blob: 173c55e35d51e5a680cd62c84929e22caa798193 [file] [log] [blame]
// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Utilities for formatting and printing strings.
#![stable(feature = "rust1", since = "1.0.0")]
use prelude::v1::*;
use cell::{UnsafeCell, Cell, RefCell, Ref, RefMut, BorrowState};
use marker::PhantomData;
use mem;
use num::flt2dec;
use ops::Deref;
use result;
use slice;
use str;
#[unstable(feature = "fmt_flags_align", issue = "27726")]
/// Possible alignments returned by `Formatter::align`
#[derive(Debug)]
pub enum Alignment {
/// Indication that contents should be left-aligned.
Left,
/// Indication that contents should be right-aligned.
Right,
/// Indication that contents should be center-aligned.
Center,
/// No alignment was requested.
Unknown,
}
#[stable(feature = "debug_builders", since = "1.2.0")]
pub use self::builders::{DebugStruct, DebugTuple, DebugSet, DebugList, DebugMap};
mod num;
mod builders;
#[unstable(feature = "fmt_internals", reason = "internal to format_args!",
issue = "0")]
#[doc(hidden)]
pub mod rt {
pub mod v1;
}
#[stable(feature = "rust1", since = "1.0.0")]
/// The type returned by formatter methods.
pub type Result = result::Result<(), Error>;
/// The error type which is returned from formatting a message into a stream.
///
/// This type does not support transmission of an error other than that an error
/// occurred. Any extra information must be arranged to be transmitted through
/// some other means.
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Copy, Clone, Debug, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct Error;
/// A collection of methods that are required to format a message into a stream.
///
/// This trait is the type which this modules requires when formatting
/// information. This is similar to the standard library's `io::Write` trait,
/// but it is only intended for use in libcore.
///
/// This trait should generally not be implemented by consumers of the standard
/// library. The `write!` macro accepts an instance of `io::Write`, and the
/// `io::Write` trait is favored over implementing this trait.
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Write {
/// Writes a slice of bytes into this writer, returning whether the write
/// succeeded.
///
/// This method can only succeed if the entire byte slice was successfully
/// written, and this method will not return until all data has been
/// written or an error occurs.
///
/// # Errors
///
/// This function will return an instance of `Error` on error.
#[stable(feature = "rust1", since = "1.0.0")]
fn write_str(&mut self, s: &str) -> Result;
/// Writes a `char` into this writer, returning whether the write succeeded.
///
/// A single `char` may be encoded as more than one byte.
/// This method can only succeed if the entire byte sequence was successfully
/// written, and this method will not return until all data has been
/// written or an error occurs.
///
/// # Errors
///
/// This function will return an instance of `Error` on error.
#[stable(feature = "fmt_write_char", since = "1.1.0")]
fn write_char(&mut self, c: char) -> Result {
self.write_str(unsafe {
str::from_utf8_unchecked(c.encode_utf8().as_slice())
})
}
/// Glue for usage of the `write!` macro with implementors of this trait.
///
/// This method should generally not be invoked manually, but rather through
/// the `write!` macro itself.
#[stable(feature = "rust1", since = "1.0.0")]
fn write_fmt(&mut self, args: Arguments) -> Result {
// This Adapter is needed to allow `self` (of type `&mut
// Self`) to be cast to a Write (below) without
// requiring a `Sized` bound.
struct Adapter<'a,T: ?Sized +'a>(&'a mut T);
impl<'a, T: ?Sized> Write for Adapter<'a, T>
where T: Write
{
fn write_str(&mut self, s: &str) -> Result {
self.0.write_str(s)
}
fn write_char(&mut self, c: char) -> Result {
self.0.write_char(c)
}
fn write_fmt(&mut self, args: Arguments) -> Result {
self.0.write_fmt(args)
}
}
write(&mut Adapter(self), args)
}
}
#[stable(feature = "fmt_write_blanket_impl", since = "1.4.0")]
impl<'a, W: Write + ?Sized> Write for &'a mut W {
fn write_str(&mut self, s: &str) -> Result {
(**self).write_str(s)
}
fn write_char(&mut self, c: char) -> Result {
(**self).write_char(c)
}
fn write_fmt(&mut self, args: Arguments) -> Result {
(**self).write_fmt(args)
}
}
/// A struct to represent both where to emit formatting strings to and how they
/// should be formatted. A mutable version of this is passed to all formatting
/// traits.
#[allow(missing_debug_implementations)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Formatter<'a> {
flags: u32,
fill: char,
align: rt::v1::Alignment,
width: Option<usize>,
precision: Option<usize>,
buf: &'a mut (Write+'a),
curarg: slice::Iter<'a, ArgumentV1<'a>>,
args: &'a [ArgumentV1<'a>],
}
// NB. Argument is essentially an optimized partially applied formatting function,
// equivalent to `exists T.(&T, fn(&T, &mut Formatter) -> Result`.
enum Void {}
/// This struct represents the generic "argument" which is taken by the Xprintf
/// family of functions. It contains a function to format the given value. At
/// compile time it is ensured that the function and the value have the correct
/// types, and then this struct is used to canonicalize arguments to one type.
#[derive(Copy)]
#[allow(missing_debug_implementations)]
#[unstable(feature = "fmt_internals", reason = "internal to format_args!",
issue = "0")]
#[doc(hidden)]
pub struct ArgumentV1<'a> {
value: &'a Void,
formatter: fn(&Void, &mut Formatter) -> Result,
}
#[unstable(feature = "fmt_internals", reason = "internal to format_args!",
issue = "0")]
impl<'a> Clone for ArgumentV1<'a> {
fn clone(&self) -> ArgumentV1<'a> {
*self
}
}
impl<'a> ArgumentV1<'a> {
#[inline(never)]
fn show_usize(x: &usize, f: &mut Formatter) -> Result {
Display::fmt(x, f)
}
#[doc(hidden)]
#[unstable(feature = "fmt_internals", reason = "internal to format_args!",
issue = "0")]
pub fn new<'b, T>(x: &'b T,
f: fn(&T, &mut Formatter) -> Result) -> ArgumentV1<'b> {
unsafe {
ArgumentV1 {
formatter: mem::transmute(f),
value: mem::transmute(x)
}
}
}
#[doc(hidden)]
#[unstable(feature = "fmt_internals", reason = "internal to format_args!",
issue = "0")]
pub fn from_usize(x: &usize) -> ArgumentV1 {
ArgumentV1::new(x, ArgumentV1::show_usize)
}
fn as_usize(&self) -> Option<usize> {
if self.formatter as usize == ArgumentV1::show_usize as usize {
Some(unsafe { *(self.value as *const _ as *const usize) })
} else {
None
}
}
}
// flags available in the v1 format of format_args
#[derive(Copy, Clone)]
#[allow(dead_code)] // SignMinus isn't currently used
enum FlagV1 { SignPlus, SignMinus, Alternate, SignAwareZeroPad, }
impl<'a> Arguments<'a> {
/// When using the format_args!() macro, this function is used to generate the
/// Arguments structure.
#[doc(hidden)] #[inline]
#[unstable(feature = "fmt_internals", reason = "internal to format_args!",
issue = "0")]
pub fn new_v1(pieces: &'a [&'a str],
args: &'a [ArgumentV1<'a>]) -> Arguments<'a> {
Arguments {
pieces: pieces,
fmt: None,
args: args
}
}
/// This function is used to specify nonstandard formatting parameters.
/// The `pieces` array must be at least as long as `fmt` to construct
/// a valid Arguments structure. Also, any `Count` within `fmt` that is
/// `CountIsParam` or `CountIsNextParam` has to point to an argument
/// created with `argumentusize`. However, failing to do so doesn't cause
/// unsafety, but will ignore invalid .
#[doc(hidden)] #[inline]
#[unstable(feature = "fmt_internals", reason = "internal to format_args!",
issue = "0")]
pub fn new_v1_formatted(pieces: &'a [&'a str],
args: &'a [ArgumentV1<'a>],
fmt: &'a [rt::v1::Argument]) -> Arguments<'a> {
Arguments {
pieces: pieces,
fmt: Some(fmt),
args: args
}
}
}
/// This structure represents a safely precompiled version of a format string
/// and its arguments. This cannot be generated at runtime because it cannot
/// safely be done so, so no constructors are given and the fields are private
/// to prevent modification.
///
/// The `format_args!` macro will safely create an instance of this structure
/// and pass it to a function or closure, passed as the first argument. The
/// macro validates the format string at compile-time so usage of the `write`
/// and `format` functions can be safely performed.
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Copy, Clone)]
pub struct Arguments<'a> {
// Format string pieces to print.
pieces: &'a [&'a str],
// Placeholder specs, or `None` if all specs are default (as in "{}{}").
fmt: Option<&'a [rt::v1::Argument]>,
// Dynamic arguments for interpolation, to be interleaved with string
// pieces. (Every argument is preceded by a string piece.)
args: &'a [ArgumentV1<'a>],
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Debug for Arguments<'a> {
fn fmt(&self, fmt: &mut Formatter) -> Result {
Display::fmt(self, fmt)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Display for Arguments<'a> {
fn fmt(&self, fmt: &mut Formatter) -> Result {
write(fmt.buf, *self)
}
}
/// Format trait for the `?` character.
///
/// `Debug` should format the output in a programmer-facing, debugging context.
///
/// Generally speaking, you should just `derive` a `Debug` implementation.
///
/// When used with the alternate format specifier `#?`, the output is pretty-printed.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// This trait can be used with `#[derive]` if all fields implement `Debug`. When
/// `derive`d for structs, it will use the name of the `struct`, then `{`, then a
/// comma-separated list of each field's name and `Debug` value, then `}`. For
/// `enum`s, it will use the name of the variant and, if applicable, `(`, then the
/// `Debug` values of the fields, then `)`.
///
/// # Examples
///
/// Deriving an implementation:
///
/// ```
/// #[derive(Debug)]
/// struct Point {
/// x: i32,
/// y: i32,
/// }
///
/// let origin = Point { x: 0, y: 0 };
///
/// println!("The origin is: {:?}", origin);
/// ```
///
/// Manually implementing:
///
/// ```
/// use std::fmt;
///
/// struct Point {
/// x: i32,
/// y: i32,
/// }
///
/// impl fmt::Debug for Point {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// write!(f, "Point {{ x: {}, y: {} }}", self.x, self.y)
/// }
/// }
///
/// let origin = Point { x: 0, y: 0 };
///
/// println!("The origin is: {:?}", origin);
/// ```
///
/// This outputs:
///
/// ```text
/// The origin is: Point { x: 0, y: 0 }
/// ```
///
/// There are a number of `debug_*` methods on `Formatter` to help you with manual
/// implementations, such as [`debug_struct`][debug_struct].
///
/// `Debug` implementations using either `derive` or the debug builder API
/// on `Formatter` support pretty printing using the alternate flag: `{:#?}`.
///
/// [debug_struct]: ../../std/fmt/struct.Formatter.html#method.debug_struct
///
/// Pretty printing with `#?`:
///
/// ```
/// #[derive(Debug)]
/// struct Point {
/// x: i32,
/// y: i32,
/// }
///
/// let origin = Point { x: 0, y: 0 };
///
/// println!("The origin is: {:#?}", origin);
/// ```
///
/// This outputs:
///
/// ```text
/// The origin is: Point {
/// x: 0,
/// y: 0
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented = "`{Self}` cannot be formatted using `:?`; if it is \
defined in your crate, add `#[derive(Debug)]` or \
manually implement it"]
#[lang = "debug_trait"]
pub trait Debug {
/// Formats the value using the given formatter.
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for an empty format, `{}`.
///
/// `Display` is similar to [`Debug`][debug], but `Display` is for user-facing
/// output, and so cannot be derived.
///
/// [debug]: trait.Debug.html
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Implementing `Display` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Point {
/// x: i32,
/// y: i32,
/// }
///
/// impl fmt::Display for Point {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// write!(f, "({}, {})", self.x, self.y)
/// }
/// }
///
/// let origin = Point { x: 0, y: 0 };
///
/// println!("The origin is: {}", origin);
/// ```
#[rustc_on_unimplemented = "`{Self}` cannot be formatted with the default \
formatter; try using `:?` instead if you are using \
a format string"]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Display {
/// Formats the value using the given formatter.
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `o` character.
///
/// The `Octal` trait should format its output as a number in base-8.
///
/// The alternate flag, `#`, adds a `0o` in front of the output.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `i32`:
///
/// ```
/// let x = 42; // 42 is '52' in octal
///
/// assert_eq!(format!("{:o}", x), "52");
/// assert_eq!(format!("{:#o}", x), "0o52");
/// ```
///
/// Implementing `Octal` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::Octal for Length {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// let val = self.0;
///
/// write!(f, "{:o}", val) // delegate to i32's implementation
/// }
/// }
///
/// let l = Length(9);
///
/// println!("l as octal is: {:o}", l);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Octal {
/// Formats the value using the given formatter.
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `b` character.
///
/// The `Binary` trait should format its output as a number in binary.
///
/// The alternate flag, `#`, adds a `0b` in front of the output.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `i32`:
///
/// ```
/// let x = 42; // 42 is '101010' in binary
///
/// assert_eq!(format!("{:b}", x), "101010");
/// assert_eq!(format!("{:#b}", x), "0b101010");
/// ```
///
/// Implementing `Binary` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::Binary for Length {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// let val = self.0;
///
/// write!(f, "{:b}", val) // delegate to i32's implementation
/// }
/// }
///
/// let l = Length(107);
///
/// println!("l as binary is: {:b}", l);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Binary {
/// Formats the value using the given formatter.
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `x` character.
///
/// The `LowerHex` trait should format its output as a number in hexadecimal, with `a` through `f`
/// in lower case.
///
/// The alternate flag, `#`, adds a `0x` in front of the output.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `i32`:
///
/// ```
/// let x = 42; // 42 is '2a' in hex
///
/// assert_eq!(format!("{:x}", x), "2a");
/// assert_eq!(format!("{:#x}", x), "0x2a");
/// ```
///
/// Implementing `LowerHex` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::LowerHex for Length {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// let val = self.0;
///
/// write!(f, "{:x}", val) // delegate to i32's implementation
/// }
/// }
///
/// let l = Length(9);
///
/// println!("l as hex is: {:x}", l);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait LowerHex {
/// Formats the value using the given formatter.
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `X` character.
///
/// The `UpperHex` trait should format its output as a number in hexadecimal, with `A` through `F`
/// in upper case.
///
/// The alternate flag, `#`, adds a `0x` in front of the output.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `i32`:
///
/// ```
/// let x = 42; // 42 is '2A' in hex
///
/// assert_eq!(format!("{:X}", x), "2A");
/// assert_eq!(format!("{:#X}", x), "0x2A");
/// ```
///
/// Implementing `UpperHex` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::UpperHex for Length {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// let val = self.0;
///
/// write!(f, "{:X}", val) // delegate to i32's implementation
/// }
/// }
///
/// let l = Length(9);
///
/// println!("l as hex is: {:X}", l);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait UpperHex {
/// Formats the value using the given formatter.
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `p` character.
///
/// The `Pointer` trait should format its output as a memory location. This is commonly presented
/// as hexadecimal.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `&i32`:
///
/// ```
/// let x = &42;
///
/// let address = format!("{:p}", x); // this produces something like '0x7f06092ac6d0'
/// ```
///
/// Implementing `Pointer` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::Pointer for Length {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// // use `as` to convert to a `*const T`, which implements Pointer, which we can use
///
/// write!(f, "{:p}", self as *const Length)
/// }
/// }
///
/// let l = Length(42);
///
/// println!("l is in memory here: {:p}", l);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Pointer {
/// Formats the value using the given formatter.
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `e` character.
///
/// The `LowerExp` trait should format its output in scientific notation with a lower-case `e`.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `i32`:
///
/// ```
/// let x = 42.0; // 42.0 is '4.2e1' in scientific notation
///
/// assert_eq!(format!("{:e}", x), "4.2e1");
/// ```
///
/// Implementing `LowerExp` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::LowerExp for Length {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// let val = self.0;
/// write!(f, "{}e1", val / 10)
/// }
/// }
///
/// let l = Length(100);
///
/// println!("l in scientific notation is: {:e}", l);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait LowerExp {
/// Formats the value using the given formatter.
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, &mut Formatter) -> Result;
}
/// Format trait for the `E` character.
///
/// The `UpperExp` trait should format its output in scientific notation with an upper-case `E`.
///
/// For more information on formatters, see [the module-level documentation][module].
///
/// [module]: ../../std/fmt/index.html
///
/// # Examples
///
/// Basic usage with `f32`:
///
/// ```
/// let x = 42.0; // 42.0 is '4.2E1' in scientific notation
///
/// assert_eq!(format!("{:E}", x), "4.2E1");
/// ```
///
/// Implementing `UpperExp` on a type:
///
/// ```
/// use std::fmt;
///
/// struct Length(i32);
///
/// impl fmt::UpperExp for Length {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// let val = self.0;
/// write!(f, "{}E1", val / 10)
/// }
/// }
///
/// let l = Length(100);
///
/// println!("l in scientific notation is: {:E}", l);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub trait UpperExp {
/// Formats the value using the given formatter.
#[stable(feature = "rust1", since = "1.0.0")]
fn fmt(&self, &mut Formatter) -> Result;
}
/// The `write` function takes an output stream, a precompiled format string,
/// and a list of arguments. The arguments will be formatted according to the
/// specified format string into the output stream provided.
///
/// # Arguments
///
/// * output - the buffer to write output to
/// * args - the precompiled arguments generated by `format_args!`
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::fmt;
///
/// let mut output = String::new();
/// fmt::write(&mut output, format_args!("Hello {}!", "world"))
/// .expect("Error occurred while trying to write in String");
/// assert_eq!(output, "Hello world!");
/// ```
///
/// Please note that using [`write!`][write_macro] might be preferrable. Example:
///
/// ```
/// use std::fmt::Write;
///
/// let mut output = String::new();
/// write!(&mut output, "Hello {}!", "world")
/// .expect("Error occurred while trying to write in String");
/// assert_eq!(output, "Hello world!");
/// ```
///
/// [write_macro]: ../../std/macro.write!.html
#[stable(feature = "rust1", since = "1.0.0")]
pub fn write(output: &mut Write, args: Arguments) -> Result {
let mut formatter = Formatter {
flags: 0,
width: None,
precision: None,
buf: output,
align: rt::v1::Alignment::Unknown,
fill: ' ',
args: args.args,
curarg: args.args.iter(),
};
let mut pieces = args.pieces.iter();
match args.fmt {
None => {
// We can use default formatting parameters for all arguments.
for (arg, piece) in args.args.iter().zip(pieces.by_ref()) {
formatter.buf.write_str(*piece)?;
(arg.formatter)(arg.value, &mut formatter)?;
}
}
Some(fmt) => {
// Every spec has a corresponding argument that is preceded by
// a string piece.
for (arg, piece) in fmt.iter().zip(pieces.by_ref()) {
formatter.buf.write_str(*piece)?;
formatter.run(arg)?;
}
}
}
// There can be only one trailing string piece left.
if let Some(piece) = pieces.next() {
formatter.buf.write_str(*piece)?;
}
Ok(())
}
impl<'a> Formatter<'a> {
// First up is the collection of functions used to execute a format string
// at runtime. This consumes all of the compile-time statics generated by
// the format! syntax extension.
fn run(&mut self, arg: &rt::v1::Argument) -> Result {
// Fill in the format parameters into the formatter
self.fill = arg.format.fill;
self.align = arg.format.align;
self.flags = arg.format.flags;
self.width = self.getcount(&arg.format.width);
self.precision = self.getcount(&arg.format.precision);
// Extract the correct argument
let value = match arg.position {
rt::v1::Position::Next => { *self.curarg.next().unwrap() }
rt::v1::Position::At(i) => self.args[i],
};
// Then actually do some printing
(value.formatter)(value.value, self)
}
fn getcount(&mut self, cnt: &rt::v1::Count) -> Option<usize> {
match *cnt {
rt::v1::Count::Is(n) => Some(n),
rt::v1::Count::Implied => None,
rt::v1::Count::Param(i) => {
self.args[i].as_usize()
}
rt::v1::Count::NextParam => {
self.curarg.next().and_then(|arg| arg.as_usize())
}
}
}
// Helper methods used for padding and processing formatting arguments that
// all formatting traits can use.
/// Performs the correct padding for an integer which has already been
/// emitted into a str. The str should *not* contain the sign for the
/// integer, that will be added by this method.
///
/// # Arguments
///
/// * is_nonnegative - whether the original integer was either positive or zero.
/// * prefix - if the '#' character (Alternate) is provided, this
/// is the prefix to put in front of the number.
/// * buf - the byte array that the number has been formatted into
///
/// This function will correctly account for the flags provided as well as
/// the minimum width. It will not take precision into account.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pad_integral(&mut self,
is_nonnegative: bool,
prefix: &str,
buf: &str)
-> Result {
use char::CharExt;
let mut width = buf.len();
let mut sign = None;
if !is_nonnegative {
sign = Some('-'); width += 1;
} else if self.sign_plus() {
sign = Some('+'); width += 1;
}
let mut prefixed = false;
if self.alternate() {
prefixed = true; width += prefix.chars().count();
}
// Writes the sign if it exists, and then the prefix if it was requested
let write_prefix = |f: &mut Formatter| {
if let Some(c) = sign {
f.buf.write_str(unsafe {
str::from_utf8_unchecked(c.encode_utf8().as_slice())
})?;
}
if prefixed { f.buf.write_str(prefix) }
else { Ok(()) }
};
// The `width` field is more of a `min-width` parameter at this point.
match self.width {
// If there's no minimum length requirements then we can just
// write the bytes.
None => {
write_prefix(self)?; self.buf.write_str(buf)
}
// Check if we're over the minimum width, if so then we can also
// just write the bytes.
Some(min) if width >= min => {
write_prefix(self)?; self.buf.write_str(buf)
}
// The sign and prefix goes before the padding if the fill character
// is zero
Some(min) if self.sign_aware_zero_pad() => {
self.fill = '0';
write_prefix(self)?;
self.with_padding(min - width, rt::v1::Alignment::Right, |f| {
f.buf.write_str(buf)
})
}
// Otherwise, the sign and prefix goes after the padding
Some(min) => {
self.with_padding(min - width, rt::v1::Alignment::Right, |f| {
write_prefix(f)?; f.buf.write_str(buf)
})
}
}
}
/// This function takes a string slice and emits it to the internal buffer
/// after applying the relevant formatting flags specified. The flags
/// recognized for generic strings are:
///
/// * width - the minimum width of what to emit
/// * fill/align - what to emit and where to emit it if the string
/// provided needs to be padded
/// * precision - the maximum length to emit, the string is truncated if it
/// is longer than this length
///
/// Notably this function ignored the `flag` parameters
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pad(&mut self, s: &str) -> Result {
// Make sure there's a fast path up front
if self.width.is_none() && self.precision.is_none() {
return self.buf.write_str(s);
}
// The `precision` field can be interpreted as a `max-width` for the
// string being formatted.
let s = if let Some(max) = self.precision {
// If our string is longer that the precision, then we must have
// truncation. However other flags like `fill`, `width` and `align`
// must act as always.
if let Some((i, _)) = s.char_indices().skip(max).next() {
&s[..i]
} else {
&s
}
} else {
&s
};
// The `width` field is more of a `min-width` parameter at this point.
match self.width {
// If we're under the maximum length, and there's no minimum length
// requirements, then we can just emit the string
None => self.buf.write_str(s),
// If we're under the maximum width, check if we're over the minimum
// width, if so it's as easy as just emitting the string.
Some(width) if s.chars().count() >= width => {
self.buf.write_str(s)
}
// If we're under both the maximum and the minimum width, then fill
// up the minimum width with the specified string + some alignment.
Some(width) => {
let align = rt::v1::Alignment::Left;
self.with_padding(width - s.chars().count(), align, |me| {
me.buf.write_str(s)
})
}
}
}
/// Runs a callback, emitting the correct padding either before or
/// afterwards depending on whether right or left alignment is requested.
fn with_padding<F>(&mut self, padding: usize, default: rt::v1::Alignment,
f: F) -> Result
where F: FnOnce(&mut Formatter) -> Result,
{
use char::CharExt;
let align = match self.align {
rt::v1::Alignment::Unknown => default,
_ => self.align
};
let (pre_pad, post_pad) = match align {
rt::v1::Alignment::Left => (0, padding),
rt::v1::Alignment::Right |
rt::v1::Alignment::Unknown => (padding, 0),
rt::v1::Alignment::Center => (padding / 2, (padding + 1) / 2),
};
let fill = self.fill.encode_utf8();
let fill = unsafe {
str::from_utf8_unchecked(fill.as_slice())
};
for _ in 0..pre_pad {
self.buf.write_str(fill)?;
}
f(self)?;
for _ in 0..post_pad {
self.buf.write_str(fill)?;
}
Ok(())
}
/// Takes the formatted parts and applies the padding.
/// Assumes that the caller already has rendered the parts with required precision,
/// so that `self.precision` can be ignored.
fn pad_formatted_parts(&mut self, formatted: &flt2dec::Formatted) -> Result {
if let Some(mut width) = self.width {
// for the sign-aware zero padding, we render the sign first and
// behave as if we had no sign from the beginning.
let mut formatted = formatted.clone();
let mut align = self.align;
let old_fill = self.fill;
if self.sign_aware_zero_pad() {
// a sign always goes first
let sign = unsafe { str::from_utf8_unchecked(formatted.sign) };
self.buf.write_str(sign)?;
// remove the sign from the formatted parts
formatted.sign = b"";
width = if width < sign.len() { 0 } else { width - sign.len() };
align = rt::v1::Alignment::Right;
self.fill = '0';
}
// remaining parts go through the ordinary padding process.
let len = formatted.len();
let ret = if width <= len { // no padding
self.write_formatted_parts(&formatted)
} else {
self.with_padding(width - len, align, |f| {
f.write_formatted_parts(&formatted)
})
};
self.fill = old_fill;
ret
} else {
// this is the common case and we take a shortcut
self.write_formatted_parts(formatted)
}
}
fn write_formatted_parts(&mut self, formatted: &flt2dec::Formatted) -> Result {
fn write_bytes(buf: &mut Write, s: &[u8]) -> Result {
buf.write_str(unsafe { str::from_utf8_unchecked(s) })
}
if !formatted.sign.is_empty() {
write_bytes(self.buf, formatted.sign)?;
}
for part in formatted.parts {
match *part {
flt2dec::Part::Zero(mut nzeroes) => {
const ZEROES: &'static str = // 64 zeroes
"0000000000000000000000000000000000000000000000000000000000000000";
while nzeroes > ZEROES.len() {
self.buf.write_str(ZEROES)?;
nzeroes -= ZEROES.len();
}
if nzeroes > 0 {
self.buf.write_str(&ZEROES[..nzeroes])?;
}
}
flt2dec::Part::Num(mut v) => {
let mut s = [0; 5];
let len = part.len();
for c in s[..len].iter_mut().rev() {
*c = b'0' + (v % 10) as u8;
v /= 10;
}
write_bytes(self.buf, &s[..len])?;
}
flt2dec::Part::Copy(buf) => {
write_bytes(self.buf, buf)?;
}
}
}
Ok(())
}
/// Writes some data to the underlying buffer contained within this
/// formatter.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn write_str(&mut self, data: &str) -> Result {
self.buf.write_str(data)
}
/// Writes some formatted information into this instance
#[stable(feature = "rust1", since = "1.0.0")]
pub fn write_fmt(&mut self, fmt: Arguments) -> Result {
write(self.buf, fmt)
}
/// Flags for formatting (packed version of rt::Flag)
#[stable(feature = "rust1", since = "1.0.0")]
pub fn flags(&self) -> u32 { self.flags }
/// Character used as 'fill' whenever there is alignment
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn fill(&self) -> char { self.fill }
/// Flag indicating what form of alignment was requested
#[unstable(feature = "fmt_flags_align", reason = "method was just created",
issue = "27726")]
pub fn align(&self) -> Alignment {
match self.align {
rt::v1::Alignment::Left => Alignment::Left,
rt::v1::Alignment::Right => Alignment::Right,
rt::v1::Alignment::Center => Alignment::Center,
rt::v1::Alignment::Unknown => Alignment::Unknown,
}
}
/// Optionally specified integer width that the output should be
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn width(&self) -> Option<usize> { self.width }
/// Optionally specified precision for numeric types
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn precision(&self) -> Option<usize> { self.precision }
/// Determines if the `+` flag was specified.
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn sign_plus(&self) -> bool { self.flags & (1 << FlagV1::SignPlus as u32) != 0 }
/// Determines if the `-` flag was specified.
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn sign_minus(&self) -> bool { self.flags & (1 << FlagV1::SignMinus as u32) != 0 }
/// Determines if the `#` flag was specified.
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn alternate(&self) -> bool { self.flags & (1 << FlagV1::Alternate as u32) != 0 }
/// Determines if the `0` flag was specified.
#[stable(feature = "fmt_flags", since = "1.5.0")]
pub fn sign_aware_zero_pad(&self) -> bool {
self.flags & (1 << FlagV1::SignAwareZeroPad as u32) != 0
}
/// Creates a `DebugStruct` builder designed to assist with creation of
/// `fmt::Debug` implementations for structs.
///
/// # Examples
///
/// ```rust
/// use std::fmt;
///
/// struct Foo {
/// bar: i32,
/// baz: String,
/// }
///
/// impl fmt::Debug for Foo {
/// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
/// fmt.debug_struct("Foo")
/// .field("bar", &self.bar)
/// .field("baz", &self.baz)
/// .finish()
/// }
/// }
///
/// // prints "Foo { bar: 10, baz: "Hello World" }"
/// println!("{:?}", Foo { bar: 10, baz: "Hello World".to_string() });
/// ```
#[stable(feature = "debug_builders", since = "1.2.0")]
#[inline]
pub fn debug_struct<'b>(&'b mut self, name: &str) -> DebugStruct<'b, 'a> {
builders::debug_struct_new(self, name)
}
/// Creates a `DebugTuple` builder designed to assist with creation of
/// `fmt::Debug` implementations for tuple structs.
///
/// # Examples
///
/// ```rust
/// use std::fmt;
///
/// struct Foo(i32, String);
///
/// impl fmt::Debug for Foo {
/// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
/// fmt.debug_tuple("Foo")
/// .field(&self.0)
/// .field(&self.1)
/// .finish()
/// }
/// }
///
/// // prints "Foo(10, "Hello World")"
/// println!("{:?}", Foo(10, "Hello World".to_string()));
/// ```
#[stable(feature = "debug_builders", since = "1.2.0")]
#[inline]
pub fn debug_tuple<'b>(&'b mut self, name: &str) -> DebugTuple<'b, 'a> {
builders::debug_tuple_new(self, name)
}
/// Creates a `DebugList` builder designed to assist with creation of
/// `fmt::Debug` implementations for list-like structures.
///
/// # Examples
///
/// ```rust
/// use std::fmt;
///
/// struct Foo(Vec<i32>);
///
/// impl fmt::Debug for Foo {
/// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
/// fmt.debug_list().entries(self.0.iter()).finish()
/// }
/// }
///
/// // prints "[10, 11]"
/// println!("{:?}", Foo(vec![10, 11]));
/// ```
#[stable(feature = "debug_builders", since = "1.2.0")]
#[inline]
pub fn debug_list<'b>(&'b mut self) -> DebugList<'b, 'a> {
builders::debug_list_new(self)
}
/// Creates a `DebugSet` builder designed to assist with creation of
/// `fmt::Debug` implementations for set-like structures.
///
/// # Examples
///
/// ```rust
/// use std::fmt;
///
/// struct Foo(Vec<i32>);
///
/// impl fmt::Debug for Foo {
/// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
/// fmt.debug_set().entries(self.0.iter()).finish()
/// }
/// }
///
/// // prints "{10, 11}"
/// println!("{:?}", Foo(vec![10, 11]));
/// ```
#[stable(feature = "debug_builders", since = "1.2.0")]
#[inline]
pub fn debug_set<'b>(&'b mut self) -> DebugSet<'b, 'a> {
builders::debug_set_new(self)
}
/// Creates a `DebugMap` builder designed to assist with creation of
/// `fmt::Debug` implementations for map-like structures.
///
/// # Examples
///
/// ```rust
/// use std::fmt;
///
/// struct Foo(Vec<(String, i32)>);
///
/// impl fmt::Debug for Foo {
/// fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
/// fmt.debug_map().entries(self.0.iter().map(|&(ref k, ref v)| (k, v))).finish()
/// }
/// }
///
/// // prints "{"A": 10, "B": 11}"
/// println!("{:?}", Foo(vec![("A".to_string(), 10), ("B".to_string(), 11)]));
/// ```
#[stable(feature = "debug_builders", since = "1.2.0")]
#[inline]
pub fn debug_map<'b>(&'b mut self) -> DebugMap<'b, 'a> {
builders::debug_map_new(self)
}
}
#[stable(since = "1.2.0", feature = "formatter_write")]
impl<'a> Write for Formatter<'a> {
fn write_str(&mut self, s: &str) -> Result {
self.buf.write_str(s)
}
fn write_char(&mut self, c: char) -> Result {
self.buf.write_char(c)
}
fn write_fmt(&mut self, args: Arguments) -> Result {
write(self.buf, args)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Display for Error {
fn fmt(&self, f: &mut Formatter) -> Result {
Display::fmt("an error occurred when formatting an argument", f)
}
}
// Implementations of the core formatting traits
macro_rules! fmt_refs {
($($tr:ident),*) => {
$(
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: ?Sized + $tr> $tr for &'a T {
fn fmt(&self, f: &mut Formatter) -> Result { $tr::fmt(&**self, f) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: ?Sized + $tr> $tr for &'a mut T {
fn fmt(&self, f: &mut Formatter) -> Result { $tr::fmt(&**self, f) }
}
)*
}
}
fmt_refs! { Debug, Display, Octal, Binary, LowerHex, UpperHex, LowerExp, UpperExp }
#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for bool {
fn fmt(&self, f: &mut Formatter) -> Result {
Display::fmt(self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Display for bool {
fn fmt(&self, f: &mut Formatter) -> Result {
Display::fmt(if *self { "true" } else { "false" }, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for str {
fn fmt(&self, f: &mut Formatter) -> Result {
f.write_char('"')?;
let mut from = 0;
for (i, c) in self.char_indices() {
let esc = c.escape_debug();
// If char needs escaping, flush backlog so far and write, else skip
if esc.len() != 1 {
f.write_str(&self[from..i])?;
for c in esc {
f.write_char(c)?;
}
from = i + c.len_utf8();
}
}
f.write_str(&self[from..])?;
f.write_char('"')
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Display for str {
fn fmt(&self, f: &mut Formatter) -> Result {
f.pad(self)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for char {
fn fmt(&self, f: &mut Formatter) -> Result {
f.write_char('\'')?;
for c in self.escape_debug() {
f.write_char(c)?
}
f.write_char('\'')
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Display for char {
fn fmt(&self, f: &mut Formatter) -> Result {
if f.width.is_none() && f.precision.is_none() {
f.write_char(*self)
} else {
f.pad(unsafe {
str::from_utf8_unchecked(self.encode_utf8().as_slice())
})
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Pointer for *const T {
fn fmt(&self, f: &mut Formatter) -> Result {
let old_width = f.width;
let old_flags = f.flags;
// The alternate flag is already treated by LowerHex as being special-
// it denotes whether to prefix with 0x. We use it to work out whether
// or not to zero extend, and then unconditionally set it to get the
// prefix.
if f.alternate() {
f.flags |= 1 << (FlagV1::SignAwareZeroPad as u32);
if let None = f.width {
f.width = Some(((mem::size_of::<usize>() * 8) / 4) + 2);
}
}
f.flags |= 1 << (FlagV1::Alternate as u32);
let ret = LowerHex::fmt(&(*self as *const () as usize), f);
f.width = old_width;
f.flags = old_flags;
ret
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Pointer for *mut T {
fn fmt(&self, f: &mut Formatter) -> Result {
Pointer::fmt(&(*self as *const T), f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: ?Sized> Pointer for &'a T {
fn fmt(&self, f: &mut Formatter) -> Result {
Pointer::fmt(&(*self as *const T), f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T: ?Sized> Pointer for &'a mut T {
fn fmt(&self, f: &mut Formatter) -> Result {
Pointer::fmt(&(&**self as *const T), f)
}
}
// Common code of floating point Debug and Display.
fn float_to_decimal_common<T>(fmt: &mut Formatter, num: &T, negative_zero: bool) -> Result
where T: flt2dec::DecodableFloat
{
let force_sign = fmt.sign_plus();
let sign = match (force_sign, negative_zero) {
(false, false) => flt2dec::Sign::Minus,
(false, true) => flt2dec::Sign::MinusRaw,
(true, false) => flt2dec::Sign::MinusPlus,
(true, true) => flt2dec::Sign::MinusPlusRaw,
};
let mut buf = [0; 1024]; // enough for f32 and f64
let mut parts = [flt2dec::Part::Zero(0); 16];
let formatted = if let Some(precision) = fmt.precision {
flt2dec::to_exact_fixed_str(flt2dec::strategy::grisu::format_exact, *num, sign,
precision, false, &mut buf, &mut parts)
} else {
flt2dec::to_shortest_str(flt2dec::strategy::grisu::format_shortest, *num, sign,
0, false, &mut buf, &mut parts)
};
fmt.pad_formatted_parts(&formatted)
}
// Common code of floating point LowerExp and UpperExp.
fn float_to_exponential_common<T>(fmt: &mut Formatter, num: &T, upper: bool) -> Result
where T: flt2dec::DecodableFloat
{
let force_sign = fmt.sign_plus();
let sign = match force_sign {
false => flt2dec::Sign::Minus,
true => flt2dec::Sign::MinusPlus,
};
let mut buf = [0; 1024]; // enough for f32 and f64
let mut parts = [flt2dec::Part::Zero(0); 16];
let formatted = if let Some(precision) = fmt.precision {
// 1 integral digit + `precision` fractional digits = `precision + 1` total digits
flt2dec::to_exact_exp_str(flt2dec::strategy::grisu::format_exact, *num, sign,
precision + 1, upper, &mut buf, &mut parts)
} else {
flt2dec::to_shortest_exp_str(flt2dec::strategy::grisu::format_shortest, *num, sign,
(0, 0), upper, &mut buf, &mut parts)
};
fmt.pad_formatted_parts(&formatted)
}
macro_rules! floating { ($ty:ident) => {
#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for $ty {
fn fmt(&self, fmt: &mut Formatter) -> Result {
float_to_decimal_common(fmt, self, true)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Display for $ty {
fn fmt(&self, fmt: &mut Formatter) -> Result {
float_to_decimal_common(fmt, self, false)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl LowerExp for $ty {
fn fmt(&self, fmt: &mut Formatter) -> Result {
float_to_exponential_common(fmt, self, false)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl UpperExp for $ty {
fn fmt(&self, fmt: &mut Formatter) -> Result {
float_to_exponential_common(fmt, self, true)
}
}
} }
floating! { f32 }
floating! { f64 }
// Implementation of Display/Debug for various core types
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Debug for *const T {
fn fmt(&self, f: &mut Formatter) -> Result { Pointer::fmt(self, f) }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Debug for *mut T {
fn fmt(&self, f: &mut Formatter) -> Result { Pointer::fmt(self, f) }
}
macro_rules! peel {
($name:ident, $($other:ident,)*) => (tuple! { $($other,)* })
}
macro_rules! tuple {
() => ();
( $($name:ident,)+ ) => (
#[stable(feature = "rust1", since = "1.0.0")]
impl<$($name:Debug),*> Debug for ($($name,)*) {
#[allow(non_snake_case, unused_assignments, deprecated)]
fn fmt(&self, f: &mut Formatter) -> Result {
let mut builder = f.debug_tuple("");
let ($(ref $name,)*) = *self;
$(
builder.field($name);
)*
builder.finish()
}
}
peel! { $($name,)* }
)
}
tuple! { T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Debug> Debug for [T] {
fn fmt(&self, f: &mut Formatter) -> Result {
f.debug_list().entries(self.iter()).finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Debug for () {
fn fmt(&self, f: &mut Formatter) -> Result {
f.pad("()")
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> Debug for PhantomData<T> {
fn fmt(&self, f: &mut Formatter) -> Result {
f.pad("PhantomData")
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Copy + Debug> Debug for Cell<T> {
fn fmt(&self, f: &mut Formatter) -> Result {
f.debug_struct("Cell")
.field("value", &self.get())
.finish()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Debug> Debug for RefCell<T> {
fn fmt(&self, f: &mut Formatter) -> Result {
match self.borrow_state() {
BorrowState::Unused | BorrowState::Reading => {
f.debug_struct("RefCell")
.field("value", &self.borrow())
.finish()
}
BorrowState::Writing => {
f.debug_struct("RefCell")
.field("value", &"<borrowed>")
.finish()
}
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'b, T: ?Sized + Debug> Debug for Ref<'b, T> {
fn fmt(&self, f: &mut Formatter) -> Result {
Debug::fmt(&**self, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'b, T: ?Sized + Debug> Debug for RefMut<'b, T> {
fn fmt(&self, f: &mut Formatter) -> Result {
Debug::fmt(&*(self.deref()), f)
}
}
#[stable(feature = "core_impl_debug", since = "1.9.0")]
impl<T: ?Sized + Debug> Debug for UnsafeCell<T> {
fn fmt(&self, f: &mut Formatter) -> Result {
f.pad("UnsafeCell")
}
}
// If you expected tests to be here, look instead at the run-pass/ifmt.rs test,
// it's a lot easier than creating all of the rt::Piece structures here.