blob: 9bb0d7d0ce6f6dbf53584f02e0e6f0602d89312d [file] [log] [blame]
//! Panic runtime for Miri.
//!
//! The core pieces of the runtime are:
//! - An implementation of `__rust_maybe_catch_panic` that pushes the invoked stack frame with
//! some extra metadata derived from the panic-catching arguments of `__rust_maybe_catch_panic`.
//! - A hack in `libpanic_unwind` that calls the `miri_start_unwind` intrinsic instead of the
//! target-native panic runtime. (This lives in the rustc repo.)
//! - An implementation of `miri_start_unwind` that stores its argument (the panic payload), and then
//! immediately returns, but on the *unwind* edge (not the normal return edge), thus initiating unwinding.
//! - A hook executed each time a frame is popped, such that if the frame pushed by `__rust_maybe_catch_panic`
//! gets popped *during unwinding*, we take the panic payload and store it according to the extra
//! metadata we remembered when pushing said frame.
use rustc_ast::Mutability;
use rustc_middle::{mir, ty};
use rustc_target::spec::PanicStrategy;
use rustc_target::spec::abi::Abi;
use self::helpers::check_arg_count;
use crate::*;
/// Holds all of the relevant data for when unwinding hits a `try` frame.
#[derive(Debug)]
pub struct CatchUnwindData<'tcx> {
/// The `catch_fn` callback to call in case of a panic.
catch_fn: Pointer,
/// The `data` argument for that callback.
data: ImmTy<'tcx>,
/// The return place from the original call to `try`.
dest: MPlaceTy<'tcx>,
/// The return block from the original call to `try`.
ret: Option<mir::BasicBlock>,
}
impl VisitProvenance for CatchUnwindData<'_> {
fn visit_provenance(&self, visit: &mut VisitWith<'_>) {
let CatchUnwindData { catch_fn, data, dest, ret: _ } = self;
catch_fn.visit_provenance(visit);
data.visit_provenance(visit);
dest.visit_provenance(visit);
}
}
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
/// Handles the special `miri_start_unwind` intrinsic, which is called
/// by libpanic_unwind to delegate the actual unwinding process to Miri.
fn handle_miri_start_unwind(&mut self, payload: &OpTy<'tcx>) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
trace!("miri_start_unwind: {:?}", this.frame().instance());
let payload = this.read_immediate(payload)?;
let thread = this.active_thread_mut();
thread.panic_payloads.push(payload);
interp_ok(())
}
/// Handles the `try` intrinsic, the underlying implementation of `std::panicking::try`.
fn handle_catch_unwind(
&mut self,
args: &[OpTy<'tcx>],
dest: &MPlaceTy<'tcx>,
ret: Option<mir::BasicBlock>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
// Signature:
// fn r#try(try_fn: fn(*mut u8), data: *mut u8, catch_fn: fn(*mut u8, *mut u8)) -> i32
// Calls `try_fn` with `data` as argument. If that executes normally, returns 0.
// If that unwinds, calls `catch_fn` with the first argument being `data` and
// then second argument being a target-dependent `payload` (i.e. it is up to us to define
// what that is), and returns 1.
// The `payload` is passed (by libstd) to `__rust_panic_cleanup`, which is then expected to
// return a `Box<dyn Any + Send + 'static>`.
// In Miri, `miri_start_unwind` is passed exactly that type, so we make the `payload` simply
// a pointer to `Box<dyn Any + Send + 'static>`.
// Get all the arguments.
let [try_fn, data, catch_fn] = check_arg_count(args)?;
let try_fn = this.read_pointer(try_fn)?;
let data = this.read_immediate(data)?;
let catch_fn = this.read_pointer(catch_fn)?;
// Now we make a function call, and pass `data` as first and only argument.
let f_instance = this.get_ptr_fn(try_fn)?.as_instance()?;
trace!("try_fn: {:?}", f_instance);
this.call_function(
f_instance,
Abi::Rust,
&[data.clone()],
None,
// Directly return to caller.
StackPopCleanup::Goto { ret, unwind: mir::UnwindAction::Continue },
)?;
// We ourselves will return `0`, eventually (will be overwritten if we catch a panic).
this.write_null(dest)?;
// In unwind mode, we tag this frame with the extra data needed to catch unwinding.
// This lets `handle_stack_pop` (below) know that we should stop unwinding
// when we pop this frame.
if this.tcx.sess.panic_strategy() == PanicStrategy::Unwind {
this.frame_mut().extra.catch_unwind =
Some(CatchUnwindData { catch_fn, data, dest: dest.clone(), ret });
}
interp_ok(())
}
fn handle_stack_pop_unwind(
&mut self,
mut extra: FrameExtra<'tcx>,
unwinding: bool,
) -> InterpResult<'tcx, ReturnAction> {
let this = self.eval_context_mut();
trace!("handle_stack_pop_unwind(extra = {:?}, unwinding = {})", extra, unwinding);
// We only care about `catch_panic` if we're unwinding - if we're doing a normal
// return, then we don't need to do anything special.
if let (true, Some(catch_unwind)) = (unwinding, extra.catch_unwind.take()) {
// We've just popped a frame that was pushed by `try`,
// and we are unwinding, so we should catch that.
trace!(
"unwinding: found catch_panic frame during unwinding: {:?}",
this.frame().instance()
);
// We set the return value of `try` to 1, since there was a panic.
this.write_scalar(Scalar::from_i32(1), &catch_unwind.dest)?;
// The Thread's `panic_payload` holds what was passed to `miri_start_unwind`.
// This is exactly the second argument we need to pass to `catch_fn`.
let payload = this.active_thread_mut().panic_payloads.pop().unwrap();
// Push the `catch_fn` stackframe.
let f_instance = this.get_ptr_fn(catch_unwind.catch_fn)?.as_instance()?;
trace!("catch_fn: {:?}", f_instance);
this.call_function(
f_instance,
Abi::Rust,
&[catch_unwind.data, payload],
None,
// Directly return to caller of `try`.
StackPopCleanup::Goto {
ret: catch_unwind.ret,
unwind: mir::UnwindAction::Continue,
},
)?;
// We pushed a new stack frame, the engine should not do any jumping now!
interp_ok(ReturnAction::NoJump)
} else {
interp_ok(ReturnAction::Normal)
}
}
/// Start a panic in the interpreter with the given message as payload.
fn start_panic(&mut self, msg: &str, unwind: mir::UnwindAction) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
// First arg: message.
let msg = this.allocate_str(msg, MiriMemoryKind::Machine.into(), Mutability::Not)?;
// Call the lang item.
let panic = this.tcx.lang_items().panic_fn().unwrap();
let panic = ty::Instance::mono(this.tcx.tcx, panic);
this.call_function(
panic,
Abi::Rust,
&[this.mplace_to_ref(&msg)?],
None,
StackPopCleanup::Goto { ret: None, unwind },
)
}
/// Start a non-unwinding panic in the interpreter with the given message as payload.
fn start_panic_nounwind(&mut self, msg: &str) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
// First arg: message.
let msg = this.allocate_str(msg, MiriMemoryKind::Machine.into(), Mutability::Not)?;
// Call the lang item.
let panic = this.tcx.lang_items().panic_nounwind().unwrap();
let panic = ty::Instance::mono(this.tcx.tcx, panic);
this.call_function(
panic,
Abi::Rust,
&[this.mplace_to_ref(&msg)?],
None,
StackPopCleanup::Goto { ret: None, unwind: mir::UnwindAction::Unreachable },
)
}
fn assert_panic(
&mut self,
msg: &mir::AssertMessage<'tcx>,
unwind: mir::UnwindAction,
) -> InterpResult<'tcx> {
use rustc_middle::mir::AssertKind::*;
let this = self.eval_context_mut();
match msg {
BoundsCheck { index, len } => {
// Forward to `panic_bounds_check` lang item.
// First arg: index.
let index = this.read_immediate(&this.eval_operand(index, None)?)?;
// Second arg: len.
let len = this.read_immediate(&this.eval_operand(len, None)?)?;
// Call the lang item.
let panic_bounds_check = this.tcx.lang_items().panic_bounds_check_fn().unwrap();
let panic_bounds_check = ty::Instance::mono(this.tcx.tcx, panic_bounds_check);
this.call_function(
panic_bounds_check,
Abi::Rust,
&[index, len],
None,
StackPopCleanup::Goto { ret: None, unwind },
)?;
}
MisalignedPointerDereference { required, found } => {
// Forward to `panic_misaligned_pointer_dereference` lang item.
// First arg: required.
let required = this.read_immediate(&this.eval_operand(required, None)?)?;
// Second arg: found.
let found = this.read_immediate(&this.eval_operand(found, None)?)?;
// Call the lang item.
let panic_misaligned_pointer_dereference =
this.tcx.lang_items().panic_misaligned_pointer_dereference_fn().unwrap();
let panic_misaligned_pointer_dereference =
ty::Instance::mono(this.tcx.tcx, panic_misaligned_pointer_dereference);
this.call_function(
panic_misaligned_pointer_dereference,
Abi::Rust,
&[required, found],
None,
StackPopCleanup::Goto { ret: None, unwind },
)?;
}
_ => {
// Call the lang item associated with this message.
let fn_item = this.tcx.require_lang_item(msg.panic_function(), None);
let instance = ty::Instance::mono(this.tcx.tcx, fn_item);
this.call_function(instance, Abi::Rust, &[], None, StackPopCleanup::Goto {
ret: None,
unwind,
})?;
}
}
interp_ok(())
}
}