blob: d3952de2fbe30eb1088c6cbaf1df0515d5264419 [file] [log] [blame]
// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use self::Constructor::*;
use self::Usefulness::*;
use self::WitnessPreference::*;
use rustc::dep_graph::DepNode;
use rustc::middle::const_val::ConstVal;
use ::{eval_const_expr, eval_const_expr_partial, compare_const_vals};
use ::{const_expr_to_pat, lookup_const_by_id};
use ::EvalHint::ExprTypeChecked;
use eval::report_const_eval_err;
use rustc::hir::def::*;
use rustc::hir::def_id::{DefId};
use rustc::middle::expr_use_visitor::{ConsumeMode, Delegate, ExprUseVisitor};
use rustc::middle::expr_use_visitor::{LoanCause, MutateMode};
use rustc::middle::expr_use_visitor as euv;
use rustc::middle::mem_categorization::{cmt};
use rustc::hir::pat_util::*;
use rustc::traits::ProjectionMode;
use rustc::ty::*;
use rustc::ty;
use std::cmp::Ordering;
use std::fmt;
use std::iter::{FromIterator, IntoIterator, repeat};
use rustc::hir;
use rustc::hir::{Pat, PatKind};
use rustc::hir::intravisit::{self, Visitor, FnKind};
use rustc_back::slice;
use syntax::ast::{self, DUMMY_NODE_ID, NodeId};
use syntax::codemap::Spanned;
use syntax_pos::{Span, DUMMY_SP};
use rustc::hir::fold::{Folder, noop_fold_pat};
use rustc::hir::print::pat_to_string;
use syntax::ptr::P;
use rustc::util::common::ErrorReported;
use rustc::util::nodemap::FnvHashMap;
pub const DUMMY_WILD_PAT: &'static Pat = &Pat {
id: DUMMY_NODE_ID,
node: PatKind::Wild,
span: DUMMY_SP
};
struct Matrix<'a, 'tcx>(Vec<Vec<(&'a Pat, Option<Ty<'tcx>>)>>);
/// Pretty-printer for matrices of patterns, example:
/// ++++++++++++++++++++++++++
/// + _ + [] +
/// ++++++++++++++++++++++++++
/// + true + [First] +
/// ++++++++++++++++++++++++++
/// + true + [Second(true)] +
/// ++++++++++++++++++++++++++
/// + false + [_] +
/// ++++++++++++++++++++++++++
/// + _ + [_, _, ..tail] +
/// ++++++++++++++++++++++++++
impl<'a, 'tcx> fmt::Debug for Matrix<'a, 'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "\n")?;
let &Matrix(ref m) = self;
let pretty_printed_matrix: Vec<Vec<String>> = m.iter().map(|row| {
row.iter()
.map(|&(pat,ty)| format!("{}: {:?}", pat_to_string(&pat), ty))
.collect::<Vec<String>>()
}).collect();
let column_count = m.iter().map(|row| row.len()).max().unwrap_or(0);
assert!(m.iter().all(|row| row.len() == column_count));
let column_widths: Vec<usize> = (0..column_count).map(|col| {
pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0)
}).collect();
let total_width = column_widths.iter().cloned().sum::<usize>() + column_count * 3 + 1;
let br = repeat('+').take(total_width).collect::<String>();
write!(f, "{}\n", br)?;
for row in pretty_printed_matrix {
write!(f, "+")?;
for (column, pat_str) in row.into_iter().enumerate() {
write!(f, " ")?;
write!(f, "{:1$}", pat_str, column_widths[column])?;
write!(f, " +")?;
}
write!(f, "\n")?;
write!(f, "{}\n", br)?;
}
Ok(())
}
}
impl<'a, 'tcx> FromIterator<Vec<(&'a Pat, Option<Ty<'tcx>>)>> for Matrix<'a, 'tcx> {
fn from_iter<T: IntoIterator<Item=Vec<(&'a Pat, Option<Ty<'tcx>>)>>>(iter: T)
-> Self
{
Matrix(iter.into_iter().collect())
}
}
//NOTE: appears to be the only place other then InferCtxt to contain a ParamEnv
pub struct MatchCheckCtxt<'a, 'tcx: 'a> {
pub tcx: TyCtxt<'a, 'tcx, 'tcx>,
pub param_env: ParameterEnvironment<'tcx>,
}
#[derive(Clone, Debug, PartialEq)]
pub enum Constructor {
/// The constructor of all patterns that don't vary by constructor,
/// e.g. struct patterns and fixed-length arrays.
Single,
/// Enum variants.
Variant(DefId),
/// Literal values.
ConstantValue(ConstVal),
/// Ranges of literal values (2..5).
ConstantRange(ConstVal, ConstVal),
/// Array patterns of length n.
Slice(usize),
/// Array patterns with a subslice.
SliceWithSubslice(usize, usize)
}
#[derive(Clone, PartialEq)]
enum Usefulness {
Useful,
UsefulWithWitness(Vec<P<Pat>>),
NotUseful
}
#[derive(Copy, Clone)]
enum WitnessPreference {
ConstructWitness,
LeaveOutWitness
}
impl<'a, 'tcx, 'v> Visitor<'v> for MatchCheckCtxt<'a, 'tcx> {
fn visit_expr(&mut self, ex: &hir::Expr) {
check_expr(self, ex);
}
fn visit_local(&mut self, l: &hir::Local) {
check_local(self, l);
}
fn visit_fn(&mut self, fk: FnKind<'v>, fd: &'v hir::FnDecl,
b: &'v hir::Block, s: Span, n: NodeId) {
check_fn(self, fk, fd, b, s, n);
}
}
pub fn check_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>) {
tcx.visit_all_items_in_krate(DepNode::MatchCheck, &mut MatchCheckCtxt {
tcx: tcx,
param_env: tcx.empty_parameter_environment(),
});
tcx.sess.abort_if_errors();
}
fn check_expr(cx: &mut MatchCheckCtxt, ex: &hir::Expr) {
intravisit::walk_expr(cx, ex);
match ex.node {
hir::ExprMatch(ref scrut, ref arms, source) => {
for arm in arms {
// First, check legality of move bindings.
check_legality_of_move_bindings(cx,
arm.guard.is_some(),
&arm.pats);
// Second, if there is a guard on each arm, make sure it isn't
// assigning or borrowing anything mutably.
if let Some(ref guard) = arm.guard {
check_for_mutation_in_guard(cx, &guard);
}
}
let mut static_inliner = StaticInliner::new(cx.tcx, None);
let inlined_arms = arms.iter().map(|arm| {
(arm.pats.iter().map(|pat| {
static_inliner.fold_pat((*pat).clone())
}).collect(), arm.guard.as_ref().map(|e| &**e))
}).collect::<Vec<(Vec<P<Pat>>, Option<&hir::Expr>)>>();
// Bail out early if inlining failed.
if static_inliner.failed {
return;
}
for pat in inlined_arms
.iter()
.flat_map(|&(ref pats, _)| pats) {
// Third, check legality of move bindings.
check_legality_of_bindings_in_at_patterns(cx, &pat);
// Fourth, check if there are any references to NaN that we should warn about.
check_for_static_nan(cx, &pat);
// Fifth, check if for any of the patterns that match an enumerated type
// are bindings with the same name as one of the variants of said type.
check_for_bindings_named_the_same_as_variants(cx, &pat);
}
// Fourth, check for unreachable arms.
check_arms(cx, &inlined_arms[..], source);
// Finally, check if the whole match expression is exhaustive.
// Check for empty enum, because is_useful only works on inhabited types.
let pat_ty = cx.tcx.node_id_to_type(scrut.id);
if inlined_arms.is_empty() {
if !pat_ty.is_empty(cx.tcx) {
// We know the type is inhabited, so this must be wrong
let mut err = struct_span_err!(cx.tcx.sess, ex.span, E0002,
"non-exhaustive patterns: type {} is non-empty",
pat_ty);
span_help!(&mut err, ex.span,
"Please ensure that all possible cases are being handled; \
possibly adding wildcards or more match arms.");
err.emit();
}
// If the type *is* empty, it's vacuously exhaustive
return;
}
let matrix: Matrix = inlined_arms
.iter()
.filter(|&&(_, guard)| guard.is_none())
.flat_map(|arm| &arm.0)
.map(|pat| vec![wrap_pat(cx, &pat)])
.collect();
check_exhaustive(cx, ex.span, &matrix, source);
},
_ => ()
}
}
fn check_for_bindings_named_the_same_as_variants(cx: &MatchCheckCtxt, pat: &Pat) {
pat.walk(|p| {
if let PatKind::Binding(hir::BindByValue(hir::MutImmutable), name, None) = p.node {
let pat_ty = cx.tcx.pat_ty(p);
if let ty::TyEnum(edef, _) = pat_ty.sty {
if let Def::Local(..) = cx.tcx.expect_def(p.id) {
if edef.variants.iter().any(|variant| {
variant.name == name.node && variant.kind == VariantKind::Unit
}) {
let ty_path = cx.tcx.item_path_str(edef.did);
let mut err = struct_span_warn!(cx.tcx.sess, p.span, E0170,
"pattern binding `{}` is named the same as one \
of the variants of the type `{}`",
name.node, ty_path);
help!(err,
"if you meant to match on a variant, \
consider making the path in the pattern qualified: `{}::{}`",
ty_path, name.node);
err.emit();
}
}
}
}
true
});
}
// Check that we do not match against a static NaN (#6804)
fn check_for_static_nan(cx: &MatchCheckCtxt, pat: &Pat) {
pat.walk(|p| {
if let PatKind::Lit(ref expr) = p.node {
match eval_const_expr_partial(cx.tcx, &expr, ExprTypeChecked, None) {
Ok(ConstVal::Float(f)) if f.is_nan() => {
span_warn!(cx.tcx.sess, p.span, E0003,
"unmatchable NaN in pattern, \
use the is_nan method in a guard instead");
}
Ok(_) => {}
Err(err) => {
report_const_eval_err(cx.tcx, &err, p.span, "pattern").emit();
}
}
}
true
});
}
// Check for unreachable patterns
fn check_arms(cx: &MatchCheckCtxt,
arms: &[(Vec<P<Pat>>, Option<&hir::Expr>)],
source: hir::MatchSource) {
let mut seen = Matrix(vec![]);
let mut printed_if_let_err = false;
for &(ref pats, guard) in arms {
for pat in pats {
let v = vec![wrap_pat(cx, &pat)];
match is_useful(cx, &seen, &v[..], LeaveOutWitness) {
NotUseful => {
match source {
hir::MatchSource::IfLetDesugar { .. } => {
if printed_if_let_err {
// we already printed an irrefutable if-let pattern error.
// We don't want two, that's just confusing.
} else {
// find the first arm pattern so we can use its span
let &(ref first_arm_pats, _) = &arms[0];
let first_pat = &first_arm_pats[0];
let span = first_pat.span;
span_err!(cx.tcx.sess, span, E0162, "irrefutable if-let pattern");
printed_if_let_err = true;
}
},
hir::MatchSource::WhileLetDesugar => {
// find the first arm pattern so we can use its span
let &(ref first_arm_pats, _) = &arms[0];
let first_pat = &first_arm_pats[0];
let span = first_pat.span;
span_err!(cx.tcx.sess, span, E0165, "irrefutable while-let pattern");
},
hir::MatchSource::ForLoopDesugar => {
// this is a bug, because on `match iter.next()` we cover
// `Some(<head>)` and `None`. It's impossible to have an unreachable
// pattern
// (see libsyntax/ext/expand.rs for the full expansion of a for loop)
span_bug!(pat.span, "unreachable for-loop pattern")
},
hir::MatchSource::Normal => {
let mut err = struct_span_err!(cx.tcx.sess, pat.span, E0001,
"unreachable pattern");
// if we had a catchall pattern, hint at that
for row in &seen.0 {
if pat_is_catchall(&cx.tcx.def_map.borrow(), row[0].0) {
span_note!(err, row[0].0.span,
"this pattern matches any value");
}
}
err.emit();
},
hir::MatchSource::TryDesugar => {
span_bug!(pat.span, "unreachable try pattern")
},
}
}
Useful => (),
UsefulWithWitness(_) => bug!()
}
if guard.is_none() {
let Matrix(mut rows) = seen;
rows.push(v);
seen = Matrix(rows);
}
}
}
}
/// Checks for common cases of "catchall" patterns that may not be intended as such.
fn pat_is_catchall(dm: &DefMap, p: &Pat) -> bool {
match p.node {
PatKind::Binding(_, _, None) => true,
PatKind::Binding(_, _, Some(ref s)) => pat_is_catchall(dm, &s),
PatKind::Ref(ref s, _) => pat_is_catchall(dm, &s),
PatKind::Tuple(ref v, _) => v.iter().all(|p| pat_is_catchall(dm, &p)),
_ => false
}
}
fn raw_pat(p: &Pat) -> &Pat {
match p.node {
PatKind::Binding(_, _, Some(ref s)) => raw_pat(&s),
_ => p
}
}
fn check_exhaustive<'a, 'tcx>(cx: &MatchCheckCtxt<'a, 'tcx>,
sp: Span,
matrix: &Matrix<'a, 'tcx>,
source: hir::MatchSource) {
match is_useful(cx, matrix, &[(DUMMY_WILD_PAT, None)], ConstructWitness) {
UsefulWithWitness(pats) => {
let witnesses = if pats.is_empty() {
vec![DUMMY_WILD_PAT]
} else {
pats.iter().map(|w| &**w).collect()
};
match source {
hir::MatchSource::ForLoopDesugar => {
// `witnesses[0]` has the form `Some(<head>)`, peel off the `Some`
let witness = match witnesses[0].node {
PatKind::TupleStruct(_, ref pats, _) => match &pats[..] {
&[ref pat] => &**pat,
_ => bug!(),
},
_ => bug!(),
};
span_err!(cx.tcx.sess, sp, E0297,
"refutable pattern in `for` loop binding: \
`{}` not covered",
pat_to_string(witness));
},
_ => {
let pattern_strings: Vec<_> = witnesses.iter().map(|w| {
pat_to_string(w)
}).collect();
const LIMIT: usize = 3;
let joined_patterns = match pattern_strings.len() {
0 => bug!(),
1 => format!("`{}`", pattern_strings[0]),
2...LIMIT => {
let (tail, head) = pattern_strings.split_last().unwrap();
format!("`{}`", head.join("`, `") + "` and `" + tail)
},
_ => {
let (head, tail) = pattern_strings.split_at(LIMIT);
format!("`{}` and {} more", head.join("`, `"), tail.len())
}
};
span_err!(cx.tcx.sess, sp, E0004,
"non-exhaustive patterns: {} not covered",
joined_patterns
);
},
}
}
NotUseful => {
// This is good, wildcard pattern isn't reachable
},
_ => bug!()
}
}
fn const_val_to_expr(value: &ConstVal) -> P<hir::Expr> {
let node = match value {
&ConstVal::Bool(b) => ast::LitKind::Bool(b),
_ => bug!()
};
P(hir::Expr {
id: 0,
node: hir::ExprLit(P(Spanned { node: node, span: DUMMY_SP })),
span: DUMMY_SP,
attrs: ast::ThinVec::new(),
})
}
pub struct StaticInliner<'a, 'tcx: 'a> {
pub tcx: TyCtxt<'a, 'tcx, 'tcx>,
pub failed: bool,
pub renaming_map: Option<&'a mut FnvHashMap<(NodeId, Span), NodeId>>,
}
impl<'a, 'tcx> StaticInliner<'a, 'tcx> {
pub fn new<'b>(tcx: TyCtxt<'b, 'tcx, 'tcx>,
renaming_map: Option<&'b mut FnvHashMap<(NodeId, Span), NodeId>>)
-> StaticInliner<'b, 'tcx> {
StaticInliner {
tcx: tcx,
failed: false,
renaming_map: renaming_map
}
}
}
struct RenamingRecorder<'map> {
substituted_node_id: NodeId,
origin_span: Span,
renaming_map: &'map mut FnvHashMap<(NodeId, Span), NodeId>
}
impl<'v, 'map> Visitor<'v> for RenamingRecorder<'map> {
fn visit_id(&mut self, node_id: NodeId) {
let key = (node_id, self.origin_span);
self.renaming_map.insert(key, self.substituted_node_id);
}
}
impl<'a, 'tcx> Folder for StaticInliner<'a, 'tcx> {
fn fold_pat(&mut self, pat: P<Pat>) -> P<Pat> {
return match pat.node {
PatKind::Path(..) => {
match self.tcx.expect_def(pat.id) {
Def::AssociatedConst(did) | Def::Const(did) => {
let substs = Some(self.tcx.node_id_item_substs(pat.id).substs);
if let Some((const_expr, _)) = lookup_const_by_id(self.tcx, did, substs) {
match const_expr_to_pat(self.tcx, const_expr, pat.id, pat.span) {
Ok(new_pat) => {
if let Some(ref mut map) = self.renaming_map {
// Record any renamings we do here
record_renamings(const_expr, &pat, map);
}
new_pat
}
Err(def_id) => {
self.failed = true;
self.tcx.sess.span_err(
pat.span,
&format!("constants of the type `{}` \
cannot be used in patterns",
self.tcx.item_path_str(def_id)));
pat
}
}
} else {
self.failed = true;
span_err!(self.tcx.sess, pat.span, E0158,
"statics cannot be referenced in patterns");
pat
}
}
_ => noop_fold_pat(pat, self)
}
}
_ => noop_fold_pat(pat, self)
};
fn record_renamings(const_expr: &hir::Expr,
substituted_pat: &hir::Pat,
renaming_map: &mut FnvHashMap<(NodeId, Span), NodeId>) {
let mut renaming_recorder = RenamingRecorder {
substituted_node_id: substituted_pat.id,
origin_span: substituted_pat.span,
renaming_map: renaming_map,
};
renaming_recorder.visit_expr(const_expr);
}
}
}
/// Constructs a partial witness for a pattern given a list of
/// patterns expanded by the specialization step.
///
/// When a pattern P is discovered to be useful, this function is used bottom-up
/// to reconstruct a complete witness, e.g. a pattern P' that covers a subset
/// of values, V, where each value in that set is not covered by any previously
/// used patterns and is covered by the pattern P'. Examples:
///
/// left_ty: tuple of 3 elements
/// pats: [10, 20, _] => (10, 20, _)
///
/// left_ty: struct X { a: (bool, &'static str), b: usize}
/// pats: [(false, "foo"), 42] => X { a: (false, "foo"), b: 42 }
fn construct_witness<'a,'tcx>(cx: &MatchCheckCtxt<'a,'tcx>, ctor: &Constructor,
pats: Vec<&Pat>, left_ty: Ty<'tcx>) -> P<Pat> {
let pats_len = pats.len();
let mut pats = pats.into_iter().map(|p| P((*p).clone()));
let pat = match left_ty.sty {
ty::TyTuple(..) => PatKind::Tuple(pats.collect(), None),
ty::TyEnum(adt, _) | ty::TyStruct(adt, _) => {
let v = ctor.variant_for_adt(adt);
match v.kind {
VariantKind::Struct => {
let field_pats: hir::HirVec<_> = v.fields.iter()
.zip(pats)
.filter(|&(_, ref pat)| pat.node != PatKind::Wild)
.map(|(field, pat)| Spanned {
span: DUMMY_SP,
node: hir::FieldPat {
name: field.name,
pat: pat,
is_shorthand: false,
}
}).collect();
let has_more_fields = field_pats.len() < pats_len;
PatKind::Struct(def_to_path(cx.tcx, v.did), field_pats, has_more_fields)
}
VariantKind::Tuple => {
PatKind::TupleStruct(def_to_path(cx.tcx, v.did), pats.collect(), None)
}
VariantKind::Unit => {
PatKind::Path(None, def_to_path(cx.tcx, v.did))
}
}
}
ty::TyRef(_, ty::TypeAndMut { mutbl, .. }) => {
assert_eq!(pats_len, 1);
PatKind::Ref(pats.nth(0).unwrap(), mutbl)
}
ty::TySlice(_) => match ctor {
&Slice(n) => {
assert_eq!(pats_len, n);
PatKind::Vec(pats.collect(), None, hir::HirVec::new())
},
_ => unreachable!()
},
ty::TyArray(_, len) => {
assert_eq!(pats_len, len);
PatKind::Vec(pats.collect(), None, hir::HirVec::new())
}
_ => {
match *ctor {
ConstantValue(ref v) => PatKind::Lit(const_val_to_expr(v)),
_ => PatKind::Wild,
}
}
};
P(hir::Pat {
id: 0,
node: pat,
span: DUMMY_SP
})
}
impl Constructor {
fn variant_for_adt<'tcx, 'container, 'a>(&self,
adt: &'a ty::AdtDefData<'tcx, 'container>)
-> &'a VariantDefData<'tcx, 'container> {
match self {
&Variant(vid) => adt.variant_with_id(vid),
_ => adt.struct_variant()
}
}
}
fn missing_constructors(cx: &MatchCheckCtxt, &Matrix(ref rows): &Matrix,
left_ty: Ty, max_slice_length: usize) -> Vec<Constructor> {
let used_constructors: Vec<Constructor> = rows.iter()
.flat_map(|row| pat_constructors(cx, row[0].0, left_ty, max_slice_length))
.collect();
all_constructors(cx, left_ty, max_slice_length)
.into_iter()
.filter(|c| !used_constructors.contains(c))
.collect()
}
/// This determines the set of all possible constructors of a pattern matching
/// values of type `left_ty`. For vectors, this would normally be an infinite set
/// but is instead bounded by the maximum fixed length of slice patterns in
/// the column of patterns being analyzed.
fn all_constructors(_cx: &MatchCheckCtxt, left_ty: Ty,
max_slice_length: usize) -> Vec<Constructor> {
match left_ty.sty {
ty::TyBool =>
[true, false].iter().map(|b| ConstantValue(ConstVal::Bool(*b))).collect(),
ty::TySlice(_) =>
(0..max_slice_length+1).map(|length| Slice(length)).collect(),
ty::TyEnum(def, _) => def.variants.iter().map(|v| Variant(v.did)).collect(),
_ => vec![Single]
}
}
// Algorithm from http://moscova.inria.fr/~maranget/papers/warn/index.html
//
// Whether a vector `v` of patterns is 'useful' in relation to a set of such
// vectors `m` is defined as there being a set of inputs that will match `v`
// but not any of the sets in `m`.
//
// This is used both for reachability checking (if a pattern isn't useful in
// relation to preceding patterns, it is not reachable) and exhaustiveness
// checking (if a wildcard pattern is useful in relation to a matrix, the
// matrix isn't exhaustive).
// Note: is_useful doesn't work on empty types, as the paper notes.
// So it assumes that v is non-empty.
fn is_useful<'a, 'tcx>(cx: &MatchCheckCtxt<'a, 'tcx>,
matrix: &Matrix<'a, 'tcx>,
v: &[(&Pat, Option<Ty<'tcx>>)],
witness: WitnessPreference)
-> Usefulness {
let &Matrix(ref rows) = matrix;
debug!("is_useful({:?}, {:?})", matrix, v);
if rows.is_empty() {
return match witness {
ConstructWitness => UsefulWithWitness(vec!()),
LeaveOutWitness => Useful
};
}
if rows[0].is_empty() {
return NotUseful;
}
assert!(rows.iter().all(|r| r.len() == v.len()));
let left_ty = match rows.iter().filter_map(|r| r[0].1).next().or_else(|| v[0].1) {
Some(ty) => ty,
None => {
// all patterns are wildcards - we can pick any type we want
cx.tcx.types.bool
}
};
let max_slice_length = rows.iter().filter_map(|row| match row[0].0.node {
PatKind::Vec(ref before, _, ref after) => Some(before.len() + after.len()),
_ => None
}).max().map_or(0, |v| v + 1);
let constructors = pat_constructors(cx, v[0].0, left_ty, max_slice_length);
debug!("is_useful - pat_constructors = {:?} left_ty = {:?}", constructors,
left_ty);
if constructors.is_empty() {
let constructors = missing_constructors(cx, matrix, left_ty, max_slice_length);
debug!("is_useful - missing_constructors = {:?}", constructors);
if constructors.is_empty() {
all_constructors(cx, left_ty, max_slice_length).into_iter().map(|c| {
match is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness) {
UsefulWithWitness(pats) => UsefulWithWitness({
let arity = constructor_arity(cx, &c, left_ty);
let mut result = {
let pat_slice = &pats[..];
let subpats: Vec<_> = (0..arity).map(|i| {
pat_slice.get(i).map_or(DUMMY_WILD_PAT, |p| &**p)
}).collect();
vec![construct_witness(cx, &c, subpats, left_ty)]
};
result.extend(pats.into_iter().skip(arity));
result
}),
result => result
}
}).find(|result| result != &NotUseful).unwrap_or(NotUseful)
} else {
let matrix = rows.iter().filter_map(|r| {
match raw_pat(r[0].0).node {
PatKind::Binding(..) | PatKind::Wild => Some(r[1..].to_vec()),
_ => None,
}
}).collect();
match is_useful(cx, &matrix, &v[1..], witness) {
UsefulWithWitness(pats) => {
let mut new_pats: Vec<_> = constructors.into_iter().map(|constructor| {
let arity = constructor_arity(cx, &constructor, left_ty);
let wild_pats = vec![DUMMY_WILD_PAT; arity];
construct_witness(cx, &constructor, wild_pats, left_ty)
}).collect();
new_pats.extend(pats);
UsefulWithWitness(new_pats)
},
result => result
}
}
} else {
constructors.into_iter().map(|c|
is_useful_specialized(cx, matrix, v, c.clone(), left_ty, witness)
).find(|result| result != &NotUseful).unwrap_or(NotUseful)
}
}
fn is_useful_specialized<'a, 'tcx>(
cx: &MatchCheckCtxt<'a, 'tcx>,
&Matrix(ref m): &Matrix<'a, 'tcx>,
v: &[(&Pat, Option<Ty<'tcx>>)],
ctor: Constructor,
lty: Ty<'tcx>,
witness: WitnessPreference) -> Usefulness
{
let arity = constructor_arity(cx, &ctor, lty);
let matrix = Matrix(m.iter().filter_map(|r| {
specialize(cx, &r[..], &ctor, 0, arity)
}).collect());
match specialize(cx, v, &ctor, 0, arity) {
Some(v) => is_useful(cx, &matrix, &v[..], witness),
None => NotUseful
}
}
/// Determines the constructors that the given pattern can be specialized to.
///
/// In most cases, there's only one constructor that a specific pattern
/// represents, such as a specific enum variant or a specific literal value.
/// Slice patterns, however, can match slices of different lengths. For instance,
/// `[a, b, ..tail]` can match a slice of length 2, 3, 4 and so on.
///
/// On the other hand, a wild pattern and an identifier pattern cannot be
/// specialized in any way.
fn pat_constructors(cx: &MatchCheckCtxt, p: &Pat,
left_ty: Ty, max_slice_length: usize) -> Vec<Constructor> {
let pat = raw_pat(p);
match pat.node {
PatKind::Struct(..) | PatKind::TupleStruct(..) | PatKind::Path(..) =>
match cx.tcx.expect_def(pat.id) {
Def::Variant(_, id) => vec![Variant(id)],
Def::Struct(..) | Def::TyAlias(..) | Def::AssociatedTy(..) => vec![Single],
Def::Const(..) | Def::AssociatedConst(..) =>
span_bug!(pat.span, "const pattern should've been rewritten"),
def => span_bug!(pat.span, "pat_constructors: unexpected definition {:?}", def),
},
PatKind::Lit(ref expr) =>
vec![ConstantValue(eval_const_expr(cx.tcx, &expr))],
PatKind::Range(ref lo, ref hi) =>
vec![ConstantRange(eval_const_expr(cx.tcx, &lo), eval_const_expr(cx.tcx, &hi))],
PatKind::Vec(ref before, ref slice, ref after) =>
match left_ty.sty {
ty::TyArray(_, _) => vec![Single],
ty::TySlice(_) if slice.is_some() => {
(before.len() + after.len()..max_slice_length+1)
.map(|length| Slice(length))
.collect()
}
ty::TySlice(_) => vec!(Slice(before.len() + after.len())),
_ => span_bug!(pat.span, "pat_constructors: unexpected \
slice pattern type {:?}", left_ty)
},
PatKind::Box(..) | PatKind::Tuple(..) | PatKind::Ref(..) =>
vec![Single],
PatKind::Binding(..) | PatKind::Wild =>
vec![],
}
}
/// This computes the arity of a constructor. The arity of a constructor
/// is how many subpattern patterns of that constructor should be expanded to.
///
/// For instance, a tuple pattern (_, 42, Some([])) has the arity of 3.
/// A struct pattern's arity is the number of fields it contains, etc.
pub fn constructor_arity(_cx: &MatchCheckCtxt, ctor: &Constructor, ty: Ty) -> usize {
debug!("constructor_arity({:?}, {:?})", ctor, ty);
match ty.sty {
ty::TyTuple(ref fs) => fs.len(),
ty::TyBox(_) => 1,
ty::TySlice(_) => match *ctor {
Slice(length) => length,
ConstantValue(_) => 0,
_ => bug!()
},
ty::TyRef(..) => 1,
ty::TyEnum(adt, _) | ty::TyStruct(adt, _) => {
ctor.variant_for_adt(adt).fields.len()
}
ty::TyArray(_, n) => n,
_ => 0
}
}
fn range_covered_by_constructor(tcx: TyCtxt, span: Span,
ctor: &Constructor,
from: &ConstVal, to: &ConstVal)
-> Result<bool, ErrorReported> {
let (c_from, c_to) = match *ctor {
ConstantValue(ref value) => (value, value),
ConstantRange(ref from, ref to) => (from, to),
Single => return Ok(true),
_ => bug!()
};
let cmp_from = compare_const_vals(tcx, span, c_from, from)?;
let cmp_to = compare_const_vals(tcx, span, c_to, to)?;
Ok(cmp_from != Ordering::Less && cmp_to != Ordering::Greater)
}
fn wrap_pat<'a, 'b, 'tcx>(cx: &MatchCheckCtxt<'b, 'tcx>,
pat: &'a Pat)
-> (&'a Pat, Option<Ty<'tcx>>)
{
let pat_ty = cx.tcx.pat_ty(pat);
(pat, Some(match pat.node {
PatKind::Binding(hir::BindByRef(..), _, _) => {
pat_ty.builtin_deref(false, NoPreference).unwrap().ty
}
_ => pat_ty
}))
}
/// This is the main specialization step. It expands the first pattern in the given row
/// into `arity` patterns based on the constructor. For most patterns, the step is trivial,
/// for instance tuple patterns are flattened and box patterns expand into their inner pattern.
///
/// OTOH, slice patterns with a subslice pattern (..tail) can be expanded into multiple
/// different patterns.
/// Structure patterns with a partial wild pattern (Foo { a: 42, .. }) have their missing
/// fields filled with wild patterns.
pub fn specialize<'a, 'b, 'tcx>(
cx: &MatchCheckCtxt<'b, 'tcx>,
r: &[(&'a Pat, Option<Ty<'tcx>>)],
constructor: &Constructor, col: usize, arity: usize)
-> Option<Vec<(&'a Pat, Option<Ty<'tcx>>)>>
{
let pat = raw_pat(r[col].0);
let &Pat {
id: pat_id, ref node, span: pat_span
} = pat;
let wpat = |pat: &'a Pat| wrap_pat(cx, pat);
let dummy_pat = (DUMMY_WILD_PAT, None);
let head: Option<Vec<(&Pat, Option<Ty>)>> = match *node {
PatKind::Binding(..) | PatKind::Wild =>
Some(vec![dummy_pat; arity]),
PatKind::Path(..) => {
match cx.tcx.expect_def(pat_id) {
Def::Const(..) | Def::AssociatedConst(..) =>
span_bug!(pat_span, "const pattern should've \
been rewritten"),
Def::Variant(_, id) if *constructor != Variant(id) => None,
Def::Variant(..) | Def::Struct(..) => Some(Vec::new()),
def => span_bug!(pat_span, "specialize: unexpected \
definition {:?}", def),
}
}
PatKind::TupleStruct(_, ref args, ddpos) => {
match cx.tcx.expect_def(pat_id) {
Def::Const(..) | Def::AssociatedConst(..) =>
span_bug!(pat_span, "const pattern should've \
been rewritten"),
Def::Variant(_, id) if *constructor != Variant(id) => None,
Def::Variant(..) | Def::Struct(..) => {
match ddpos {
Some(ddpos) => {
let mut pats: Vec<_> = args[..ddpos].iter().map(|p| {
wpat(p)
}).collect();
pats.extend(repeat((DUMMY_WILD_PAT, None)).take(arity - args.len()));
pats.extend(args[ddpos..].iter().map(|p| wpat(p)));
Some(pats)
}
None => Some(args.iter().map(|p| wpat(p)).collect())
}
}
_ => None
}
}
PatKind::Struct(_, ref pattern_fields, _) => {
let adt = cx.tcx.node_id_to_type(pat_id).ty_adt_def().unwrap();
let variant = constructor.variant_for_adt(adt);
let def_variant = adt.variant_of_def(cx.tcx.expect_def(pat_id));
if variant.did == def_variant.did {
Some(variant.fields.iter().map(|sf| {
match pattern_fields.iter().find(|f| f.node.name == sf.name) {
Some(ref f) => wpat(&f.node.pat),
_ => dummy_pat
}
}).collect())
} else {
None
}
}
PatKind::Tuple(ref args, Some(ddpos)) => {
let mut pats: Vec<_> = args[..ddpos].iter().map(|p| wpat(p)).collect();
pats.extend(repeat(dummy_pat).take(arity - args.len()));
pats.extend(args[ddpos..].iter().map(|p| wpat(p)));
Some(pats)
}
PatKind::Tuple(ref args, None) =>
Some(args.iter().map(|p| wpat(&**p)).collect()),
PatKind::Box(ref inner) | PatKind::Ref(ref inner, _) =>
Some(vec![wpat(&**inner)]),
PatKind::Lit(ref expr) => {
if let Some(&ty::TyS { sty: ty::TyRef(_, mt), .. }) = r[col].1 {
// HACK: handle string literals. A string literal pattern
// serves both as an unary reference pattern and as a
// nullary value pattern, depending on the type.
Some(vec![(pat, Some(mt.ty))])
} else {
let expr_value = eval_const_expr(cx.tcx, &expr);
match range_covered_by_constructor(
cx.tcx, expr.span, constructor, &expr_value, &expr_value
) {
Ok(true) => Some(vec![]),
Ok(false) => None,
Err(ErrorReported) => None,
}
}
}
PatKind::Range(ref from, ref to) => {
let from_value = eval_const_expr(cx.tcx, &from);
let to_value = eval_const_expr(cx.tcx, &to);
match range_covered_by_constructor(
cx.tcx, pat_span, constructor, &from_value, &to_value
) {
Ok(true) => Some(vec![]),
Ok(false) => None,
Err(ErrorReported) => None,
}
}
PatKind::Vec(ref before, ref slice, ref after) => {
let pat_len = before.len() + after.len();
match *constructor {
Single => {
// Fixed-length vectors.
Some(
before.iter().map(|p| wpat(p)).chain(
repeat(dummy_pat).take(arity - pat_len).chain(
after.iter().map(|p| wpat(p))
)).collect())
},
Slice(length) if pat_len <= length && slice.is_some() => {
Some(
before.iter().map(|p| wpat(p)).chain(
repeat(dummy_pat).take(arity - pat_len).chain(
after.iter().map(|p| wpat(p))
)).collect())
}
Slice(length) if pat_len == length => {
Some(
before.iter().map(|p| wpat(p)).chain(
after.iter().map(|p| wpat(p))
).collect())
}
SliceWithSubslice(prefix, suffix)
if before.len() == prefix
&& after.len() == suffix
&& slice.is_some() => {
// this is used by trans::_match only
let mut pats: Vec<_> = before.iter()
.map(|p| (&**p, None)).collect();
pats.extend(after.iter().map(|p| (&**p, None)));
Some(pats)
}
_ => None
}
}
};
debug!("specialize({:?}, {:?}) = {:?}", r[col], arity, head);
head.map(|mut head| {
head.extend_from_slice(&r[..col]);
head.extend_from_slice(&r[col + 1..]);
head
})
}
fn check_local(cx: &mut MatchCheckCtxt, loc: &hir::Local) {
intravisit::walk_local(cx, loc);
let pat = StaticInliner::new(cx.tcx, None).fold_pat(loc.pat.clone());
check_irrefutable(cx, &pat, false);
// Check legality of move bindings and `@` patterns.
check_legality_of_move_bindings(cx, false, slice::ref_slice(&loc.pat));
check_legality_of_bindings_in_at_patterns(cx, &loc.pat);
}
fn check_fn(cx: &mut MatchCheckCtxt,
kind: FnKind,
decl: &hir::FnDecl,
body: &hir::Block,
sp: Span,
fn_id: NodeId) {
match kind {
FnKind::Closure(_) => {}
_ => cx.param_env = ParameterEnvironment::for_item(cx.tcx, fn_id),
}
intravisit::walk_fn(cx, kind, decl, body, sp, fn_id);
for input in &decl.inputs {
check_irrefutable(cx, &input.pat, true);
check_legality_of_move_bindings(cx, false, slice::ref_slice(&input.pat));
check_legality_of_bindings_in_at_patterns(cx, &input.pat);
}
}
fn check_irrefutable(cx: &MatchCheckCtxt, pat: &Pat, is_fn_arg: bool) {
let origin = if is_fn_arg {
"function argument"
} else {
"local binding"
};
is_refutable(cx, pat, |uncovered_pat| {
span_err!(cx.tcx.sess, pat.span, E0005,
"refutable pattern in {}: `{}` not covered",
origin,
pat_to_string(uncovered_pat),
);
});
}
fn is_refutable<A, F>(cx: &MatchCheckCtxt, pat: &Pat, refutable: F) -> Option<A> where
F: FnOnce(&Pat) -> A,
{
let pats = Matrix(vec!(vec!(wrap_pat(cx, pat))));
match is_useful(cx, &pats, &[(DUMMY_WILD_PAT, None)], ConstructWitness) {
UsefulWithWitness(pats) => Some(refutable(&pats[0])),
NotUseful => None,
Useful => bug!()
}
}
// Legality of move bindings checking
fn check_legality_of_move_bindings(cx: &MatchCheckCtxt,
has_guard: bool,
pats: &[P<Pat>]) {
let mut by_ref_span = None;
for pat in pats {
pat_bindings(&pat, |bm, _, span, _path| {
if let hir::BindByRef(..) = bm {
by_ref_span = Some(span);
}
})
}
let check_move = |p: &Pat, sub: Option<&Pat>| {
// check legality of moving out of the enum
// x @ Foo(..) is legal, but x @ Foo(y) isn't.
if sub.map_or(false, |p| pat_contains_bindings(&p)) {
span_err!(cx.tcx.sess, p.span, E0007, "cannot bind by-move with sub-bindings");
} else if has_guard {
span_err!(cx.tcx.sess, p.span, E0008, "cannot bind by-move into a pattern guard");
} else if by_ref_span.is_some() {
let mut err = struct_span_err!(cx.tcx.sess, p.span, E0009,
"cannot bind by-move and by-ref in the same pattern");
span_note!(&mut err, by_ref_span.unwrap(), "by-ref binding occurs here");
err.emit();
}
};
for pat in pats {
pat.walk(|p| {
if let PatKind::Binding(hir::BindByValue(..), _, ref sub) = p.node {
let pat_ty = cx.tcx.node_id_to_type(p.id);
//FIXME: (@jroesch) this code should be floated up as well
cx.tcx.infer_ctxt(None, Some(cx.param_env.clone()),
ProjectionMode::AnyFinal).enter(|infcx| {
if infcx.type_moves_by_default(pat_ty, pat.span) {
check_move(p, sub.as_ref().map(|p| &**p));
}
});
}
true
});
}
}
/// Ensures that a pattern guard doesn't borrow by mutable reference or
/// assign.
fn check_for_mutation_in_guard<'a, 'tcx>(cx: &'a MatchCheckCtxt<'a, 'tcx>,
guard: &hir::Expr) {
cx.tcx.infer_ctxt(None, Some(cx.param_env.clone()),
ProjectionMode::AnyFinal).enter(|infcx| {
let mut checker = MutationChecker {
cx: cx,
};
let mut visitor = ExprUseVisitor::new(&mut checker, &infcx);
visitor.walk_expr(guard);
});
}
struct MutationChecker<'a, 'gcx: 'a> {
cx: &'a MatchCheckCtxt<'a, 'gcx>,
}
impl<'a, 'gcx, 'tcx> Delegate<'tcx> for MutationChecker<'a, 'gcx> {
fn matched_pat(&mut self, _: &Pat, _: cmt, _: euv::MatchMode) {}
fn consume(&mut self, _: NodeId, _: Span, _: cmt, _: ConsumeMode) {}
fn consume_pat(&mut self, _: &Pat, _: cmt, _: ConsumeMode) {}
fn borrow(&mut self,
_: NodeId,
span: Span,
_: cmt,
_: Region,
kind: BorrowKind,
_: LoanCause) {
match kind {
MutBorrow => {
span_err!(self.cx.tcx.sess, span, E0301,
"cannot mutably borrow in a pattern guard")
}
ImmBorrow | UniqueImmBorrow => {}
}
}
fn decl_without_init(&mut self, _: NodeId, _: Span) {}
fn mutate(&mut self, _: NodeId, span: Span, _: cmt, mode: MutateMode) {
match mode {
MutateMode::JustWrite | MutateMode::WriteAndRead => {
span_err!(self.cx.tcx.sess, span, E0302, "cannot assign in a pattern guard")
}
MutateMode::Init => {}
}
}
}
/// Forbids bindings in `@` patterns. This is necessary for memory safety,
/// because of the way rvalues are handled in the borrow check. (See issue
/// #14587.)
fn check_legality_of_bindings_in_at_patterns(cx: &MatchCheckCtxt, pat: &Pat) {
AtBindingPatternVisitor { cx: cx, bindings_allowed: true }.visit_pat(pat);
}
struct AtBindingPatternVisitor<'a, 'b:'a, 'tcx:'b> {
cx: &'a MatchCheckCtxt<'b, 'tcx>,
bindings_allowed: bool
}
impl<'a, 'b, 'tcx, 'v> Visitor<'v> for AtBindingPatternVisitor<'a, 'b, 'tcx> {
fn visit_pat(&mut self, pat: &Pat) {
match pat.node {
PatKind::Binding(_, _, ref subpat) => {
if !self.bindings_allowed {
span_err!(self.cx.tcx.sess, pat.span, E0303,
"pattern bindings are not allowed after an `@`");
}
if subpat.is_some() {
let bindings_were_allowed = self.bindings_allowed;
self.bindings_allowed = false;
intravisit::walk_pat(self, pat);
self.bindings_allowed = bindings_were_allowed;
}
}
_ => intravisit::walk_pat(self, pat),
}
}
}