blob: fadf36471555b7f83a151bffd55c7c6fa020a915 [file] [log] [blame]
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! misc. type-system utilities too small to deserve their own file
use hir::svh::Svh;
use hir::def_id::DefId;
use ty::subst;
use infer::InferCtxt;
use hir::pat_util;
use traits::{self, ProjectionMode};
use ty::{self, Ty, TyCtxt, TypeAndMut, TypeFlags, TypeFoldable};
use ty::{Disr, ParameterEnvironment};
use ty::layout::{Layout, LayoutError};
use ty::TypeVariants::*;
use rustc_const_math::{ConstInt, ConstIsize, ConstUsize};
use std::cmp;
use std::hash::{Hash, SipHasher, Hasher};
use syntax::ast::{self, Name};
use syntax::attr::{self, SignedInt, UnsignedInt};
use syntax_pos::Span;
use hir;
pub trait IntTypeExt {
fn to_ty<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Ty<'tcx>;
fn disr_incr<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>, val: Option<Disr>)
-> Option<Disr>;
fn assert_ty_matches(&self, val: Disr);
fn initial_discriminant<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Disr;
}
impl IntTypeExt for attr::IntType {
fn to_ty<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Ty<'tcx> {
match *self {
SignedInt(ast::IntTy::I8) => tcx.types.i8,
SignedInt(ast::IntTy::I16) => tcx.types.i16,
SignedInt(ast::IntTy::I32) => tcx.types.i32,
SignedInt(ast::IntTy::I64) => tcx.types.i64,
SignedInt(ast::IntTy::Is) => tcx.types.isize,
UnsignedInt(ast::UintTy::U8) => tcx.types.u8,
UnsignedInt(ast::UintTy::U16) => tcx.types.u16,
UnsignedInt(ast::UintTy::U32) => tcx.types.u32,
UnsignedInt(ast::UintTy::U64) => tcx.types.u64,
UnsignedInt(ast::UintTy::Us) => tcx.types.usize,
}
}
fn initial_discriminant<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Disr {
match *self {
SignedInt(ast::IntTy::I8) => ConstInt::I8(0),
SignedInt(ast::IntTy::I16) => ConstInt::I16(0),
SignedInt(ast::IntTy::I32) => ConstInt::I32(0),
SignedInt(ast::IntTy::I64) => ConstInt::I64(0),
SignedInt(ast::IntTy::Is) => match tcx.sess.target.int_type {
ast::IntTy::I16 => ConstInt::Isize(ConstIsize::Is16(0)),
ast::IntTy::I32 => ConstInt::Isize(ConstIsize::Is32(0)),
ast::IntTy::I64 => ConstInt::Isize(ConstIsize::Is64(0)),
_ => bug!(),
},
UnsignedInt(ast::UintTy::U8) => ConstInt::U8(0),
UnsignedInt(ast::UintTy::U16) => ConstInt::U16(0),
UnsignedInt(ast::UintTy::U32) => ConstInt::U32(0),
UnsignedInt(ast::UintTy::U64) => ConstInt::U64(0),
UnsignedInt(ast::UintTy::Us) => match tcx.sess.target.uint_type {
ast::UintTy::U16 => ConstInt::Usize(ConstUsize::Us16(0)),
ast::UintTy::U32 => ConstInt::Usize(ConstUsize::Us32(0)),
ast::UintTy::U64 => ConstInt::Usize(ConstUsize::Us64(0)),
_ => bug!(),
},
}
}
fn assert_ty_matches(&self, val: Disr) {
match (*self, val) {
(SignedInt(ast::IntTy::I8), ConstInt::I8(_)) => {},
(SignedInt(ast::IntTy::I16), ConstInt::I16(_)) => {},
(SignedInt(ast::IntTy::I32), ConstInt::I32(_)) => {},
(SignedInt(ast::IntTy::I64), ConstInt::I64(_)) => {},
(SignedInt(ast::IntTy::Is), ConstInt::Isize(_)) => {},
(UnsignedInt(ast::UintTy::U8), ConstInt::U8(_)) => {},
(UnsignedInt(ast::UintTy::U16), ConstInt::U16(_)) => {},
(UnsignedInt(ast::UintTy::U32), ConstInt::U32(_)) => {},
(UnsignedInt(ast::UintTy::U64), ConstInt::U64(_)) => {},
(UnsignedInt(ast::UintTy::Us), ConstInt::Usize(_)) => {},
_ => bug!("disr type mismatch: {:?} vs {:?}", self, val),
}
}
fn disr_incr<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>, val: Option<Disr>)
-> Option<Disr> {
if let Some(val) = val {
self.assert_ty_matches(val);
(val + ConstInt::Infer(1)).ok()
} else {
Some(self.initial_discriminant(tcx))
}
}
}
#[derive(Copy, Clone)]
pub enum CopyImplementationError {
InfrigingField(Name),
InfrigingVariant(Name),
NotAnAdt,
HasDestructor
}
/// Describes whether a type is representable. For types that are not
/// representable, 'SelfRecursive' and 'ContainsRecursive' are used to
/// distinguish between types that are recursive with themselves and types that
/// contain a different recursive type. These cases can therefore be treated
/// differently when reporting errors.
///
/// The ordering of the cases is significant. They are sorted so that cmp::max
/// will keep the "more erroneous" of two values.
#[derive(Copy, Clone, PartialOrd, Ord, Eq, PartialEq, Debug)]
pub enum Representability {
Representable,
ContainsRecursive,
SelfRecursive,
}
impl<'tcx> ParameterEnvironment<'tcx> {
pub fn can_type_implement_copy<'a>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
self_type: Ty<'tcx>, span: Span)
-> Result<(),CopyImplementationError> {
// FIXME: (@jroesch) float this code up
tcx.infer_ctxt(None, Some(self.clone()),
ProjectionMode::Topmost).enter(|infcx| {
let adt = match self_type.sty {
ty::TyStruct(struct_def, substs) => {
for field in struct_def.all_fields() {
let field_ty = field.ty(tcx, substs);
if infcx.type_moves_by_default(field_ty, span) {
return Err(CopyImplementationError::InfrigingField(
field.name))
}
}
struct_def
}
ty::TyEnum(enum_def, substs) => {
for variant in &enum_def.variants {
for field in &variant.fields {
let field_ty = field.ty(tcx, substs);
if infcx.type_moves_by_default(field_ty, span) {
return Err(CopyImplementationError::InfrigingVariant(
variant.name))
}
}
}
enum_def
}
_ => return Err(CopyImplementationError::NotAnAdt)
};
if adt.has_dtor() {
return Err(CopyImplementationError::HasDestructor);
}
Ok(())
})
}
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
pub fn pat_contains_ref_binding(self, pat: &hir::Pat) -> Option<hir::Mutability> {
pat_util::pat_contains_ref_binding(pat)
}
pub fn arm_contains_ref_binding(self, arm: &hir::Arm) -> Option<hir::Mutability> {
pat_util::arm_contains_ref_binding(arm)
}
pub fn has_error_field(self, ty: Ty<'tcx>) -> bool {
match ty.sty {
ty::TyStruct(def, substs) | ty::TyEnum(def, substs) => {
for field in def.all_fields() {
let field_ty = field.ty(self, substs);
if let TyError = field_ty.sty {
return true;
}
}
}
_ => ()
}
false
}
/// Returns the type of element at index `i` in tuple or tuple-like type `t`.
/// For an enum `t`, `variant` is None only if `t` is a univariant enum.
pub fn positional_element_ty(self,
ty: Ty<'tcx>,
i: usize,
variant: Option<DefId>) -> Option<Ty<'tcx>> {
match (&ty.sty, variant) {
(&TyStruct(def, substs), None) => {
def.struct_variant().fields.get(i).map(|f| f.ty(self, substs))
}
(&TyEnum(def, substs), Some(vid)) => {
def.variant_with_id(vid).fields.get(i).map(|f| f.ty(self, substs))
}
(&TyEnum(def, substs), None) => {
assert!(def.is_univariant());
def.variants[0].fields.get(i).map(|f| f.ty(self, substs))
}
(&TyTuple(ref v), None) => v.get(i).cloned(),
_ => None
}
}
/// Returns the type of element at field `n` in struct or struct-like type `t`.
/// For an enum `t`, `variant` must be some def id.
pub fn named_element_ty(self,
ty: Ty<'tcx>,
n: Name,
variant: Option<DefId>) -> Option<Ty<'tcx>> {
match (&ty.sty, variant) {
(&TyStruct(def, substs), None) => {
def.struct_variant().find_field_named(n).map(|f| f.ty(self, substs))
}
(&TyEnum(def, substs), Some(vid)) => {
def.variant_with_id(vid).find_field_named(n).map(|f| f.ty(self, substs))
}
_ => return None
}
}
/// Returns the IntType representation.
/// This used to ensure `int_ty` doesn't contain `usize` and `isize`
/// by converting them to their actual types. That doesn't happen anymore.
pub fn enum_repr_type(self, opt_hint: Option<&attr::ReprAttr>) -> attr::IntType {
match opt_hint {
// Feed in the given type
Some(&attr::ReprInt(_, int_t)) => int_t,
// ... but provide sensible default if none provided
//
// NB. Historically `fn enum_variants` generate i64 here, while
// rustc_typeck::check would generate isize.
_ => SignedInt(ast::IntTy::Is),
}
}
/// Returns the deeply last field of nested structures, or the same type,
/// if not a structure at all. Corresponds to the only possible unsized
/// field, and its type can be used to determine unsizing strategy.
pub fn struct_tail(self, mut ty: Ty<'tcx>) -> Ty<'tcx> {
while let TyStruct(def, substs) = ty.sty {
match def.struct_variant().fields.last() {
Some(f) => ty = f.ty(self, substs),
None => break
}
}
ty
}
/// Same as applying struct_tail on `source` and `target`, but only
/// keeps going as long as the two types are instances of the same
/// structure definitions.
/// For `(Foo<Foo<T>>, Foo<Trait>)`, the result will be `(Foo<T>, Trait)`,
/// whereas struct_tail produces `T`, and `Trait`, respectively.
pub fn struct_lockstep_tails(self,
source: Ty<'tcx>,
target: Ty<'tcx>)
-> (Ty<'tcx>, Ty<'tcx>) {
let (mut a, mut b) = (source, target);
while let (&TyStruct(a_def, a_substs), &TyStruct(b_def, b_substs)) = (&a.sty, &b.sty) {
if a_def != b_def {
break;
}
if let Some(f) = a_def.struct_variant().fields.last() {
a = f.ty(self, a_substs);
b = f.ty(self, b_substs);
} else {
break;
}
}
(a, b)
}
/// Given a set of predicates that apply to an object type, returns
/// the region bounds that the (erased) `Self` type must
/// outlive. Precisely *because* the `Self` type is erased, the
/// parameter `erased_self_ty` must be supplied to indicate what type
/// has been used to represent `Self` in the predicates
/// themselves. This should really be a unique type; `FreshTy(0)` is a
/// popular choice.
///
/// NB: in some cases, particularly around higher-ranked bounds,
/// this function returns a kind of conservative approximation.
/// That is, all regions returned by this function are definitely
/// required, but there may be other region bounds that are not
/// returned, as well as requirements like `for<'a> T: 'a`.
///
/// Requires that trait definitions have been processed so that we can
/// elaborate predicates and walk supertraits.
pub fn required_region_bounds(self,
erased_self_ty: Ty<'tcx>,
predicates: Vec<ty::Predicate<'tcx>>)
-> Vec<ty::Region> {
debug!("required_region_bounds(erased_self_ty={:?}, predicates={:?})",
erased_self_ty,
predicates);
assert!(!erased_self_ty.has_escaping_regions());
traits::elaborate_predicates(self, predicates)
.filter_map(|predicate| {
match predicate {
ty::Predicate::Projection(..) |
ty::Predicate::Trait(..) |
ty::Predicate::Rfc1592(..) |
ty::Predicate::Equate(..) |
ty::Predicate::WellFormed(..) |
ty::Predicate::ObjectSafe(..) |
ty::Predicate::ClosureKind(..) |
ty::Predicate::RegionOutlives(..) => {
None
}
ty::Predicate::TypeOutlives(ty::Binder(ty::OutlivesPredicate(t, r))) => {
// Search for a bound of the form `erased_self_ty
// : 'a`, but be wary of something like `for<'a>
// erased_self_ty : 'a` (we interpret a
// higher-ranked bound like that as 'static,
// though at present the code in `fulfill.rs`
// considers such bounds to be unsatisfiable, so
// it's kind of a moot point since you could never
// construct such an object, but this seems
// correct even if that code changes).
if t == erased_self_ty && !r.has_escaping_regions() {
Some(r)
} else {
None
}
}
}
})
.collect()
}
/// Creates a hash of the type `Ty` which will be the same no matter what crate
/// context it's calculated within. This is used by the `type_id` intrinsic.
pub fn hash_crate_independent(self, ty: Ty<'tcx>, svh: &Svh) -> u64 {
let mut state = SipHasher::new();
helper(self, ty, svh, &mut state);
return state.finish();
fn helper<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
ty: Ty<'tcx>, svh: &Svh,
state: &mut SipHasher) {
macro_rules! byte { ($b:expr) => { ($b as u8).hash(state) } }
macro_rules! hash { ($e:expr) => { $e.hash(state) } }
let region = |state: &mut SipHasher, r: ty::Region| {
match r {
ty::ReStatic | ty::ReErased => {}
ty::ReLateBound(db, ty::BrAnon(i)) => {
db.hash(state);
i.hash(state);
}
ty::ReEmpty |
ty::ReEarlyBound(..) |
ty::ReLateBound(..) |
ty::ReFree(..) |
ty::ReScope(..) |
ty::ReVar(..) |
ty::ReSkolemized(..) => {
bug!("unexpected region found when hashing a type")
}
}
};
let did = |state: &mut SipHasher, did: DefId| {
let h = if did.is_local() {
svh.clone()
} else {
tcx.sess.cstore.crate_hash(did.krate)
};
h.hash(state);
did.index.hash(state);
};
let mt = |state: &mut SipHasher, mt: TypeAndMut| {
mt.mutbl.hash(state);
};
let fn_sig = |state: &mut SipHasher, sig: &ty::Binder<ty::FnSig<'tcx>>| {
let sig = tcx.anonymize_late_bound_regions(sig).0;
for a in &sig.inputs { helper(tcx, *a, svh, state); }
if let ty::FnConverging(output) = sig.output {
helper(tcx, output, svh, state);
}
};
ty.maybe_walk(|ty| {
match ty.sty {
TyBool => byte!(2),
TyChar => byte!(3),
TyInt(i) => {
byte!(4);
hash!(i);
}
TyUint(u) => {
byte!(5);
hash!(u);
}
TyFloat(f) => {
byte!(6);
hash!(f);
}
TyStr => {
byte!(7);
}
TyEnum(d, _) => {
byte!(8);
did(state, d.did);
}
TyBox(_) => {
byte!(9);
}
TyArray(_, n) => {
byte!(10);
n.hash(state);
}
TySlice(_) => {
byte!(11);
}
TyRawPtr(m) => {
byte!(12);
mt(state, m);
}
TyRef(r, m) => {
byte!(13);
region(state, *r);
mt(state, m);
}
TyFnDef(def_id, _, _) => {
byte!(14);
hash!(def_id);
}
TyFnPtr(ref b) => {
byte!(15);
hash!(b.unsafety);
hash!(b.abi);
fn_sig(state, &b.sig);
return false;
}
TyTrait(ref data) => {
byte!(17);
did(state, data.principal_def_id());
hash!(data.bounds);
let principal = tcx.anonymize_late_bound_regions(&data.principal).0;
for subty in &principal.substs.types {
helper(tcx, subty, svh, state);
}
return false;
}
TyStruct(d, _) => {
byte!(18);
did(state, d.did);
}
TyTuple(ref inner) => {
byte!(19);
hash!(inner.len());
}
TyParam(p) => {
byte!(20);
hash!(p.space);
hash!(p.idx);
hash!(p.name.as_str());
}
TyInfer(_) => bug!(),
TyError => byte!(21),
TyClosure(d, _) => {
byte!(22);
did(state, d);
}
TyProjection(ref data) => {
byte!(23);
did(state, data.trait_ref.def_id);
hash!(data.item_name.as_str());
}
}
true
});
}
}
/// Returns true if this ADT is a dtorck type.
///
/// Invoking the destructor of a dtorck type during usual cleanup
/// (e.g. the glue emitted for stack unwinding) requires all
/// lifetimes in the type-structure of `adt` to strictly outlive
/// the adt value itself.
///
/// If `adt` is not dtorck, then the adt's destructor can be
/// invoked even when there are lifetimes in the type-structure of
/// `adt` that do not strictly outlive the adt value itself.
/// (This allows programs to make cyclic structures without
/// resorting to unasfe means; see RFCs 769 and 1238).
pub fn is_adt_dtorck(self, adt: ty::AdtDef) -> bool {
let dtor_method = match adt.destructor() {
Some(dtor) => dtor,
None => return false
};
// RFC 1238: if the destructor method is tagged with the
// attribute `unsafe_destructor_blind_to_params`, then the
// compiler is being instructed to *assume* that the
// destructor will not access borrowed data,
// even if such data is otherwise reachable.
//
// Such access can be in plain sight (e.g. dereferencing
// `*foo.0` of `Foo<'a>(&'a u32)`) or indirectly hidden
// (e.g. calling `foo.0.clone()` of `Foo<T:Clone>`).
return !self.has_attr(dtor_method, "unsafe_destructor_blind_to_params");
}
}
impl<'a, 'tcx> ty::TyS<'tcx> {
fn impls_bound(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
param_env: &ParameterEnvironment<'tcx>,
bound: ty::BuiltinBound, span: Span) -> bool
{
tcx.infer_ctxt(None, Some(param_env.clone()), ProjectionMode::Topmost).enter(|infcx| {
traits::type_known_to_meet_builtin_bound(&infcx, self, bound, span)
})
}
// FIXME (@jroesch): I made this public to use it, not sure if should be private
pub fn moves_by_default(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
param_env: &ParameterEnvironment<'tcx>,
span: Span) -> bool {
if self.flags.get().intersects(TypeFlags::MOVENESS_CACHED) {
return self.flags.get().intersects(TypeFlags::MOVES_BY_DEFAULT);
}
assert!(!self.needs_infer());
// Fast-path for primitive types
let result = match self.sty {
TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
TyRawPtr(..) | TyFnDef(..) | TyFnPtr(_) | TyRef(_, TypeAndMut {
mutbl: hir::MutImmutable, ..
}) => Some(false),
TyStr | TyBox(..) | TyRef(_, TypeAndMut {
mutbl: hir::MutMutable, ..
}) => Some(true),
TyArray(..) | TySlice(_) | TyTrait(..) | TyTuple(..) |
TyClosure(..) | TyEnum(..) | TyStruct(..) |
TyProjection(..) | TyParam(..) | TyInfer(..) | TyError => None
}.unwrap_or_else(|| !self.impls_bound(tcx, param_env, ty::BoundCopy, span));
if !self.has_param_types() && !self.has_self_ty() {
self.flags.set(self.flags.get() | if result {
TypeFlags::MOVENESS_CACHED | TypeFlags::MOVES_BY_DEFAULT
} else {
TypeFlags::MOVENESS_CACHED
});
}
result
}
#[inline]
pub fn is_sized(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
param_env: &ParameterEnvironment<'tcx>,
span: Span) -> bool
{
if self.flags.get().intersects(TypeFlags::SIZEDNESS_CACHED) {
return self.flags.get().intersects(TypeFlags::IS_SIZED);
}
self.is_sized_uncached(tcx, param_env, span)
}
fn is_sized_uncached(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
param_env: &ParameterEnvironment<'tcx>,
span: Span) -> bool {
assert!(!self.needs_infer());
// Fast-path for primitive types
let result = match self.sty {
TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
TyBox(..) | TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
TyArray(..) | TyTuple(..) | TyClosure(..) => Some(true),
TyStr | TyTrait(..) | TySlice(_) => Some(false),
TyEnum(..) | TyStruct(..) | TyProjection(..) | TyParam(..) |
TyInfer(..) | TyError => None
}.unwrap_or_else(|| self.impls_bound(tcx, param_env, ty::BoundSized, span));
if !self.has_param_types() && !self.has_self_ty() {
self.flags.set(self.flags.get() | if result {
TypeFlags::SIZEDNESS_CACHED | TypeFlags::IS_SIZED
} else {
TypeFlags::SIZEDNESS_CACHED
});
}
result
}
#[inline]
pub fn layout<'lcx>(&'tcx self, infcx: &InferCtxt<'a, 'tcx, 'lcx>)
-> Result<&'tcx Layout, LayoutError<'tcx>> {
let tcx = infcx.tcx.global_tcx();
let can_cache = !self.has_param_types() && !self.has_self_ty();
if can_cache {
if let Some(&cached) = tcx.layout_cache.borrow().get(&self) {
return Ok(cached);
}
}
let layout = Layout::compute_uncached(self, infcx)?;
let layout = tcx.intern_layout(layout);
if can_cache {
tcx.layout_cache.borrow_mut().insert(self, layout);
}
Ok(layout)
}
/// Check whether a type is representable. This means it cannot contain unboxed
/// structural recursion. This check is needed for structs and enums.
pub fn is_representable(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span)
-> Representability {
// Iterate until something non-representable is found
fn find_nonrepresentable<'a, 'tcx, It>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
sp: Span,
seen: &mut Vec<Ty<'tcx>>,
iter: It)
-> Representability
where It: Iterator<Item=Ty<'tcx>> {
iter.fold(Representability::Representable,
|r, ty| cmp::max(r, is_type_structurally_recursive(tcx, sp, seen, ty)))
}
fn are_inner_types_recursive<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span,
seen: &mut Vec<Ty<'tcx>>, ty: Ty<'tcx>)
-> Representability {
match ty.sty {
TyTuple(ref ts) => {
find_nonrepresentable(tcx, sp, seen, ts.iter().cloned())
}
// Fixed-length vectors.
// FIXME(#11924) Behavior undecided for zero-length vectors.
TyArray(ty, _) => {
is_type_structurally_recursive(tcx, sp, seen, ty)
}
TyStruct(def, substs) | TyEnum(def, substs) => {
find_nonrepresentable(tcx,
sp,
seen,
def.all_fields().map(|f| f.ty(tcx, substs)))
}
TyClosure(..) => {
// this check is run on type definitions, so we don't expect
// to see closure types
bug!("requires check invoked on inapplicable type: {:?}", ty)
}
_ => Representability::Representable,
}
}
fn same_struct_or_enum<'tcx>(ty: Ty<'tcx>, def: ty::AdtDef<'tcx>) -> bool {
match ty.sty {
TyStruct(ty_def, _) | TyEnum(ty_def, _) => {
ty_def == def
}
_ => false
}
}
fn same_type<'tcx>(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match (&a.sty, &b.sty) {
(&TyStruct(did_a, ref substs_a), &TyStruct(did_b, ref substs_b)) |
(&TyEnum(did_a, ref substs_a), &TyEnum(did_b, ref substs_b)) => {
if did_a != did_b {
return false;
}
let types_a = substs_a.types.get_slice(subst::TypeSpace);
let types_b = substs_b.types.get_slice(subst::TypeSpace);
let mut pairs = types_a.iter().zip(types_b);
pairs.all(|(&a, &b)| same_type(a, b))
}
_ => {
a == b
}
}
}
// Does the type `ty` directly (without indirection through a pointer)
// contain any types on stack `seen`?
fn is_type_structurally_recursive<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
sp: Span,
seen: &mut Vec<Ty<'tcx>>,
ty: Ty<'tcx>) -> Representability {
debug!("is_type_structurally_recursive: {:?}", ty);
match ty.sty {
TyStruct(def, _) | TyEnum(def, _) => {
{
// Iterate through stack of previously seen types.
let mut iter = seen.iter();
// The first item in `seen` is the type we are actually curious about.
// We want to return SelfRecursive if this type contains itself.
// It is important that we DON'T take generic parameters into account
// for this check, so that Bar<T> in this example counts as SelfRecursive:
//
// struct Foo;
// struct Bar<T> { x: Bar<Foo> }
if let Some(&seen_type) = iter.next() {
if same_struct_or_enum(seen_type, def) {
debug!("SelfRecursive: {:?} contains {:?}",
seen_type,
ty);
return Representability::SelfRecursive;
}
}
// We also need to know whether the first item contains other types
// that are structurally recursive. If we don't catch this case, we
// will recurse infinitely for some inputs.
//
// It is important that we DO take generic parameters into account
// here, so that code like this is considered SelfRecursive, not
// ContainsRecursive:
//
// struct Foo { Option<Option<Foo>> }
for &seen_type in iter {
if same_type(ty, seen_type) {
debug!("ContainsRecursive: {:?} contains {:?}",
seen_type,
ty);
return Representability::ContainsRecursive;
}
}
}
// For structs and enums, track all previously seen types by pushing them
// onto the 'seen' stack.
seen.push(ty);
let out = are_inner_types_recursive(tcx, sp, seen, ty);
seen.pop();
out
}
_ => {
// No need to push in other cases.
are_inner_types_recursive(tcx, sp, seen, ty)
}
}
}
debug!("is_type_representable: {:?}", self);
// To avoid a stack overflow when checking an enum variant or struct that
// contains a different, structurally recursive type, maintain a stack
// of seen types and check recursion for each of them (issues #3008, #3779).
let mut seen: Vec<Ty> = Vec::new();
let r = is_type_structurally_recursive(tcx, sp, &mut seen, self);
debug!("is_type_representable: {:?} is {:?}", self, r);
r
}
}