'tcx>,
def_id: DefId,
substs: &subst::Substs<'tcx>,
output: &mut String) {
// First, find out the 'real' def_id of the type. Items inlined from
// other crates have to be mapped back to their source.
let def_id = if let Some(node_id) = cx.tcx().map.as_local_node_id(def_id) {
if cx.tcx().map.is_inlined(node_id) {
// The given def_id identifies the inlined copy of a
// type definition, let's take the source of the copy.
cx.defid_for_inlined_node(node_id).unwrap()
} else {
def_id
}
} else {
def_id
};
// Get the crate name/disambiguator as first part of the identifier.
let crate_name = if def_id.is_local() {
cx.tcx().crate_name.clone()
} else {
cx.sess().cstore.original_crate_name(def_id.krate)
};
let crate_disambiguator = cx.tcx().crate_disambiguator(def_id.krate);
output.push_str(&crate_name[..]);
output.push_str("/");
output.push_str(&crate_disambiguator[..]);
output.push_str("/");
// Add the def-index as the second part
output.push_str(&format!("{:x}", def_id.index.as_usize()));
let tps = substs.types.get_slice(subst::TypeSpace);
if !tps.is_empty() {
output.push('<');
for &type_parameter in tps {
let param_type_id =
type_map.get_unique_type_id_of_type(cx, type_parameter);
let param_type_id =
type_map.get_unique_type_id_as_string(param_type_id);
output.push_str(&param_type_id[..]);
output.push(',');
}
output.push('>');
}
}
}
// Get the UniqueTypeId for an enum variant. Enum variants are not really
// types of their own, so they need special handling. We still need a
// UniqueTypeId for them, since to debuginfo they *are* real types.
fn get_unique_type_id_of_enum_variant<'a>(&mut self,
cx: &CrateContext<'a, 'tcx>,
enum_type: Ty<'tcx>,
variant_name: &str)
-> UniqueTypeId {
let enum_type_id = self.get_unique_type_id_of_type(cx, enum_type);
let enum_variant_type_id = format!("{}::{}",
&self.get_unique_type_id_as_string(enum_type_id),
variant_name);
let interner_key = self.unique_id_interner.intern(enum_variant_type_id);
UniqueTypeId(interner_key)
}
}
// A description of some recursive type. It can either be already finished (as
// with FinalMetadata) or it is not yet finished, but contains all information
// needed to generate the missing parts of the description. See the
// documentation section on Recursive Types at the top of this file for more
// information.
enum RecursiveTypeDescription<'tcx> {
UnfinishedMetadata {
unfinished_type: Ty<'tcx>,
unique_type_id: UniqueTypeId,
metadata_stub: DICompositeType,
llvm_type: Type,
member_description_factory: MemberDescriptionFactory<'tcx>,
},
FinalMetadata(DICompositeType)
}
fn create_and_register_recursive_type_forward_declaration<'a, 'tcx>(
cx: &CrateContext<'a, 'tcx>,
unfinished_type: Ty<'tcx>,
unique_type_id: UniqueTypeId,
metadata_stub: DICompositeType,
llvm_type: Type,
member_description_factory: MemberDescriptionFactory<'tcx>)
-> RecursiveTypeDescription<'tcx> {
// Insert the stub into the TypeMap in order to allow for recursive references
let mut type_map = debug_context(cx).type_map.borrow_mut();
type_map.register_unique_id_with_metadata(unique_type_id, metadata_stub);
type_map.register_type_with_metadata(unfinished_type, metadata_stub);
UnfinishedMetadata {
unfinished_type: unfinished_type,
unique_type_id: unique_type_id,
metadata_stub: metadata_stub,
llvm_type: llvm_type,
member_description_factory: member_description_factory,
}
}
impl<'tcx> RecursiveTypeDescription<'tcx> {
// Finishes up the description of the type in question (mostly by providing
// descriptions of the fields of the given type) and returns the final type
// metadata.
fn finalize<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> MetadataCreationResult {
match *self {
FinalMetadata(metadata) => MetadataCreationResult::new(metadata, false),
UnfinishedMetadata {
unfinished_type,
unique_type_id,
metadata_stub,
llvm_type,
ref member_description_factory,
..
} => {
// Make sure that we have a forward declaration of the type in
// the TypeMap so that recursive references are possible. This
// will always be the case if the RecursiveTypeDescription has
// been properly created through the
// create_and_register_recursive_type_forward_declaration()
// function.
{
let type_map = debug_context(cx).type_map.borrow();
if type_map.find_metadata_for_unique_id(unique_type_id).is_none() ||
type_map.find_metadata_for_type(unfinished_type).is_none() {
bug!("Forward declaration of potentially recursive type \
'{:?}' was not found in TypeMap!",
unfinished_type);
}
}
// ... then create the member descriptions ...
let member_descriptions =
member_description_factory.create_member_descriptions(cx);
// ... and attach them to the stub to complete it.
set_members_of_composite_type(cx,
metadata_stub,
llvm_type,
&member_descriptions[..]);
return MetadataCreationResult::new(metadata_stub, true);
}
}
}
}
// Returns from the enclosing function if the type metadata with the given
// unique id can be found in the type map
macro_rules! return_if_metadata_created_in_meantime {
($cx: expr, $unique_type_id: expr) => (
match debug_context($cx).type_map
.borrow()
.find_metadata_for_unique_id($unique_type_id) {
Some(metadata) => return MetadataCreationResult::new(metadata, true),
None => { /* proceed normally */ }
}
)
}
fn fixed_vec_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
unique_type_id: UniqueTypeId,
element_type: Ty<'tcx>,
len: Option<u64>,
span: Span)
-> MetadataCreationResult {
let element_type_metadata = type_metadata(cx, element_type, span);
return_if_metadata_created_in_meantime!(cx, unique_type_id);
let element_llvm_type = type_of::type_of(cx, element_type);
let (element_type_size, element_type_align) = size_and_align_of(cx, element_llvm_type);
let (array_size_in_bytes, upper_bound) = match len {
Some(len) => (element_type_size * len, len as c_longlong),
None => (0, -1)
};
let subrange = unsafe {
llvm::LLVMRustDIBuilderGetOrCreateSubrange(DIB(cx), 0, upper_bound)
};
let subscripts = create_DIArray(DIB(cx), &[subrange]);
let metadata = unsafe {
llvm::LLVMRustDIBuilderCreateArrayType(
DIB(cx),
bytes_to_bits(array_size_in_bytes),
bytes_to_bits(element_type_align),
element_type_metadata,
subscripts)
};
return MetadataCreationResult::new(metadata, false);
}
fn vec_slice_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
vec_type: Ty<'tcx>,
element_type: Ty<'tcx>,
unique_type_id: UniqueTypeId,
span: Span)
-> MetadataCreationResult {
let data_ptr_type = cx.tcx().mk_ptr(ty::TypeAndMut {
ty: element_type,
mutbl: hir::MutImmutable
});
let element_type_metadata = type_metadata(cx, data_ptr_type, span);
return_if_metadata_created_in_meantime!(cx, unique_type_id);
let slice_llvm_type = type_of::type_of(cx, vec_type);
let slice_type_name = compute_debuginfo_type_name(cx, vec_type, true);
let member_llvm_types = slice_llvm_type.field_types();
assert!(slice_layout_is_correct(cx,
&member_llvm_types[..],
element_type));
let member_descriptions = [
MemberDescription {
name: "data_ptr".to_string(),
llvm_type: member_llvm_types[0],
type_metadata: element_type_metadata,
offset: ComputedMemberOffset,
flags: FLAGS_NONE
},
MemberDescription {
name: "length".to_string(),
llvm_type: member_llvm_types[1],
type_metadata: type_metadata(cx, cx.tcx().types.usize, span),
offset: ComputedMemberOffset,
flags: FLAGS_NONE
},
];
assert!(member_descriptions.len() == member_llvm_types.len());
let loc = span_start(cx, span);
let file_metadata = file_metadata(cx, &loc.file.name, &loc.file.abs_path);
let metadata = composite_type_metadata(cx,
slice_llvm_type,
&slice_type_name[..],
unique_type_id,
&member_descriptions,
NO_SCOPE_METADATA,
file_metadata,
span);
return MetadataCreationResult::new(metadata, false);
fn slice_layout_is_correct<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
member_llvm_types: &[Type],
element_type: Ty<'tcx>)
-> bool {
member_llvm_types.len() == 2 &&
member_llvm_types[0] == type_of::type_of(cx, element_type).ptr_to() &&
member_llvm_types[1] == cx.int_type()
}
}
fn subroutine_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
unique_type_id: UniqueTypeId,
signature: &ty::PolyFnSig<'tcx>,
span: Span)
-> MetadataCreationResult
{
let signature = cx.tcx().erase_late_bound_regions(signature);
let mut signature_metadata: Vec<DIType> = Vec::with_capacity(signature.inputs.len() + 1);
// return type
signature_metadata.push(match signature.output {
ty::FnConverging(ret_ty) => match ret_ty.sty {
ty::TyTuple(ref tys) if tys.is_empty() => ptr::null_mut(),
_ => type_metadata(cx, ret_ty, span)
},
ty::FnDiverging => diverging_type_metadata(cx)
});
// regular arguments
for &argument_type in &signature.inputs {
signature_metadata.push(type_metadata(cx, argument_type, span));
}
return_if_metadata_created_in_meantime!(cx, unique_type_id);
return MetadataCreationResult::new(
unsafe {
llvm::LLVMRustDIBuilderCreateSubroutineType(
DIB(cx),
unknown_file_metadata(cx),
create_DIArray(DIB(cx), &signature_metadata[..]))
},
false);
}
// FIXME(1563) This is all a bit of a hack because 'trait pointer' is an ill-
// defined concept. For the case of an actual trait pointer (i.e., Box<Trait>,
// &Trait), trait_object_type should be the whole thing (e.g, Box<Trait>) and
// trait_type should be the actual trait (e.g., Trait). Where the trait is part
// of a DST struct, there is no trait_object_type and the results of this
// function will be a little bit weird.
fn trait_pointer_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
trait_type: Ty<'tcx>,
trait_object_type: Option<Ty<'tcx>>,
unique_type_id: UniqueTypeId)
-> DIType {
// The implementation provided here is a stub. It makes sure that the trait
// type is assigned the correct name, size, namespace, and source location.
// But it does not describe the trait's methods.
let def_id = match trait_type.sty {
ty::TyTrait(ref data) => data.principal_def_id(),
_ => {
bug!("debuginfo: Unexpected trait-object type in \
trait_pointer_metadata(): {:?}",
trait_type);
}
};
let trait_object_type = trait_object_type.unwrap_or(trait_type);
let trait_type_name =
compute_debuginfo_type_name(cx, trait_object_type, false);
let (containing_scope, _) = get_namespace_and_span_for_item(cx, def_id);
let trait_llvm_type = type_of::type_of(cx, trait_object_type);
let file_metadata = unknown_file_metadata(cx);
composite_type_metadata(cx,
trait_llvm_type,
&trait_type_name[..],
unique_type_id,
&[],
containing_scope,
file_metadata,
syntax_pos::DUMMY_SP)
}
pub fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>,
usage_site_span: Span)
-> DIType {
// Get the unique type id of this type.
let unique_type_id = {
let mut type_map = debug_context(cx).type_map.borrow_mut();
// First, try to find the type in TypeMap. If we have seen it before, we
// can exit early here.
match type_map.find_metadata_for_type(t) {
Some(metadata) => {
return metadata;
},
None => {
// The Ty is not in the TypeMap but maybe we have already seen
// an equivalent type (e.g. only differing in region arguments).
// In order to find out, generate the unique type id and look
// that up.
let unique_type_id = type_map.get_unique_type_id_of_type(cx, t);
match type_map.find_metadata_for_unique_id(unique_type_id) {
Some(metadata) => {
// There is already an equivalent type in the TypeMap.
// Register this Ty as an alias in the cache and
// return the cached metadata.
type_map.register_type_with_metadata(t, metadata);
return metadata;
},
None => {
// There really is no type metadata for this type, so
// proceed by creating it.
unique_type_id
}
}
}
}
};
debug!("type_metadata: {:?}", t);
let sty = &t.sty;
let MetadataCreationResult { metadata, already_stored_in_typemap } = match *sty {
ty::TyBool |
ty::TyChar |
ty::TyInt(_) |
ty::TyUint(_) |
ty::TyFloat(_) => {
MetadataCreationResult::new(basic_type_metadata(cx, t), false)
}
ty::TyTuple(ref elements) if elements.is_empty() => {
MetadataCreationResult::new(basic_type_metadata(cx, t), false)
}
ty::TyEnum(def, _) => {
prepare_enum_metadata(cx,
t,
def.did,
unique_type_id,
usage_site_span).finalize(cx)
}
ty::TyArray(typ, len) => {
fixed_vec_metadata(cx, unique_type_id, typ, Some(len as u64), usage_site_span)
}
ty::TySlice(typ) => {
fixed_vec_metadata(cx, unique_type_id, typ, None, usage_site_span)
}
ty::TyStr => {
fixed_vec_metadata(cx, unique_type_id, cx.tcx().types.i8, None, usage_site_span)
}
ty::TyTrait(..) => {
MetadataCreationResult::new(
trait_pointer_metadata(cx, t, None, unique_type_id),
false)
}
ty::TyBox(ty) |
ty::TyRawPtr(ty::TypeAndMut{ty, ..}) |
ty::TyRef(_, ty::TypeAndMut{ty, ..}) => {
match ty.sty {
ty::TySlice(typ) => {
vec_slice_metadata(cx, t, typ, unique_type_id, usage_site_span)
}
ty::TyStr => {
vec_slice_metadata(cx, t, cx.tcx().types.u8, unique_type_id, usage_site_span)
}
ty::TyTrait(..) => {
MetadataCreationResult::new(
trait_pointer_metadata(cx, ty, Some(t), unique_type_id),
false)
}
_ => {
let pointee_metadata = type_metadata(cx, ty, usage_site_span);
match debug_context(cx).type_map
.borrow()
.find_metadata_for_unique_id(unique_type_id) {
Some(metadata) => return metadata,
None => { /* proceed normally */ }
};
MetadataCreationResult::new(pointer_type_metadata(cx, t, pointee_metadata),
false)
}
}
}
ty::TyFnDef(_, _, ref barefnty) | ty::TyFnPtr(ref barefnty) => {
let fn_metadata = subroutine_type_metadata(cx,
unique_type_id,
&barefnty.sig,
usage_site_span).metadata;
match debug_context(cx).type_map
.borrow()
.find_metadata_for_unique_id(unique_type_id) {
Some(metadata) => return metadata,
None => { /* proceed normally */ }
};
// This is actually a function pointer, so wrap it in pointer DI
MetadataCreationResult::new(pointer_type_metadata(cx, t, fn_metadata), false)
}
ty::TyClosure(_, ref substs) => {
prepare_tuple_metadata(cx,
t,
&substs.upvar_tys,
unique_type_id,
usage_site_span).finalize(cx)
}
ty::TyStruct(..) => {
prepare_struct_metadata(cx,
t,
unique_type_id,
usage_site_span).finalize(cx)
}
ty::TyTuple(ref elements) => {
prepare_tuple_metadata(cx,
t,
&elements[..],
unique_type_id,
usage_site_span).finalize(cx)
}
_ => {
bug!("debuginfo: unexpected type in type_metadata: {:?}", sty)
}
};
{
let mut type_map = debug_context(cx).type_map.borrow_mut();
if already_stored_in_typemap {
// Also make sure that we already have a TypeMap entry for the unique type id.
let metadata_for_uid = match type_map.find_metadata_for_unique_id(unique_type_id) {
Some(metadata) => metadata,
None => {
let unique_type_id_str =
type_map.get_unique_type_id_as_string(unique_type_id);
span_bug!(usage_site_span,
"Expected type metadata for unique \
type id '{}' to already be in \
the debuginfo::TypeMap but it \
was not. (Ty = {})",
&unique_type_id_str[..],
t);
}
};
match type_map.find_metadata_for_type(t) {
Some(metadata) => {
if metadata != metadata_for_uid {
let unique_type_id_str =
type_map.get_unique_type_id_as_string(unique_type_id);
span_bug!(usage_site_span,
"Mismatch between Ty and \
UniqueTypeId maps in \
debuginfo::TypeMap. \
UniqueTypeId={}, Ty={}",
&unique_type_id_str[..],
t);
}
}
None => {
type_map.register_type_with_metadata(t, metadata);
}
}
} else {
type_map.register_type_with_metadata(t, metadata);
type_map.register_unique_id_with_metadata(unique_type_id, metadata);
}
}
metadata
}
pub fn file_metadata(cx: &CrateContext, path: &str, full_path: &Option<String>) -> DIFile {
// FIXME (#9639): This needs to handle non-utf8 paths
let work_dir = cx.sess().working_dir.to_str().unwrap();
let file_name =
full_path.as_ref().map(|p| p.as_str()).unwrap_or_else(|| {
if path.starts_with(work_dir) {
&path[work_dir.len() + 1..path.len()]
} else {
path
}
});
file_metadata_(cx, path, file_name, &work_dir)
}
pub fn unknown_file_metadata(cx: &CrateContext) -> DIFile {
// Regular filenames should not be empty, so we abuse an empty name as the
// key for the special unknown file metadata
file_metadata_(cx, "", "<unknown>", "")
}
fn file_metadata_(cx: &CrateContext, key: &str, file_name: &str, work_dir: &str) -> DIFile {
if let Some(file_metadata) = debug_context(cx).created_files.borrow().get(key) {
return *file_metadata;
}
debug!("file_metadata: file_name: {}, work_dir: {}", file_name, work_dir);
let file_name = CString::new(file_name).unwrap();
let work_dir = CString::new(work_dir).unwrap();
let file_metadata = unsafe {
llvm::LLVMRustDIBuilderCreateFile(DIB(cx), file_name.as_ptr(),
work_dir.as_ptr())
};
let mut created_files = debug_context(cx).created_files.borrow_mut();
created_files.insert(key.to_string(), file_metadata);
file_metadata
}
/// Finds the scope metadata node for the given AST node.
pub fn scope_metadata(fcx: &FunctionContext,
node_id: ast::NodeId,
error_reporting_span: Span)
-> DIScope {
let scope_map = &fcx.debug_context
.get_ref(error_reporting_span)
.scope_map;
match scope_map.borrow().get(&node_id).cloned() {
Some(scope_metadata) => scope_metadata,
None => {
let node = fcx.ccx.tcx().map.get(node_id);
span_bug!(error_reporting_span,
"debuginfo: Could not find scope info for node {:?}",
node);
}
}
}
pub fn diverging_type_metadata(cx: &CrateContext) -> DIType {
unsafe {
llvm::LLVMRustDIBuilderCreateBasicType(
DIB(cx),
"!\0".as_ptr() as *const _,
bytes_to_bits(0),
bytes_to_bits(0),
DW_ATE_unsigned)
}
}
fn basic_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
t: Ty<'tcx>) -> DIType {
debug!("basic_type_metadata: {:?}", t);
let (name, encoding) = match t.sty {
ty::TyTuple(ref elements) if elements.is_empty() =>
("()", DW_ATE_unsigned),
ty::TyBool => ("bool", DW_ATE_boolean),
ty::TyChar => ("char", DW_ATE_unsigned_char),
ty::TyInt(int_ty) => {
(int_ty.ty_to_string(), DW_ATE_signed)
},
ty::TyUint(uint_ty) => {
(uint_ty.ty_to_string(), DW_ATE_unsigned)
},
ty::TyFloat(float_ty) => {
(float_ty.ty_to_string(), DW_ATE_float)
},
_ => bug!("debuginfo::basic_type_metadata - t is invalid type")
};
let llvm_type = type_of::type_of(cx, t);
let (size, align) = size_and_align_of(cx, llvm_type);
let name = CString::new(name).unwrap();
let ty_metadata = unsafe {
llvm::LLVMRustDIBuilderCreateBasicType(
DIB(cx),
name.as_ptr(),
bytes_to_bits(size),
bytes_to_bits(align),
encoding)
};
return ty_metadata;
}
fn pointer_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
pointer_type: Ty<'tcx>,
pointee_type_metadata: DIType)
-> DIType {
let pointer_llvm_type = type_of::type_of(cx, pointer_type);
let (pointer_size, pointer_align) = size_and_align_of(cx, pointer_llvm_type);
let name = compute_debuginfo_type_name(cx, pointer_type, false);
let name = CString::new(name).unwrap();
let ptr_metadata = unsafe {
llvm::LLVMRustDIBuilderCreatePointerType(
DIB(cx),
pointee_type_metadata,
bytes_to_bits(pointer_size),
bytes_to_bits(pointer_align),
name.as_ptr())
};
return ptr_metadata;
}
pub fn compile_unit_metadata(scc: &SharedCrateContext,
debug_context: &CrateDebugContext,
sess: &Session)
-> DIDescriptor {
let work_dir = &sess.working_dir;
let compile_unit_name = match sess.local_crate_source_file {
None => fallback_path(scc),
Some(ref abs_path) => {
if abs_path.is_relative() {
sess.warn("debuginfo: Invalid path to crate's local root source file!");
fallback_path(scc)
} else {
match abs_path.strip_prefix(work_dir) {
Ok(ref p) if p.is_relative() => {
if p.starts_with(Path::new("./")) {
path2cstr(p)
} else {
path2cstr(&Path::new(".").join(p))
}
}
_ => fallback_path(scc)
}
}
}
};
debug!("compile_unit_metadata: {:?}", compile_unit_name);
let producer = format!("rustc version {}",
(option_env!("CFG_VERSION")).expect("CFG_VERSION"));
let compile_unit_name = compile_unit_name.as_ptr();
let work_dir = path2cstr(&work_dir);
let producer = CString::new(producer).unwrap();
let flags = "\0";
let split_name = "\0";
return unsafe {
llvm::LLVMRustDIBuilderCreateCompileUnit(
debug_context.builder,
DW_LANG_RUST,
compile_unit_name,
work_dir.as_ptr(),
producer.as_ptr(),
sess.opts.optimize != config::OptLevel::No,
flags.as_ptr() as *const _,
0,
split_name.as_ptr() as *const _)
};
fn fallback_path(scc: &SharedCrateContext) -> CString {
CString::new(scc.link_meta().crate_name.clone()).unwrap()
}
}
struct MetadataCreationResult {
metadata: DIType,
already_stored_in_typemap: bool
}
impl MetadataCreationResult {
fn new(metadata: DIType, already_stored_in_typemap: bool) -> MetadataCreationResult {
MetadataCreationResult {
metadata: metadata,
already_stored_in_typemap: already_stored_in_typemap
}
}
}
#[derive(Debug)]
enum MemberOffset {
FixedMemberOffset { bytes: usize },
// For ComputedMemberOffset, the offset is read from the llvm type definition.
ComputedMemberOffset
}
// Description of a type member, which can either be a regular field (as in
// structs or tuples) or an enum variant.
#[derive(Debug)]
struct MemberDescription {
name: String,
llvm_type: Type,
type_metadata: DIType,
offset: MemberOffset,
flags: c_uint
}
// A factory for MemberDescriptions. It produces a list of member descriptions
// for some record-like type. MemberDescriptionFactories are used to defer the
// creation of type member descriptions in order to break cycles arising from
// recursive type definitions.
enum MemberDescriptionFactory<'tcx> {
StructMDF(StructMemberDescriptionFactory<'tcx>),
TupleMDF(TupleMemberDescriptionFactory<'tcx>),
EnumMDF(EnumMemberDescriptionFactory<'tcx>),
VariantMDF(VariantMemberDescriptionFactory<'tcx>)
}
impl<'tcx> MemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
-> Vec<MemberDescription> {
match *self {
StructMDF(ref this) => {
this.create_member_descriptions(cx)
}
TupleMDF(ref this) => {
this.create_member_descriptions(cx)
}
EnumMDF(ref this) => {
this.create_member_descriptions(cx)
}
VariantMDF(ref this) => {
this.create_member_descriptions(cx)
}
}
}
}
//=-----------------------------------------------------------------------------
// Structs
//=-----------------------------------------------------------------------------
// Creates MemberDescriptions for the fields of a struct
struct StructMemberDescriptionFactory<'tcx> {
variant: ty::VariantDef<'tcx>,
substs: &'tcx subst::Substs<'tcx>,
is_simd: bool,
span: Span,
}
impl<'tcx> StructMemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
-> Vec<MemberDescription> {
if self.variant.kind == ty::VariantKind::Unit {
return Vec::new();
}
let field_size = if self.is_simd {
let fty = monomorphize::field_ty(cx.tcx(),
self.substs,
&self.variant.fields[0]);
Some(machine::llsize_of_alloc(
cx,
type_of::type_of(cx, fty)
) as usize)
} else {
None
};
self.variant.fields.iter().enumerate().map(|(i, f)| {
let name = if self.variant.kind == ty::VariantKind::Tuple {
format!("__{}", i)
} else {
f.name.to_string()
};
let fty = monomorphize::field_ty(cx.tcx(), self.substs, f);
let offset = if self.is_simd {
FixedMemberOffset { bytes: i * field_size.unwrap() }
} else {
ComputedMemberOffset
};
MemberDescription {
name: name,
llvm_type: type_of::type_of(cx, fty),
type_metadata: type_metadata(cx, fty, self.span),
offset: offset,
flags: FLAGS_NONE,
}
}).collect()
}
}
fn prepare_struct_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
struct_type: Ty<'tcx>,
unique_type_id: UniqueTypeId,
span: Span)
-> RecursiveTypeDescription<'tcx> {
let struct_name = compute_debuginfo_type_name(cx, struct_type, false);
let struct_llvm_type = type_of::in_memory_type_of(cx, struct_type);
let (struct_def_id, variant, substs) = match struct_type.sty {
ty::TyStruct(def, substs) => (def.did, def.struct_variant(), substs),
_ => bug!("prepare_struct_metadata on a non-struct")
};
let (containing_scope, _) = get_namespace_and_span_for_item(cx, struct_def_id);
let struct_metadata_stub = create_struct_stub(cx,
struct_llvm_type,
&struct_name,
unique_type_id,
containing_scope);
create_and_register_recursive_type_forward_declaration(
cx,
struct_type,
unique_type_id,
struct_metadata_stub,
struct_llvm_type,
StructMDF(StructMemberDescriptionFactory {
variant: variant,
substs: substs,
is_simd: struct_type.is_simd(),
span: span,
})
)
}
//=-----------------------------------------------------------------------------
// Tuples
//=-----------------------------------------------------------------------------
// Creates MemberDescriptions for the fields of a tuple
struct TupleMemberDescriptionFactory<'tcx> {
component_types: Vec<Ty<'tcx>>,
span: Span,
}
impl<'tcx> TupleMemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
-> Vec<MemberDescription> {
self.component_types
.iter()
.enumerate()
.map(|(i, &component_type)| {
MemberDescription {
name: format!("__{}", i),
llvm_type: type_of::type_of(cx, component_type),
type_metadata: type_metadata(cx, component_type, self.span),
offset: ComputedMemberOffset,
flags: FLAGS_NONE,
}
}).collect()
}
}
fn prepare_tuple_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
tuple_type: Ty<'tcx>,
component_types: &[Ty<'tcx>],
unique_type_id: UniqueTypeId,
span: Span)
-> RecursiveTypeDescription<'tcx> {
let tuple_name = compute_debuginfo_type_name(cx, tuple_type, false);
let tuple_llvm_type = type_of::type_of(cx, tuple_type);
create_and_register_recursive_type_forward_declaration(
cx,
tuple_type,
unique_type_id,
create_struct_stub(cx,
tuple_llvm_type,
&tuple_name[..],
unique_type_id,
NO_SCOPE_METADATA),
tuple_llvm_type,
TupleMDF(TupleMemberDescriptionFactory {
component_types: component_types.to_vec(),
span: span,
})
)
}
//=-----------------------------------------------------------------------------
// Enums
//=-----------------------------------------------------------------------------
// Describes the members of an enum value: An enum is described as a union of
// structs in DWARF. This MemberDescriptionFactory provides the description for
// the members of this union; so for every variant of the given enum, this
// factory will produce one MemberDescription (all with no name and a fixed
// offset of zero bytes).
struct EnumMemberDescriptionFactory<'tcx> {
enum_type: Ty<'tcx>,
type_rep: Rc<adt::Repr<'tcx>>,
discriminant_type_metadata: Option<DIType>,
containing_scope: DIScope,
file_metadata: DIFile,
span: Span,
}
impl<'tcx> EnumMemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
-> Vec<MemberDescription> {
let adt = &self.enum_type.ty_adt_def().unwrap();
match *self.type_rep {
adt::General(_, ref struct_defs, _) => {
let discriminant_info = RegularDiscriminant(self.discriminant_type_metadata
.expect(""));
struct_defs
.iter()
.enumerate()
.map(|(i, struct_def)| {
let (variant_type_metadata,
variant_llvm_type,
member_desc_factory) =
describe_enum_variant(cx,
self.enum_type,
struct_def,
&adt.variants[i],
discriminant_info,
self.containing_scope,
self.span);
let member_descriptions = member_desc_factory
.create_member_descriptions(cx);
set_members_of_composite_type(cx,
variant_type_metadata,
variant_llvm_type,
&member_descriptions);
MemberDescription {
name: "".to_string(),
llvm_type: variant_llvm_type,
type_metadata: variant_type_metadata,
offset: FixedMemberOffset { bytes: 0 },
flags: FLAGS_NONE
}
}).collect()
},
adt::Univariant(ref struct_def, _) => {
assert!(adt.variants.len() <= 1);
if adt.variants.is_empty() {
vec![]
} else {
let (variant_type_metadata,
variant_llvm_type,
member_description_factory) =
describe_enum_variant(cx,
self.enum_type,
struct_def,
&adt.variants[0],
NoDiscriminant,
self.containing_scope,
self.span);
let member_descriptions =
member_description_factory.create_member_descriptions(cx);
set_members_of_composite_type(cx,
variant_type_metadata,
variant_llvm_type,
&member_descriptions[..]);
vec![
MemberDescription {
name: "".to_string(),
llvm_type: variant_llvm_type,
type_metadata: variant_type_metadata,
offset: FixedMemberOffset { bytes: 0 },
flags: FLAGS_NONE
}
]
}
}
adt::RawNullablePointer { nndiscr: non_null_variant_index, nnty, .. } => {
// As far as debuginfo is concerned, the pointer this enum
// represents is still wrapped in a struct. This is to make the
// DWARF representation of enums uniform.
// First create a description of the artificial wrapper struct:
let non_null_variant = &adt.variants[non_null_variant_index.0 as usize];
let non_null_variant_name = non_null_variant.name.as_str();
// The llvm type and metadata of the pointer
let non_null_llvm_type = type_of::type_of(cx, nnty);
let non_null_type_metadata = type_metadata(cx, nnty, self.span);
// The type of the artificial struct wrapping the pointer
let artificial_struct_llvm_type = Type::struct_(cx,
&[non_null_llvm_type],
false);
// For the metadata of the wrapper struct, we need to create a
// MemberDescription of the struct's single field.
let sole_struct_member_description = MemberDescription {
name: match non_null_variant.kind {
ty::VariantKind::Tuple => "__0".to_string(),
ty::VariantKind::Struct => {
non_null_variant.fields[0].name.to_string()
}
ty::VariantKind::Unit => bug!()
},
llvm_type: non_null_llvm_type,
type_metadata: non_null_type_metadata,
offset: FixedMemberOffset { bytes: 0 },
flags: FLAGS_NONE
};
let unique_type_id = debug_context(cx).type_map
.borrow_mut()
.get_unique_type_id_of_enum_variant(
cx,
self.enum_type,
&non_null_variant_name);
// Now we can create the metadata of the artificial struct
let artificial_struct_metadata =
composite_type_metadata(cx,
artificial_struct_llvm_type,
&non_null_variant_name,
unique_type_id,
&[sole_struct_member_description],
self.containing_scope,
self.file_metadata,
syntax_pos::DUMMY_SP);
// Encode the information about the null variant in the union
// member's name.
let null_variant_index = (1 - non_null_variant_index.0) as usize;
let null_variant_name = adt.variants[null_variant_index].name;
let union_member_name = format!("RUST$ENCODED$ENUM${}${}",
0,
null_variant_name);
// Finally create the (singleton) list of descriptions of union
// members.
vec![
MemberDescription {
name: union_member_name,
llvm_type: artificial_struct_llvm_type,
type_metadata: artificial_struct_metadata,
offset: FixedMemberOffset { bytes: 0 },
flags: FLAGS_NONE
}
]
},
adt::StructWrappedNullablePointer { nonnull: ref struct_def,
nndiscr,
ref discrfield, ..} => {
// Create a description of the non-null variant
let (variant_type_metadata, variant_llvm_type, member_description_factory) =
describe_enum_variant(cx,
self.enum_type,
struct_def,
&adt.variants[nndiscr.0 as usize],
OptimizedDiscriminant,
self.containing_scope,
self.span);
let variant_member_descriptions =
member_description_factory.create_member_descriptions(cx);
set_members_of_composite_type(cx,
variant_type_metadata,
variant_llvm_type,
&variant_member_descriptions[..]);
// Encode the information about the null variant in the union
// member's name.
let null_variant_index = (1 - nndiscr.0) as usize;
let null_variant_name = adt.variants[null_variant_index].name;
let discrfield = discrfield.iter()
.skip(1)
.map(|x| x.to_string())
.collect::<Vec<_>>().join("$");
let union_member_name = format!("RUST$ENCODED$ENUM${}${}",
discrfield,
null_variant_name);
// Create the (singleton) list of descriptions of union members.
vec![
MemberDescription {
name: union_member_name,
llvm_type: variant_llvm_type,
type_metadata: variant_type_metadata,
offset: FixedMemberOffset { bytes: 0 },
flags: FLAGS_NONE
}
]
},
adt::CEnum(..) => span_bug!(self.span, "This should be unreachable.")
}
}
}
// Creates MemberDescriptions for the fields of a single enum variant.
struct VariantMemberDescriptionFactory<'tcx> {
args: Vec<(String, Ty<'tcx>)>,
discriminant_type_metadata: Option<DIType>,
span: Span,
}
impl<'tcx> VariantMemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
-> Vec<MemberDescription> {
self.args.iter().enumerate().map(|(i, &(ref name, ty))| {
MemberDescription {
name: name.to_string(),
llvm_type: type_of::type_of(cx, ty),
type_metadata: match self.discriminant_type_metadata {
Some(metadata) if i == 0 => metadata,
_ => type_metadata(cx, ty, self.span)
},
offset: ComputedMemberOffset,
flags: FLAGS_NONE
}
}).collect()
}
}
#[derive(Copy, Clone)]
enum EnumDiscriminantInfo {
RegularDiscriminant(DIType),
OptimizedDiscriminant,
NoDiscriminant
}
// Returns a tuple of (1) type_metadata_stub of the variant, (2) the llvm_type
// of the variant, and (3) a MemberDescriptionFactory for producing the
// descriptions of the fields of the variant. This is a rudimentary version of a
// full RecursiveTypeDescription.
fn describe_enum_variant<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
enum_type: Ty<'tcx>,
struct_def: &adt::Struct<'tcx>,
variant: ty::VariantDef<'tcx>,
discriminant_info: EnumDiscriminantInfo,
containing_scope: DIScope,
span: Span)
-> (DICompositeType, Type, MemberDescriptionFactory<'tcx>) {
let variant_llvm_type =
Type::struct_(cx, &struct_def.fields
.iter()
.map(|&t| type_of::type_of(cx, t))
.collect::<Vec<_>>()
,
struct_def.packed);
// Could do some consistency checks here: size, align, field count, discr type
let variant_name = variant.name.as_str();
let unique_type_id = debug_context(cx).type_map
.borrow_mut()
.get_unique_type_id_of_enum_variant(
cx,
enum_type,
&variant_name);
let metadata_stub = create_struct_stub(cx,
variant_llvm_type,
&variant_name,
unique_type_id,
containing_scope);
// Get the argument names from the enum variant info
let mut arg_names: Vec<_> = match variant.kind {
ty::VariantKind::Unit => vec![],
ty::VariantKind::Tuple => {
variant.fields
.iter()
.enumerate()
.map(|(i, _)| format!("__{}", i))
.collect()
}
ty::VariantKind::Struct => {
variant.fields
.iter()
.map(|f| f.name.to_string())
.collect()
}
};
// If this is not a univariant enum, there is also the discriminant field.
match discriminant_info {
RegularDiscriminant(_) => arg_names.insert(0, "RUST$ENUM$DISR".to_string()),
_ => { /* do nothing */ }
};
// Build an array of (field name, field type) pairs to be captured in the factory closure.
let args: Vec<(String, Ty)> = arg_names.iter()
.zip(&struct_def.fields)
.map(|(s, &t)| (s.to_string(), t))
.collect();
let member_description_factory =
VariantMDF(VariantMemberDescriptionFactory {
args: args,
discriminant_type_metadata: match discriminant_info {
RegularDiscriminant(discriminant_type_metadata) => {
Some(discriminant_type_metadata)
}
_ => None
},
span: span,
});
(metadata_stub, variant_llvm_type, member_description_factory)
}
fn prepare_enum_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
enum_type: Ty<'tcx>,
enum_def_id: DefId,
unique_type_id: UniqueTypeId,
span: Span)
-> RecursiveTypeDescription<'tcx> {
let enum_name = compute_debuginfo_type_name(cx, enum_type, false);
let (containing_scope, _) = get_namespace_and_span_for_item(cx, enum_def_id);
// FIXME: This should emit actual file metadata for the enum, but we
// currently can't get the necessary information when it comes to types
// imported from other crates. Formerly we violated the ODR when performing
// LTO because we emitted debuginfo for the same type with varying file
// metadata, so as a workaround we pretend that the type comes from
// <unknown>
let file_metadata = unknown_file_metadata(cx);
let variants = &enum_type.ty_adt_def().unwrap().variants;
let enumerators_metadata: Vec<DIDescriptor> = variants
.iter()
.map(|v| {
let token = v.name.as_str();
let name = CString::new(token.as_bytes()).unwrap();
unsafe {
llvm::LLVMRustDIBuilderCreateEnumerator(
DIB(cx),
name.as_ptr(),
v.disr_val.to_u64_unchecked())
}
})
.collect();
let discriminant_type_metadata = |inttype: syntax::attr::IntType| {
let disr_type_key = (enum_def_id, inttype);
let cached_discriminant_type_metadata = debug_context(cx).created_enum_disr_types
.borrow()
.get(&disr_type_key).cloned();
match cached_discriminant_type_metadata {
Some(discriminant_type_metadata) => discriminant_type_metadata,
None => {
let discriminant_llvm_type = adt::ll_inttype(cx, inttype);
let (discriminant_size, discriminant_align) =
size_and_align_of(cx, discriminant_llvm_type);
let discriminant_base_type_metadata =
type_metadata(cx,
adt::ty_of_inttype(cx.tcx(), inttype),
syntax_pos::DUMMY_SP);
let discriminant_name = get_enum_discriminant_name(cx, enum_def_id);
let name = CString::new(discriminant_name.as_bytes()).unwrap();
let discriminant_type_metadata = unsafe {
llvm::LLVMRustDIBuilderCreateEnumerationType(
DIB(cx),
containing_scope,
name.as_ptr(),
file_metadata,
UNKNOWN_LINE_NUMBER,
bytes_to_bits(discriminant_size),
bytes_to_bits(discriminant_align),
create_DIArray(DIB(cx), &enumerators_metadata),
discriminant_base_type_metadata)
};
debug_context(cx).created_enum_disr_types
.borrow_mut()
.insert(disr_type_key, discriminant_type_metadata);
discriminant_type_metadata
}
}
};
let type_rep = adt::represent_type(cx, enum_type);
let discriminant_type_metadata = match *type_rep {
adt::CEnum(inttype, _, _) => {
return FinalMetadata(discriminant_type_metadata(inttype))
},
adt::RawNullablePointer { .. } |
adt::StructWrappedNullablePointer { .. } |
adt::Univariant(..) => None,
adt::General(inttype, _, _) => Some(discriminant_type_metadata(inttype)),
};
let enum_llvm_type = type_of::type_of(cx, enum_type);
let (enum_type_size, enum_type_align) = size_and_align_of(cx, enum_llvm_type);
let unique_type_id_str = debug_context(cx)
.type_map
.borrow()
.get_unique_type_id_as_string(unique_type_id);
let enum_name = CString::new(enum_name).unwrap();
let unique_type_id_str = CString::new(unique_type_id_str.as_bytes()).unwrap();
let enum_metadata = unsafe {
llvm::LLVMRustDIBuilderCreateUnionType(
DIB(cx),
containing_scope,
enum_name.as_ptr(),
file_metadata,
UNKNOWN_LINE_NUMBER,
bytes_to_bits(enum_type_size),
bytes_to_bits(enum_type_align),
0, // Flags
ptr::null_mut(),
0, // RuntimeLang
unique_type_id_str.as_ptr())
};
return create_and_register_recursive_type_forward_declaration(
cx,
enum_type,
unique_type_id,
enum_metadata,
enum_llvm_type,
EnumMDF(EnumMemberDescriptionFactory {
enum_type: enum_type,
type_rep: type_rep.clone(),
discriminant_type_metadata: discriminant_type_metadata,
containing_scope: containing_scope,
file_metadata: file_metadata,
span: span,
}),
);
fn get_enum_discriminant_name(cx: &CrateContext,
def_id: DefId)
-> token::InternedString {
cx.tcx().item_name(def_id).as_str()
}
}
/// Creates debug information for a composite type, that is, anything that
/// results in a LLVM struct.
///
/// Examples of Rust types to use this are: structs, tuples, boxes, vecs, and enums.
fn composite_type_metadata(cx: &CrateContext,
composite_llvm_type: Type,
composite_type_name: &str,
composite_type_unique_id: UniqueTypeId,
member_descriptions: &[MemberDescription],
containing_scope: DIScope,
// Ignore source location information as long as it
// can't be reconstructed for non-local crates.
_file_metadata: DIFile,
_definition_span: Span)
-> DICompositeType {
// Create the (empty) struct metadata node ...
let composite_type_metadata = create_struct_stub(cx,
composite_llvm_type,
composite_type_name,
composite_type_unique_id,
containing_scope);
// ... and immediately create and add the member descriptions.
set_members_of_composite_type(cx,
composite_type_metadata,
composite_llvm_type,
member_descriptions);
return composite_type_metadata;
}
fn set_members_of_composite_type(cx: &CrateContext,
composite_type_metadata: DICompositeType,
composite_llvm_type: Type,
member_descriptions: &[MemberDescription]) {
// In some rare cases LLVM metadata uniquing would lead to an existing type
// description being used instead of a new one created in
// create_struct_stub. This would cause a hard to trace assertion in
// DICompositeType::SetTypeArray(). The following check makes sure that we
// get a better error message if this should happen again due to some
// regression.
{
let mut composite_types_completed =
debug_context(cx).composite_types_completed.borrow_mut();
if composite_types_completed.contains(&composite_type_metadata) {
bug!("debuginfo::set_members_of_composite_type() - \
Already completed forward declaration re-encountered.");
} else {
composite_types_completed.insert(composite_type_metadata);
}
}
let member_metadata: Vec<DIDescriptor> = member_descriptions
.iter()
.enumerate()
.map(|(i, member_description)| {
let (member_size, member_align) = size_and_align_of(cx, member_description.llvm_type);
let member_offset = match member_description.offset {
FixedMemberOffset { bytes } => bytes as u64,
ComputedMemberOffset => machine::llelement_offset(cx, composite_llvm_type, i)
};
let member_name = member_description.name.as_bytes();
let member_name = CString::new(member_name).unwrap();
unsafe {
llvm::LLVMRustDIBuilderCreateMemberType(
DIB(cx),
composite_type_metadata,
member_name.as_ptr(),
unknown_file_metadata(cx),
UNKNOWN_LINE_NUMBER,
bytes_to_bits(member_size),
bytes_to_bits(member_align),
bytes_to_bits(member_offset),
member_description.flags,
member_description.type_metadata)
}
})
.collect();
unsafe {
let type_array = create_DIArray(DIB(cx), &member_metadata[..]);
llvm::LLVMRustDICompositeTypeSetTypeArray(
DIB(cx), composite_type_metadata, type_array);
}
}
// A convenience wrapper around LLVMRustDIBuilderCreateStructType(). Does not do
// any caching, does not add any fields to the struct. This can be done later
// with set_members_of_composite_type().
fn create_struct_stub(cx: &CrateContext,
struct_llvm_type: Type,
struct_type_name: &str,
unique_type_id: UniqueTypeId,
containing_scope: DIScope)
-> DICompositeType {
let (struct_size, struct_align) = size_and_align_of(cx, struct_llvm_type);
let unique_type_id_str = debug_context(cx).type_map
.borrow()
.get_unique_type_id_as_string(unique_type_id);
let name = CString::new(struct_type_name).unwrap();
let unique_type_id = CString::new(unique_type_id_str.as_bytes()).unwrap();
let metadata_stub = unsafe {
// LLVMRustDIBuilderCreateStructType() wants an empty array. A null
// pointer will lead to hard to trace and debug LLVM assertions
// later on in llvm/lib/IR/Value.cpp.
let empty_array = create_DIArray(DIB(cx), &[]);
llvm::LLVMRustDIBuilderCreateStructType(
DIB(cx),
containing_scope,
name.as_ptr(),
unknown_file_metadata(cx),
UNKNOWN_LINE_NUMBER,
bytes_to_bits(struct_size),
bytes_to_bits(struct_align),
0,
ptr::null_mut(),
empty_array,
0,
ptr::null_mut(),
unique_type_id.as_ptr())
};
return metadata_stub;
}
/// Creates debug information for the given global variable.
///
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_global_var_metadata(cx: &CrateContext,
node_id: ast::NodeId,
global: ValueRef) {
if cx.dbg_cx().is_none() {
return;
}
// Don't create debuginfo for globals inlined from other crates. The other
// crate should already contain debuginfo for it. More importantly, the
// global might not even exist in un-inlined form anywhere which would lead
// to a linker errors.
if cx.tcx().map.is_inlined(node_id) {
return;
}
let node_def_id = cx.tcx().map.local_def_id(node_id);
let (var_scope, span) = get_namespace_and_span_for_item(cx, node_def_id);
let (file_metadata, line_number) = if span != syntax_pos::DUMMY_SP {
let loc = span_start(cx, span);
(file_metadata(cx, &loc.file.name, &loc.file.abs_path), loc.line as c_uint)
} else {
(unknown_file_metadata(cx), UNKNOWN_LINE_NUMBER)
};
let is_local_to_unit = is_node_local_to_unit(cx, node_id);
let variable_type = cx.tcx().node_id_to_type(node_id);
let type_metadata = type_metadata(cx, variable_type, span);
let var_name = cx.tcx().item_name(node_def_id).to_string();
let linkage_name = mangled_name_of_item(cx, node_def_id, "");
let var_name = CString::new(var_name).unwrap();
let linkage_name = CString::new(linkage_name).unwrap();
unsafe {
llvm::LLVMRustDIBuilderCreateStaticVariable(DIB(cx),
var_scope,
var_name.as_ptr(),
linkage_name.as_ptr(),
file_metadata,
line_number,
type_metadata,
is_local_to_unit,
global,
ptr::null_mut());
}
}
/// Creates debug information for the given local variable.
///
/// This function assumes that there's a datum for each pattern component of the
/// local in `bcx.fcx.lllocals`.
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_local_var_metadata(bcx: Block, local: &hir::Local) {
if bcx.unreachable.get() ||
fn_should_be_ignored(bcx.fcx) ||
bcx.sess().opts.debuginfo != FullDebugInfo {
return;
}
let locals = bcx.fcx.lllocals.borrow();
pat_util::pat_bindings(&local.pat, |_, node_id, span, var_name| {
let datum = match locals.get(&node_id) {
Some(datum) => datum,
None => {
span_bug!(span,
"no entry in lllocals table for {}",
node_id);
}
};
if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() {
span_bug!(span, "debuginfo::create_local_var_metadata() - \
Referenced variable location is not an alloca!");
}
let scope_metadata = scope_metadata(bcx.fcx, node_id, span);
declare_local(bcx,
var_name.node,
datum.ty,
scope_metadata,
VariableAccess::DirectVariable { alloca: datum.val },
VariableKind::LocalVariable,
span);
})
}
/// Creates debug information for a variable captured in a closure.
///
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_captured_var_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
node_id: ast::NodeId,
env_pointer: ValueRef,
env_index: usize,
captured_by_ref: bool,
span: Span) {
if bcx.unreachable.get() ||
fn_should_be_ignored(bcx.fcx) ||
bcx.sess().opts.debuginfo != FullDebugInfo {
return;
}
let cx = bcx.ccx();
let ast_item = cx.tcx().map.find(node_id);
let variable_name = match ast_item {
None => {
span_bug!(span, "debuginfo::create_captured_var_metadata: node not found");
}
Some(hir_map::NodeLocal(pat)) => {
match pat.node {
PatKind::Binding(_, ref path1, _) => {
path1.node
}
_ => {
span_bug!(span,
"debuginfo::create_captured_var_metadata() - \
Captured var-id refers to unexpected \
hir_map variant: {:?}",
ast_item);
}
}
}
_ => {
span_bug!(span,
"debuginfo::create_captured_var_metadata() - \
Captured var-id refers to unexpected \
hir_map variant: {:?}",
ast_item);
}
};
let variable_type = common::node_id_type(bcx, node_id);
let scope_metadata = bcx.fcx.debug_context.get_ref(span).fn_metadata;
// env_pointer is the alloca containing the pointer to the environment,
// so it's type is **EnvironmentType. In order to find out the type of
// the environment we have to "dereference" two times.
let llvm_env_data_type = common::val_ty(env_pointer).element_type()
.element_type();
let byte_offset_of_var_in_env = machine::llelement_offset(cx,
llvm_env_data_type,
env_index);
let address_operations = unsafe {
[llvm::LLVMRustDIBuilderCreateOpDeref(),
llvm::LLVMRustDIBuilderCreateOpPlus(),
byte_offset_of_var_in_env as i64,
llvm::LLVMRustDIBuilderCreateOpDeref()]
};
let address_op_count = if captured_by_ref {
address_operations.len()
} else {
address_operations.len() - 1
};
let variable_access = VariableAccess::IndirectVariable {
alloca: env_pointer,
address_operations: &address_operations[..address_op_count]
};
declare_local(bcx,
variable_name,
variable_type,
scope_metadata,
variable_access,
VariableKind::CapturedVariable,
span);
}
/// Creates debug information for a local variable introduced in the head of a
/// match-statement arm.
///
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_match_binding_metadata<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
variable_name: ast::Name,
binding: BindingInfo<'tcx>) {
if bcx.unreachable.get() ||
fn_should_be_ignored(bcx.fcx) ||
bcx.sess().opts.debuginfo != FullDebugInfo {
return;
}
let scope_metadata = scope_metadata(bcx.fcx, binding.id, binding.span);
let aops = unsafe {
[llvm::LLVMRustDIBuilderCreateOpDeref()]
};
// Regardless of the actual type (`T`) we're always passed the stack slot
// (alloca) for the binding. For ByRef bindings that's a `T*` but for ByMove
// bindings we actually have `T**`. So to get the actual variable we need to
// dereference once more. For ByCopy we just use the stack slot we created
// for the binding.
let var_access = match binding.trmode {
TransBindingMode::TrByCopy(llbinding) |
TransBindingMode::TrByMoveIntoCopy(llbinding) => VariableAccess::DirectVariable {
alloca: llbinding
},
TransBindingMode::TrByMoveRef => VariableAccess::IndirectVariable {
alloca: binding.llmatch,
address_operations: &aops
},
TransBindingMode::TrByRef => VariableAccess::DirectVariable {
alloca: binding.llmatch
}
};
declare_local(bcx,
variable_name,
binding.ty,
scope_metadata,
var_access,
VariableKind::LocalVariable,
binding.span);
}
/// Creates debug information for the given function argument.
///
/// This function assumes that there's a datum for each pattern component of the
/// argument in `bcx.fcx.lllocals`.
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_argument_metadata(bcx: Block, arg: &hir::Arg) {
if bcx.unreachable.get() ||
fn_should_be_ignored(bcx.fcx) ||
bcx.sess().opts.debuginfo != FullDebugInfo {
return;
}
let scope_metadata = bcx
.fcx
.debug_context
.get_ref(arg.pat.span)
.fn_metadata;
let locals = bcx.fcx.lllocals.borrow();
pat_util::pat_bindings(&arg.pat, |_, node_id, span, var_name| {
let datum = match locals.get(&node_id) {
Some(v) => v,
None => {
span_bug!(span, "no entry in lllocals table for {}", node_id);
}
};
if unsafe { llvm::LLVMIsAAllocaInst(datum.val) } == ptr::null_mut() {
span_bug!(span, "debuginfo::create_argument_metadata() - \
Referenced variable location is not an alloca!");
}
let argument_index = {
let counter = &bcx
.fcx
.debug_context
.get_ref(span)
.argument_counter;
let argument_index = counter.get();
counter.set(argument_index + 1);
argument_index
};
declare_local(bcx,
var_name.node,
datum.ty,
scope_metadata,
VariableAccess::DirectVariable { alloca: datum.val },
VariableKind::ArgumentVariable(argument_index),
span);
})
}