blob: 67ad887530eb318ccabe450784dc9480e11e5297 [file] [log] [blame]
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::{
FulfillmentError,
FulfillmentErrorCode,
MismatchedProjectionTypes,
Obligation,
ObligationCause,
ObligationCauseCode,
OutputTypeParameterMismatch,
TraitNotObjectSafe,
PredicateObligation,
SelectionContext,
SelectionError,
ObjectSafetyViolation,
MethodViolationCode,
};
use fmt_macros::{Parser, Piece, Position};
use hir::def_id::DefId;
use infer::{self, InferCtxt, TypeOrigin};
use ty::{self, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable};
use ty::error::ExpectedFound;
use ty::fast_reject;
use ty::fold::TypeFolder;
use ty::subst::{self, Subst, TypeSpace};
use util::nodemap::{FnvHashMap, FnvHashSet};
use std::cmp;
use std::fmt;
use syntax::ast;
use syntax::attr::{AttributeMethods, AttrMetaMethods};
use syntax_pos::Span;
use errors::DiagnosticBuilder;
#[derive(Debug, PartialEq, Eq, Hash)]
pub struct TraitErrorKey<'tcx> {
span: Span,
warning_node_id: Option<ast::NodeId>,
predicate: ty::Predicate<'tcx>
}
impl<'a, 'gcx, 'tcx> TraitErrorKey<'tcx> {
fn from_error(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
e: &FulfillmentError<'tcx>,
warning_node_id: Option<ast::NodeId>) -> Self {
let predicate =
infcx.resolve_type_vars_if_possible(&e.obligation.predicate);
TraitErrorKey {
span: e.obligation.cause.span,
predicate: infcx.tcx.erase_regions(&predicate),
warning_node_id: warning_node_id
}
}
}
impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
pub fn report_fulfillment_errors(&self, errors: &Vec<FulfillmentError<'tcx>>) {
for error in errors {
self.report_fulfillment_error(error, None);
}
}
pub fn report_fulfillment_errors_as_warnings(&self,
errors: &Vec<FulfillmentError<'tcx>>,
node_id: ast::NodeId) {
for error in errors {
self.report_fulfillment_error(error, Some(node_id));
}
}
fn report_fulfillment_error(&self,
error: &FulfillmentError<'tcx>,
warning_node_id: Option<ast::NodeId>) {
let error_key = TraitErrorKey::from_error(self, error, warning_node_id);
debug!("report_fulfillment_errors({:?}) - key={:?}",
error, error_key);
if !self.reported_trait_errors.borrow_mut().insert(error_key) {
debug!("report_fulfillment_errors: skipping duplicate");
return;
}
match error.code {
FulfillmentErrorCode::CodeSelectionError(ref e) => {
self.report_selection_error(&error.obligation, e, warning_node_id);
}
FulfillmentErrorCode::CodeProjectionError(ref e) => {
self.report_projection_error(&error.obligation, e, warning_node_id);
}
FulfillmentErrorCode::CodeAmbiguity => {
self.maybe_report_ambiguity(&error.obligation);
}
}
}
fn report_projection_error(&self,
obligation: &PredicateObligation<'tcx>,
error: &MismatchedProjectionTypes<'tcx>,
warning_node_id: Option<ast::NodeId>)
{
let predicate =
self.resolve_type_vars_if_possible(&obligation.predicate);
if predicate.references_error() {
return
}
if let Some(warning_node_id) = warning_node_id {
self.tcx.sess.add_lint(
::lint::builtin::UNSIZED_IN_TUPLE,
warning_node_id,
obligation.cause.span,
format!("type mismatch resolving `{}`: {}",
predicate,
error.err));
return
}
self.probe(|_| {
let origin = TypeOrigin::Misc(obligation.cause.span);
let err_buf;
let mut err = &error.err;
let mut values = None;
// try to find the mismatched types to report the error with.
//
// this can fail if the problem was higher-ranked, in which
// cause I have no idea for a good error message.
if let ty::Predicate::Projection(ref data) = predicate {
let mut selcx = SelectionContext::new(self);
let (data, _) = self.replace_late_bound_regions_with_fresh_var(
obligation.cause.span,
infer::LateBoundRegionConversionTime::HigherRankedType,
data);
let normalized = super::normalize_projection_type(
&mut selcx,
data.projection_ty,
obligation.cause.clone(),
0
);
let origin = TypeOrigin::Misc(obligation.cause.span);
if let Err(error) = self.eq_types(
false, origin,
data.ty, normalized.value
) {
values = Some(infer::ValuePairs::Types(ExpectedFound {
expected: normalized.value,
found: data.ty,
}));
err_buf = error;
err = &err_buf;
}
}
let mut diag = struct_span_err!(
self.tcx.sess, origin.span(), E0271,
"type mismatch resolving `{}`", predicate
);
self.note_type_err(&mut diag, origin, values, err);
self.note_obligation_cause(&mut diag, obligation);
diag.emit();
});
}
fn impl_substs(&self,
did: DefId,
obligation: PredicateObligation<'tcx>)
-> subst::Substs<'tcx> {
let tcx = self.tcx;
let ity = tcx.lookup_item_type(did);
let (tps, rps, _) =
(ity.generics.types.get_slice(TypeSpace),
ity.generics.regions.get_slice(TypeSpace),
ity.ty);
let rps = self.region_vars_for_defs(obligation.cause.span, rps);
let mut substs = subst::Substs::new(
subst::VecPerParamSpace::empty(),
subst::VecPerParamSpace::new(rps, Vec::new(), Vec::new()));
self.type_vars_for_defs(obligation.cause.span,
TypeSpace,
&mut substs,
tps);
substs
}
fn fuzzy_match_tys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
/// returns the fuzzy category of a given type, or None
/// if the type can be equated to any type.
fn type_category<'tcx>(t: Ty<'tcx>) -> Option<u32> {
match t.sty {
ty::TyBool => Some(0),
ty::TyChar => Some(1),
ty::TyStr => Some(2),
ty::TyInt(..) | ty::TyUint(..) |
ty::TyInfer(ty::IntVar(..)) => Some(3),
ty::TyFloat(..) | ty::TyInfer(ty::FloatVar(..)) => Some(4),
ty::TyEnum(..) => Some(5),
ty::TyStruct(..) => Some(6),
ty::TyBox(..) | ty::TyRef(..) | ty::TyRawPtr(..) => Some(7),
ty::TyArray(..) | ty::TySlice(..) => Some(8),
ty::TyFnDef(..) | ty::TyFnPtr(..) => Some(9),
ty::TyTrait(..) => Some(10),
ty::TyClosure(..) => Some(11),
ty::TyTuple(..) => Some(12),
ty::TyProjection(..) => Some(13),
ty::TyParam(..) => Some(14),
ty::TyInfer(..) | ty::TyError => None
}
}
match (type_category(a), type_category(b)) {
(Some(cat_a), Some(cat_b)) => match (&a.sty, &b.sty) {
(&ty::TyStruct(def_a, _), &ty::TyStruct(def_b, _)) |
(&ty::TyEnum(def_a, _), &ty::TyEnum(def_b, _)) =>
def_a == def_b,
_ => cat_a == cat_b
},
// infer and error can be equated to all types
_ => true
}
}
fn impl_similar_to(&self,
trait_ref: ty::PolyTraitRef<'tcx>,
obligation: &PredicateObligation<'tcx>)
-> Option<DefId>
{
let tcx = self.tcx;
let trait_ref = tcx.erase_late_bound_regions(&trait_ref);
let trait_self_ty = trait_ref.self_ty();
let mut self_match_impls = vec![];
let mut fuzzy_match_impls = vec![];
self.tcx.lookup_trait_def(trait_ref.def_id)
.for_each_relevant_impl(self.tcx, trait_self_ty, |def_id| {
let impl_trait_ref = tcx
.impl_trait_ref(def_id)
.unwrap()
.subst(tcx, &self.impl_substs(def_id, obligation.clone()));
let impl_self_ty = impl_trait_ref.self_ty();
if let Ok(..) = self.can_equate(&trait_self_ty, &impl_self_ty) {
self_match_impls.push(def_id);
if trait_ref.substs.types.get_slice(TypeSpace).iter()
.zip(impl_trait_ref.substs.types.get_slice(TypeSpace))
.all(|(u,v)| self.fuzzy_match_tys(u, v))
{
fuzzy_match_impls.push(def_id);
}
}
});
let impl_def_id = if self_match_impls.len() == 1 {
self_match_impls[0]
} else if fuzzy_match_impls.len() == 1 {
fuzzy_match_impls[0]
} else {
return None
};
if tcx.has_attr(impl_def_id, "rustc_on_unimplemented") {
Some(impl_def_id)
} else {
None
}
}
fn on_unimplemented_note(&self,
trait_ref: ty::PolyTraitRef<'tcx>,
obligation: &PredicateObligation<'tcx>) -> Option<String> {
let def_id = self.impl_similar_to(trait_ref, obligation)
.unwrap_or(trait_ref.def_id());
let trait_ref = trait_ref.skip_binder();
let span = obligation.cause.span;
let mut report = None;
for item in self.tcx.get_attrs(def_id).iter() {
if item.check_name("rustc_on_unimplemented") {
let err_sp = item.meta().span.substitute_dummy(span);
let def = self.tcx.lookup_trait_def(trait_ref.def_id);
let trait_str = def.trait_ref.to_string();
if let Some(ref istring) = item.value_str() {
let mut generic_map = def.generics.types.iter_enumerated()
.map(|(param, i, gen)| {
(gen.name.as_str().to_string(),
trait_ref.substs.types.get(param, i)
.to_string())
}).collect::<FnvHashMap<String, String>>();
generic_map.insert("Self".to_string(),
trait_ref.self_ty().to_string());
let parser = Parser::new(&istring);
let mut errored = false;
let err: String = parser.filter_map(|p| {
match p {
Piece::String(s) => Some(s),
Piece::NextArgument(a) => match a.position {
Position::ArgumentNamed(s) => match generic_map.get(s) {
Some(val) => Some(val),
None => {
span_err!(self.tcx.sess, err_sp, E0272,
"the #[rustc_on_unimplemented] \
attribute on \
trait definition for {} refers to \
non-existent type parameter {}",
trait_str, s);
errored = true;
None
}
},
_ => {
span_err!(self.tcx.sess, err_sp, E0273,
"the #[rustc_on_unimplemented] attribute \
on trait definition for {} must have \
named format arguments, eg \
`#[rustc_on_unimplemented = \
\"foo {{T}}\"]`", trait_str);
errored = true;
None
}
}
}
}).collect();
// Report only if the format string checks out
if !errored {
report = Some(err);
}
} else {
span_err!(self.tcx.sess, err_sp, E0274,
"the #[rustc_on_unimplemented] attribute on \
trait definition for {} must have a value, \
eg `#[rustc_on_unimplemented = \"foo\"]`",
trait_str);
}
break;
}
}
report
}
fn find_similar_impl_candidates(&self,
trait_ref: ty::PolyTraitRef<'tcx>)
-> Vec<ty::TraitRef<'tcx>>
{
let simp = fast_reject::simplify_type(self.tcx,
trait_ref.skip_binder().self_ty(),
true);
let mut impl_candidates = Vec::new();
let trait_def = self.tcx.lookup_trait_def(trait_ref.def_id());
match simp {
Some(simp) => trait_def.for_each_impl(self.tcx, |def_id| {
let imp = self.tcx.impl_trait_ref(def_id).unwrap();
let imp_simp = fast_reject::simplify_type(self.tcx,
imp.self_ty(),
true);
if let Some(imp_simp) = imp_simp {
if simp != imp_simp {
return;
}
}
impl_candidates.push(imp);
}),
None => trait_def.for_each_impl(self.tcx, |def_id| {
impl_candidates.push(
self.tcx.impl_trait_ref(def_id).unwrap());
})
};
impl_candidates
}
fn report_similar_impl_candidates(&self,
trait_ref: ty::PolyTraitRef<'tcx>,
err: &mut DiagnosticBuilder)
{
let simp = fast_reject::simplify_type(self.tcx,
trait_ref.skip_binder().self_ty(),
true);
let mut impl_candidates = Vec::new();
let trait_def = self.tcx.lookup_trait_def(trait_ref.def_id());
match simp {
Some(simp) => trait_def.for_each_impl(self.tcx, |def_id| {
let imp = self.tcx.impl_trait_ref(def_id).unwrap();
let imp_simp = fast_reject::simplify_type(self.tcx,
imp.self_ty(),
true);
if let Some(imp_simp) = imp_simp {
if simp != imp_simp {
return;
}
}
impl_candidates.push(imp);
}),
None => trait_def.for_each_impl(self.tcx, |def_id| {
impl_candidates.push(
self.tcx.impl_trait_ref(def_id).unwrap());
})
};
if impl_candidates.is_empty() {
return;
}
err.help(&format!("the following implementations were found:"));
let end = cmp::min(4, impl_candidates.len());
for candidate in &impl_candidates[0..end] {
err.help(&format!(" {:?}", candidate));
}
if impl_candidates.len() > 4 {
err.help(&format!("and {} others", impl_candidates.len()-4));
}
}
/// Reports that an overflow has occurred and halts compilation. We
/// halt compilation unconditionally because it is important that
/// overflows never be masked -- they basically represent computations
/// whose result could not be truly determined and thus we can't say
/// if the program type checks or not -- and they are unusual
/// occurrences in any case.
pub fn report_overflow_error<T>(&self,
obligation: &Obligation<'tcx, T>,
suggest_increasing_limit: bool) -> !
where T: fmt::Display + TypeFoldable<'tcx>
{
let predicate =
self.resolve_type_vars_if_possible(&obligation.predicate);
let mut err = struct_span_err!(self.tcx.sess, obligation.cause.span, E0275,
"overflow evaluating the requirement `{}`",
predicate);
if suggest_increasing_limit {
self.suggest_new_overflow_limit(&mut err);
}
self.note_obligation_cause(&mut err, obligation);
err.emit();
self.tcx.sess.abort_if_errors();
bug!();
}
/// Reports that a cycle was detected which led to overflow and halts
/// compilation. This is equivalent to `report_overflow_error` except
/// that we can give a more helpful error message (and, in particular,
/// we do not suggest increasing the overflow limit, which is not
/// going to help).
pub fn report_overflow_error_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
let cycle = self.resolve_type_vars_if_possible(&cycle.to_owned());
assert!(cycle.len() > 0);
debug!("report_overflow_error_cycle: cycle={:?}", cycle);
self.report_overflow_error(&cycle[0], false);
}
pub fn report_selection_error(&self,
obligation: &PredicateObligation<'tcx>,
error: &SelectionError<'tcx>,
warning_node_id: Option<ast::NodeId>)
{
let span = obligation.cause.span;
let mut err = match *error {
SelectionError::Unimplemented => {
if let ObligationCauseCode::CompareImplMethodObligation = obligation.cause.code {
span_err!(
self.tcx.sess, span, E0276,
"the requirement `{}` appears on the impl \
method but not on the corresponding trait method",
obligation.predicate);
return;
} else {
match obligation.predicate {
ty::Predicate::Trait(ref trait_predicate) => {
let trait_predicate =
self.resolve_type_vars_if_possible(trait_predicate);
if self.tcx.sess.has_errors() && trait_predicate.references_error() {
return;
} else {
let trait_ref = trait_predicate.to_poly_trait_ref();
if let Some(warning_node_id) = warning_node_id {
self.tcx.sess.add_lint(
::lint::builtin::UNSIZED_IN_TUPLE,
warning_node_id,
obligation.cause.span,
format!("the trait bound `{}` is not satisfied",
trait_ref.to_predicate()));
return;
}
let mut err = struct_span_err!(
self.tcx.sess, span, E0277,
"the trait bound `{}` is not satisfied",
trait_ref.to_predicate());
// Try to report a help message
if !trait_ref.has_infer_types() &&
self.predicate_can_apply(trait_ref) {
// If a where-clause may be useful, remind the
// user that they can add it.
//
// don't display an on-unimplemented note, as
// these notes will often be of the form
// "the type `T` can't be frobnicated"
// which is somewhat confusing.
err.help(&format!("consider adding a `where {}` bound",
trait_ref.to_predicate()));
} else if let Some(s) = self.on_unimplemented_note(trait_ref,
obligation) {
// If it has a custom "#[rustc_on_unimplemented]"
// error message, let's display it!
err.note(&s);
} else {
// If we can't show anything useful, try to find
// similar impls.
let impl_candidates =
self.find_similar_impl_candidates(trait_ref);
if impl_candidates.len() > 0 {
self.report_similar_impl_candidates(trait_ref, &mut err);
}
}
err
}
}
ty::Predicate::Equate(ref predicate) => {
let predicate = self.resolve_type_vars_if_possible(predicate);
let err = self.equality_predicate(span,
&predicate).err().unwrap();
struct_span_err!(self.tcx.sess, span, E0278,
"the requirement `{}` is not satisfied (`{}`)",
predicate, err)
}
ty::Predicate::RegionOutlives(ref predicate) => {
let predicate = self.resolve_type_vars_if_possible(predicate);
let err = self.region_outlives_predicate(span,
&predicate).err().unwrap();
struct_span_err!(self.tcx.sess, span, E0279,
"the requirement `{}` is not satisfied (`{}`)",
predicate, err)
}
ty::Predicate::Projection(..) | ty::Predicate::TypeOutlives(..) => {
let predicate =
self.resolve_type_vars_if_possible(&obligation.predicate);
struct_span_err!(self.tcx.sess, span, E0280,
"the requirement `{}` is not satisfied",
predicate)
}
ty::Predicate::ObjectSafe(trait_def_id) => {
let violations = self.tcx.object_safety_violations(trait_def_id);
let err = self.tcx.report_object_safety_error(span,
trait_def_id,
warning_node_id,
violations);
if let Some(err) = err {
err
} else {
return;
}
}
ty::Predicate::ClosureKind(closure_def_id, kind) => {
let found_kind = self.closure_kind(closure_def_id).unwrap();
let closure_span = self.tcx.map.span_if_local(closure_def_id).unwrap();
let mut err = struct_span_err!(
self.tcx.sess, closure_span, E0525,
"expected a closure that implements the `{}` trait, \
but this closure only implements `{}`",
kind,
found_kind);
err.span_note(
obligation.cause.span,
&format!("the requirement to implement \
`{}` derives from here", kind));
err.emit();
return;
}
ty::Predicate::WellFormed(ty) => {
// WF predicates cannot themselves make
// errors. They can only block due to
// ambiguity; otherwise, they always
// degenerate into other obligations
// (which may fail).
span_bug!(span, "WF predicate not satisfied for {:?}", ty);
}
ty::Predicate::Rfc1592(ref data) => {
span_bug!(
obligation.cause.span,
"RFC1592 predicate not satisfied for {:?}",
data);
}
}
}
}
OutputTypeParameterMismatch(ref expected_trait_ref, ref actual_trait_ref, ref e) => {
let expected_trait_ref = self.resolve_type_vars_if_possible(&*expected_trait_ref);
let actual_trait_ref = self.resolve_type_vars_if_possible(&*actual_trait_ref);
if actual_trait_ref.self_ty().references_error() {
return;
}
struct_span_err!(self.tcx.sess, span, E0281,
"type mismatch: the type `{}` implements the trait `{}`, \
but the trait `{}` is required ({})",
expected_trait_ref.self_ty(),
expected_trait_ref,
actual_trait_ref,
e)
}
TraitNotObjectSafe(did) => {
let violations = self.tcx.object_safety_violations(did);
let err = self.tcx.report_object_safety_error(span, did,
warning_node_id,
violations);
if let Some(err) = err {
err
} else {
return;
}
}
};
self.note_obligation_cause(&mut err, obligation);
err.emit();
}
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
pub fn recursive_type_with_infinite_size_error(self,
type_def_id: DefId)
-> DiagnosticBuilder<'tcx>
{
assert!(type_def_id.is_local());
let span = self.map.span_if_local(type_def_id).unwrap();
let mut err = struct_span_err!(self.sess, span, E0072,
"recursive type `{}` has infinite size",
self.item_path_str(type_def_id));
err.help(&format!("insert indirection (e.g., a `Box`, `Rc`, or `&`) \
at some point to make `{}` representable",
self.item_path_str(type_def_id)));
err
}
pub fn report_object_safety_error(self,
span: Span,
trait_def_id: DefId,
warning_node_id: Option<ast::NodeId>,
violations: Vec<ObjectSafetyViolation>)
-> Option<DiagnosticBuilder<'tcx>>
{
let mut err = match warning_node_id {
Some(_) => None,
None => {
Some(struct_span_err!(
self.sess, span, E0038,
"the trait `{}` cannot be made into an object",
self.item_path_str(trait_def_id)))
}
};
let mut reported_violations = FnvHashSet();
for violation in violations {
if !reported_violations.insert(violation.clone()) {
continue;
}
let buf;
let note = match violation {
ObjectSafetyViolation::SizedSelf => {
"the trait cannot require that `Self : Sized`"
}
ObjectSafetyViolation::SupertraitSelf => {
"the trait cannot use `Self` as a type parameter \
in the supertrait listing"
}
ObjectSafetyViolation::Method(method,
MethodViolationCode::StaticMethod) => {
buf = format!("method `{}` has no receiver",
method.name);
&buf
}
ObjectSafetyViolation::Method(method,
MethodViolationCode::ReferencesSelf) => {
buf = format!("method `{}` references the `Self` type \
in its arguments or return type",
method.name);
&buf
}
ObjectSafetyViolation::Method(method,
MethodViolationCode::Generic) => {
buf = format!("method `{}` has generic type parameters",
method.name);
&buf
}
};
match (warning_node_id, &mut err) {
(Some(node_id), &mut None) => {
self.sess.add_lint(
::lint::builtin::OBJECT_UNSAFE_FRAGMENT,
node_id,
span,
note.to_string());
}
(None, &mut Some(ref mut err)) => {
err.note(note);
}
_ => unreachable!()
}
}
err
}
}
impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
fn maybe_report_ambiguity(&self, obligation: &PredicateObligation<'tcx>) {
// Unable to successfully determine, probably means
// insufficient type information, but could mean
// ambiguous impls. The latter *ought* to be a
// coherence violation, so we don't report it here.
let predicate = self.resolve_type_vars_if_possible(&obligation.predicate);
debug!("maybe_report_ambiguity(predicate={:?}, obligation={:?})",
predicate,
obligation);
// Ambiguity errors are often caused as fallout from earlier
// errors. So just ignore them if this infcx is tainted.
if self.is_tainted_by_errors() {
return;
}
match predicate {
ty::Predicate::Trait(ref data) => {
let trait_ref = data.to_poly_trait_ref();
let self_ty = trait_ref.self_ty();
let all_types = &trait_ref.substs().types;
if all_types.references_error() {
} else {
// Typically, this ambiguity should only happen if
// there are unresolved type inference variables
// (otherwise it would suggest a coherence
// failure). But given #21974 that is not necessarily
// the case -- we can have multiple where clauses that
// are only distinguished by a region, which results
// in an ambiguity even when all types are fully
// known, since we don't dispatch based on region
// relationships.
// This is kind of a hack: it frequently happens that some earlier
// error prevents types from being fully inferred, and then we get
// a bunch of uninteresting errors saying something like "<generic
// #0> doesn't implement Sized". It may even be true that we
// could just skip over all checks where the self-ty is an
// inference variable, but I was afraid that there might be an
// inference variable created, registered as an obligation, and
// then never forced by writeback, and hence by skipping here we'd
// be ignoring the fact that we don't KNOW the type works
// out. Though even that would probably be harmless, given that
// we're only talking about builtin traits, which are known to be
// inhabited. But in any case I just threw in this check for
// has_errors() to be sure that compilation isn't happening
// anyway. In that case, why inundate the user.
if !self.tcx.sess.has_errors() {
if
self.tcx.lang_items.sized_trait()
.map_or(false, |sized_id| sized_id == trait_ref.def_id())
{
self.need_type_info(obligation.cause.span, self_ty);
} else {
let mut err = struct_span_err!(self.tcx.sess,
obligation.cause.span, E0283,
"type annotations required: \
cannot resolve `{}`",
predicate);
self.note_obligation_cause(&mut err, obligation);
err.emit();
}
}
}
}
ty::Predicate::WellFormed(ty) => {
// Same hacky approach as above to avoid deluging user
// with error messages.
if !ty.references_error() && !self.tcx.sess.has_errors() {
self.need_type_info(obligation.cause.span, ty);
}
}
_ => {
if !self.tcx.sess.has_errors() {
let mut err = struct_span_err!(self.tcx.sess,
obligation.cause.span, E0284,
"type annotations required: \
cannot resolve `{}`",
predicate);
self.note_obligation_cause(&mut err, obligation);
err.emit();
}
}
}
}
/// Returns whether the trait predicate may apply for *some* assignment
/// to the type parameters.
fn predicate_can_apply(&self, pred: ty::PolyTraitRef<'tcx>) -> bool {
struct ParamToVarFolder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
var_map: FnvHashMap<Ty<'tcx>, Ty<'tcx>>
}
impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for ParamToVarFolder<'a, 'gcx, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.infcx.tcx }
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
if let ty::TyParam(..) = ty.sty {
let infcx = self.infcx;
self.var_map.entry(ty).or_insert_with(|| infcx.next_ty_var())
} else {
ty.super_fold_with(self)
}
}
}
self.probe(|_| {
let mut selcx = SelectionContext::new(self);
let cleaned_pred = pred.fold_with(&mut ParamToVarFolder {
infcx: self,
var_map: FnvHashMap()
});
let cleaned_pred = super::project::normalize(
&mut selcx,
ObligationCause::dummy(),
&cleaned_pred
).value;
let obligation = Obligation::new(
ObligationCause::dummy(),
cleaned_pred.to_predicate()
);
selcx.evaluate_obligation(&obligation)
})
}
fn need_type_info(&self, span: Span, ty: Ty<'tcx>) {
span_err!(self.tcx.sess, span, E0282,
"unable to infer enough type information about `{}`; \
type annotations or generic parameter binding required",
ty);
}
fn note_obligation_cause<T>(&self,
err: &mut DiagnosticBuilder,
obligation: &Obligation<'tcx, T>)
where T: fmt::Display
{
self.note_obligation_cause_code(err,
&obligation.predicate,
&obligation.cause.code);
}
fn note_obligation_cause_code<T>(&self,
err: &mut DiagnosticBuilder,
predicate: &T,
cause_code: &ObligationCauseCode<'tcx>)
where T: fmt::Display
{
let tcx = self.tcx;
match *cause_code {
ObligationCauseCode::MiscObligation => { }
ObligationCauseCode::SliceOrArrayElem => {
err.note("slice and array elements must have `Sized` type");
}
ObligationCauseCode::TupleElem => {
err.note("tuple elements must have `Sized` type");
}
ObligationCauseCode::ProjectionWf(data) => {
err.note(&format!("required so that the projection `{}` is well-formed",
data));
}
ObligationCauseCode::ReferenceOutlivesReferent(ref_ty) => {
err.note(&format!("required so that reference `{}` does not outlive its referent",
ref_ty));
}
ObligationCauseCode::ItemObligation(item_def_id) => {
let item_name = tcx.item_path_str(item_def_id);
err.note(&format!("required by `{}`", item_name));
}
ObligationCauseCode::ObjectCastObligation(object_ty) => {
err.note(&format!("required for the cast to the object type `{}`",
self.ty_to_string(object_ty)));
}
ObligationCauseCode::RepeatVec => {
err.note("the `Copy` trait is required because the \
repeated element will be copied");
}
ObligationCauseCode::VariableType(_) => {
err.note("all local variables must have a statically known size");
}
ObligationCauseCode::ReturnType => {
err.note("the return type of a function must have a \
statically known size");
}
ObligationCauseCode::AssignmentLhsSized => {
err.note("the left-hand-side of an assignment must have a statically known size");
}
ObligationCauseCode::StructInitializerSized => {
err.note("structs must have a statically known size to be initialized");
}
ObligationCauseCode::ClosureCapture(var_id, _, builtin_bound) => {
let def_id = tcx.lang_items.from_builtin_kind(builtin_bound).unwrap();
let trait_name = tcx.item_path_str(def_id);
let name = tcx.local_var_name_str(var_id);
err.note(
&format!("the closure that captures `{}` requires that all captured variables \
implement the trait `{}`",
name,
trait_name));
}
ObligationCauseCode::FieldSized => {
err.note("only the last field of a struct or enum variant \
may have a dynamically sized type");
}
ObligationCauseCode::ConstSized => {
err.note("constant expressions must have a statically known size");
}
ObligationCauseCode::SharedStatic => {
err.note("shared static variables must have a type that implements `Sync`");
}
ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
let parent_trait_ref = self.resolve_type_vars_if_possible(&data.parent_trait_ref);
err.note(&format!("required because it appears within the type `{}`",
parent_trait_ref.0.self_ty()));
let parent_predicate = parent_trait_ref.to_predicate();
self.note_obligation_cause_code(err,
&parent_predicate,
&data.parent_code);
}
ObligationCauseCode::ImplDerivedObligation(ref data) => {
let parent_trait_ref = self.resolve_type_vars_if_possible(&data.parent_trait_ref);
err.note(
&format!("required because of the requirements on the impl of `{}` for `{}`",
parent_trait_ref,
parent_trait_ref.0.self_ty()));
let parent_predicate = parent_trait_ref.to_predicate();
self.note_obligation_cause_code(err,
&parent_predicate,
&data.parent_code);
}
ObligationCauseCode::CompareImplMethodObligation => {
err.note(
&format!("the requirement `{}` appears on the impl method \
but not on the corresponding trait method",
predicate));
}
}
}
fn suggest_new_overflow_limit(&self, err: &mut DiagnosticBuilder) {
let current_limit = self.tcx.sess.recursion_limit.get();
let suggested_limit = current_limit * 2;
err.note(&format!(
"consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate",
suggested_limit));
}
}