| //! Transforms syntax into `Path` objects, ideally with accounting for hygiene |
| |
| use std::iter; |
| |
| use crate::{lower::LowerCtx, type_ref::ConstRef}; |
| |
| use hir_expand::{ |
| mod_path::resolve_crate_root, |
| name::{AsName, Name}, |
| }; |
| use intern::{sym, Interned}; |
| use syntax::ast::{self, AstNode, HasGenericArgs, HasTypeBounds}; |
| |
| use crate::{ |
| path::{AssociatedTypeBinding, GenericArg, GenericArgs, ModPath, Path, PathKind}, |
| type_ref::{LifetimeRef, TypeBound, TypeRef}, |
| }; |
| |
| /// Converts an `ast::Path` to `Path`. Works with use trees. |
| /// It correctly handles `$crate` based path from macro call. |
| pub(super) fn lower_path(ctx: &LowerCtx<'_>, mut path: ast::Path) -> Option<Path> { |
| let mut kind = PathKind::Plain; |
| let mut type_anchor = None; |
| let mut segments = Vec::new(); |
| let mut generic_args = Vec::new(); |
| let span_map = ctx.span_map(); |
| loop { |
| let segment = path.segment()?; |
| |
| if segment.coloncolon_token().is_some() { |
| kind = PathKind::Abs; |
| } |
| |
| match segment.kind()? { |
| ast::PathSegmentKind::Name(name_ref) => { |
| if name_ref.text() == "$crate" { |
| break kind = resolve_crate_root( |
| ctx.db.upcast(), |
| span_map.span_for_range(name_ref.syntax().text_range()).ctx, |
| ) |
| .map(PathKind::DollarCrate) |
| .unwrap_or(PathKind::Crate); |
| } |
| let name = name_ref.as_name(); |
| let args = segment |
| .generic_arg_list() |
| .and_then(|it| lower_generic_args(ctx, it)) |
| .or_else(|| { |
| lower_generic_args_from_fn_path( |
| ctx, |
| segment.param_list(), |
| segment.ret_type(), |
| ) |
| }) |
| .map(Interned::new); |
| if args.is_some() { |
| generic_args.resize(segments.len(), None); |
| generic_args.push(args); |
| } |
| segments.push(name); |
| } |
| ast::PathSegmentKind::SelfTypeKw => { |
| segments.push(Name::new_symbol_root(sym::Self_.clone())); |
| } |
| ast::PathSegmentKind::Type { type_ref, trait_ref } => { |
| assert!(path.qualifier().is_none()); // this can only occur at the first segment |
| |
| let self_type = TypeRef::from_ast(ctx, type_ref?); |
| |
| match trait_ref { |
| // <T>::foo |
| None => { |
| type_anchor = Some(Interned::new(self_type)); |
| kind = PathKind::Plain; |
| } |
| // <T as Trait<A>>::Foo desugars to Trait<Self=T, A>::Foo |
| Some(trait_ref) => { |
| let Path::Normal { mod_path, generic_args: path_generic_args, .. } = |
| Path::from_src(ctx, trait_ref.path()?)? |
| else { |
| return None; |
| }; |
| let num_segments = mod_path.segments().len(); |
| kind = mod_path.kind; |
| |
| segments.extend(mod_path.segments().iter().cloned().rev()); |
| if let Some(path_generic_args) = path_generic_args { |
| generic_args.resize(segments.len() - num_segments, None); |
| generic_args.extend(Vec::from(path_generic_args).into_iter().rev()); |
| } else { |
| generic_args.resize(segments.len(), None); |
| } |
| |
| let self_type = GenericArg::Type(self_type); |
| |
| // Insert the type reference (T in the above example) as Self parameter for the trait |
| let last_segment = generic_args.get_mut(segments.len() - num_segments)?; |
| *last_segment = Some(Interned::new(match last_segment.take() { |
| Some(it) => GenericArgs { |
| args: iter::once(self_type) |
| .chain(it.args.iter().cloned()) |
| .collect(), |
| |
| has_self_type: true, |
| bindings: it.bindings.clone(), |
| desugared_from_fn: it.desugared_from_fn, |
| }, |
| None => GenericArgs { |
| args: Box::new([self_type]), |
| has_self_type: true, |
| ..GenericArgs::empty() |
| }, |
| })); |
| } |
| } |
| } |
| ast::PathSegmentKind::CrateKw => { |
| kind = PathKind::Crate; |
| break; |
| } |
| ast::PathSegmentKind::SelfKw => { |
| // don't break out if `self` is the last segment of a path, this mean we got a |
| // use tree like `foo::{self}` which we want to resolve as `foo` |
| if !segments.is_empty() { |
| kind = PathKind::SELF; |
| break; |
| } |
| } |
| ast::PathSegmentKind::SuperKw => { |
| let nested_super_count = if let PathKind::Super(n) = kind { n } else { 0 }; |
| kind = PathKind::Super(nested_super_count + 1); |
| } |
| } |
| path = match qualifier(&path) { |
| Some(it) => it, |
| None => break, |
| }; |
| } |
| segments.reverse(); |
| if !generic_args.is_empty() { |
| generic_args.resize(segments.len(), None); |
| generic_args.reverse(); |
| } |
| |
| if segments.is_empty() && kind == PathKind::Plain && type_anchor.is_none() { |
| // plain empty paths don't exist, this means we got a single `self` segment as our path |
| kind = PathKind::SELF; |
| } |
| |
| // handle local_inner_macros : |
| // Basically, even in rustc it is quite hacky: |
| // https://github.com/rust-lang/rust/blob/614f273e9388ddd7804d5cbc80b8865068a3744e/src/librustc_resolve/macros.rs#L456 |
| // We follow what it did anyway :) |
| if segments.len() == 1 && kind == PathKind::Plain { |
| if let Some(_macro_call) = path.syntax().parent().and_then(ast::MacroCall::cast) { |
| let syn_ctxt = span_map.span_for_range(path.segment()?.syntax().text_range()).ctx; |
| if let Some(macro_call_id) = ctx.db.lookup_intern_syntax_context(syn_ctxt).outer_expn { |
| if ctx.db.lookup_intern_macro_call(macro_call_id).def.local_inner { |
| kind = match resolve_crate_root(ctx.db.upcast(), syn_ctxt) { |
| Some(crate_root) => PathKind::DollarCrate(crate_root), |
| None => PathKind::Crate, |
| } |
| } |
| } |
| } |
| } |
| |
| let mod_path = Interned::new(ModPath::from_segments(kind, segments)); |
| return Some(Path::Normal { |
| type_anchor, |
| mod_path, |
| generic_args: if generic_args.is_empty() { None } else { Some(generic_args.into()) }, |
| }); |
| |
| fn qualifier(path: &ast::Path) -> Option<ast::Path> { |
| if let Some(q) = path.qualifier() { |
| return Some(q); |
| } |
| // FIXME: this bottom up traversal is not too precise. |
| // Should we handle do a top-down analysis, recording results? |
| let use_tree_list = path.syntax().ancestors().find_map(ast::UseTreeList::cast)?; |
| let use_tree = use_tree_list.parent_use_tree(); |
| use_tree.path() |
| } |
| } |
| |
| pub(super) fn lower_generic_args( |
| lower_ctx: &LowerCtx<'_>, |
| node: ast::GenericArgList, |
| ) -> Option<GenericArgs> { |
| let mut args = Vec::new(); |
| let mut bindings = Vec::new(); |
| for generic_arg in node.generic_args() { |
| match generic_arg { |
| ast::GenericArg::TypeArg(type_arg) => { |
| let type_ref = TypeRef::from_ast_opt(lower_ctx, type_arg.ty()); |
| type_ref.walk(&mut |tr| { |
| if let TypeRef::ImplTrait(bounds) = tr { |
| lower_ctx.update_impl_traits_bounds(bounds.clone()); |
| } |
| }); |
| args.push(GenericArg::Type(type_ref)); |
| } |
| ast::GenericArg::AssocTypeArg(assoc_type_arg) => { |
| if assoc_type_arg.param_list().is_some() { |
| // We currently ignore associated return type bounds. |
| continue; |
| } |
| if let Some(name_ref) = assoc_type_arg.name_ref() { |
| // Nested impl traits like `impl Foo<Assoc = impl Bar>` are allowed |
| let _guard = lower_ctx.outer_impl_trait_scope(false); |
| let name = name_ref.as_name(); |
| let args = assoc_type_arg |
| .generic_arg_list() |
| .and_then(|args| lower_generic_args(lower_ctx, args)) |
| .map(Interned::new); |
| let type_ref = assoc_type_arg.ty().map(|it| TypeRef::from_ast(lower_ctx, it)); |
| let type_ref = type_ref.inspect(|tr| { |
| tr.walk(&mut |tr| { |
| if let TypeRef::ImplTrait(bounds) = tr { |
| lower_ctx.update_impl_traits_bounds(bounds.clone()); |
| } |
| }); |
| }); |
| let bounds = if let Some(l) = assoc_type_arg.type_bound_list() { |
| l.bounds() |
| .map(|it| Interned::new(TypeBound::from_ast(lower_ctx, it))) |
| .collect() |
| } else { |
| Box::default() |
| }; |
| bindings.push(AssociatedTypeBinding { name, args, type_ref, bounds }); |
| } |
| } |
| ast::GenericArg::LifetimeArg(lifetime_arg) => { |
| if let Some(lifetime) = lifetime_arg.lifetime() { |
| let lifetime_ref = LifetimeRef::new(&lifetime); |
| args.push(GenericArg::Lifetime(lifetime_ref)) |
| } |
| } |
| ast::GenericArg::ConstArg(arg) => { |
| let arg = ConstRef::from_const_arg(lower_ctx, Some(arg)); |
| args.push(GenericArg::Const(arg)) |
| } |
| } |
| } |
| |
| if args.is_empty() && bindings.is_empty() { |
| return None; |
| } |
| Some(GenericArgs { |
| args: args.into_boxed_slice(), |
| has_self_type: false, |
| bindings: bindings.into_boxed_slice(), |
| desugared_from_fn: false, |
| }) |
| } |
| |
| /// Collect `GenericArgs` from the parts of a fn-like path, i.e. `Fn(X, Y) |
| /// -> Z` (which desugars to `Fn<(X, Y), Output=Z>`). |
| fn lower_generic_args_from_fn_path( |
| ctx: &LowerCtx<'_>, |
| params: Option<ast::ParamList>, |
| ret_type: Option<ast::RetType>, |
| ) -> Option<GenericArgs> { |
| let params = params?; |
| let mut param_types = Vec::new(); |
| for param in params.params() { |
| let type_ref = TypeRef::from_ast_opt(ctx, param.ty()); |
| param_types.push(type_ref); |
| } |
| let args = Box::new([GenericArg::Type(TypeRef::Tuple(param_types))]); |
| let bindings = if let Some(ret_type) = ret_type { |
| let type_ref = TypeRef::from_ast_opt(ctx, ret_type.ty()); |
| Box::new([AssociatedTypeBinding { |
| name: Name::new_symbol_root(sym::Output.clone()), |
| args: None, |
| type_ref: Some(type_ref), |
| bounds: Box::default(), |
| }]) |
| } else { |
| // -> () |
| let type_ref = TypeRef::Tuple(Vec::new()); |
| Box::new([AssociatedTypeBinding { |
| name: Name::new_symbol_root(sym::Output.clone()), |
| args: None, |
| type_ref: Some(type_ref), |
| bounds: Box::default(), |
| }]) |
| }; |
| Some(GenericArgs { args, has_self_type: false, bindings, desugared_from_fn: true }) |
| } |