| //! Defines the `IntoIter` owned iterator for arrays. |
| |
| use crate::intrinsics::transmute_unchecked; |
| use crate::iter::{self, FusedIterator, TrustedLen, TrustedRandomAccessNoCoerce}; |
| use crate::mem::MaybeUninit; |
| use crate::num::NonZero; |
| use crate::ops::{IndexRange, Range}; |
| use crate::{fmt, ptr}; |
| |
| /// A by-value [array] iterator. |
| #[stable(feature = "array_value_iter", since = "1.51.0")] |
| #[rustc_insignificant_dtor] |
| #[rustc_diagnostic_item = "ArrayIntoIter"] |
| pub struct IntoIter<T, const N: usize> { |
| /// This is the array we are iterating over. |
| /// |
| /// Elements with index `i` where `alive.start <= i < alive.end` have not |
| /// been yielded yet and are valid array entries. Elements with indices `i |
| /// < alive.start` or `i >= alive.end` have been yielded already and must |
| /// not be accessed anymore! Those dead elements might even be in a |
| /// completely uninitialized state! |
| /// |
| /// So the invariants are: |
| /// - `data[alive]` is alive (i.e. contains valid elements) |
| /// - `data[..alive.start]` and `data[alive.end..]` are dead (i.e. the |
| /// elements were already read and must not be touched anymore!) |
| data: [MaybeUninit<T>; N], |
| |
| /// The elements in `data` that have not been yielded yet. |
| /// |
| /// Invariants: |
| /// - `alive.end <= N` |
| /// |
| /// (And the `IndexRange` type requires `alive.start <= alive.end`.) |
| alive: IndexRange, |
| } |
| |
| // Note: the `#[rustc_skip_during_method_dispatch(array)]` on `trait IntoIterator` |
| // hides this implementation from explicit `.into_iter()` calls on editions < 2021, |
| // so those calls will still resolve to the slice implementation, by reference. |
| #[stable(feature = "array_into_iter_impl", since = "1.53.0")] |
| impl<T, const N: usize> IntoIterator for [T; N] { |
| type Item = T; |
| type IntoIter = IntoIter<T, N>; |
| |
| /// Creates a consuming iterator, that is, one that moves each value out of |
| /// the array (from start to end). |
| /// |
| /// The array cannot be used after calling this unless `T` implements |
| /// `Copy`, so the whole array is copied. |
| /// |
| /// Arrays have special behavior when calling `.into_iter()` prior to the |
| /// 2021 edition -- see the [array] Editions section for more information. |
| /// |
| /// [array]: prim@array |
| fn into_iter(self) -> Self::IntoIter { |
| // SAFETY: The transmute here is actually safe. The docs of `MaybeUninit` |
| // promise: |
| // |
| // > `MaybeUninit<T>` is guaranteed to have the same size and alignment |
| // > as `T`. |
| // |
| // The docs even show a transmute from an array of `MaybeUninit<T>` to |
| // an array of `T`. |
| // |
| // With that, this initialization satisfies the invariants. |
| // |
| // FIXME: If normal `transmute` ever gets smart enough to allow this |
| // directly, use it instead of `transmute_unchecked`. |
| let data: [MaybeUninit<T>; N] = unsafe { transmute_unchecked(self) }; |
| IntoIter { data, alive: IndexRange::zero_to(N) } |
| } |
| } |
| |
| impl<T, const N: usize> IntoIter<T, N> { |
| /// Creates a new iterator over the given `array`. |
| #[stable(feature = "array_value_iter", since = "1.51.0")] |
| #[deprecated(since = "1.59.0", note = "use `IntoIterator::into_iter` instead")] |
| pub fn new(array: [T; N]) -> Self { |
| IntoIterator::into_iter(array) |
| } |
| |
| /// Creates an iterator over the elements in a partially-initialized buffer. |
| /// |
| /// If you have a fully-initialized array, then use [`IntoIterator`]. |
| /// But this is useful for returning partial results from unsafe code. |
| /// |
| /// # Safety |
| /// |
| /// - The `buffer[initialized]` elements must all be initialized. |
| /// - The range must be canonical, with `initialized.start <= initialized.end`. |
| /// - The range must be in-bounds for the buffer, with `initialized.end <= N`. |
| /// (Like how indexing `[0][100..100]` fails despite the range being empty.) |
| /// |
| /// It's sound to have more elements initialized than mentioned, though that |
| /// will most likely result in them being leaked. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(array_into_iter_constructors)] |
| /// #![feature(maybe_uninit_uninit_array_transpose)] |
| /// use std::array::IntoIter; |
| /// use std::mem::MaybeUninit; |
| /// |
| /// # // Hi! Thanks for reading the code. This is restricted to `Copy` because |
| /// # // otherwise it could leak. A fully-general version this would need a drop |
| /// # // guard to handle panics from the iterator, but this works for an example. |
| /// fn next_chunk<T: Copy, const N: usize>( |
| /// it: &mut impl Iterator<Item = T>, |
| /// ) -> Result<[T; N], IntoIter<T, N>> { |
| /// let mut buffer = [const { MaybeUninit::uninit() }; N]; |
| /// let mut i = 0; |
| /// while i < N { |
| /// match it.next() { |
| /// Some(x) => { |
| /// buffer[i].write(x); |
| /// i += 1; |
| /// } |
| /// None => { |
| /// // SAFETY: We've initialized the first `i` items |
| /// unsafe { |
| /// return Err(IntoIter::new_unchecked(buffer, 0..i)); |
| /// } |
| /// } |
| /// } |
| /// } |
| /// |
| /// // SAFETY: We've initialized all N items |
| /// unsafe { Ok(buffer.transpose().assume_init()) } |
| /// } |
| /// |
| /// let r: [_; 4] = next_chunk(&mut (10..16)).unwrap(); |
| /// assert_eq!(r, [10, 11, 12, 13]); |
| /// let r: IntoIter<_, 40> = next_chunk(&mut (10..16)).unwrap_err(); |
| /// assert_eq!(r.collect::<Vec<_>>(), vec![10, 11, 12, 13, 14, 15]); |
| /// ``` |
| #[unstable(feature = "array_into_iter_constructors", issue = "91583")] |
| #[rustc_const_unstable(feature = "const_array_into_iter_constructors", issue = "91583")] |
| pub const unsafe fn new_unchecked( |
| buffer: [MaybeUninit<T>; N], |
| initialized: Range<usize>, |
| ) -> Self { |
| // SAFETY: one of our safety conditions is that the range is canonical. |
| let alive = unsafe { IndexRange::new_unchecked(initialized.start, initialized.end) }; |
| Self { data: buffer, alive } |
| } |
| |
| /// Creates an iterator over `T` which returns no elements. |
| /// |
| /// If you just need an empty iterator, then use |
| /// [`iter::empty()`](crate::iter::empty) instead. |
| /// And if you need an empty array, use `[]`. |
| /// |
| /// But this is useful when you need an `array::IntoIter<T, N>` *specifically*. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// #![feature(array_into_iter_constructors)] |
| /// use std::array::IntoIter; |
| /// |
| /// let empty = IntoIter::<i32, 3>::empty(); |
| /// assert_eq!(empty.len(), 0); |
| /// assert_eq!(empty.as_slice(), &[]); |
| /// |
| /// let empty = IntoIter::<std::convert::Infallible, 200>::empty(); |
| /// assert_eq!(empty.len(), 0); |
| /// ``` |
| /// |
| /// `[1, 2].into_iter()` and `[].into_iter()` have different types |
| /// ```should_fail,edition2021 |
| /// #![feature(array_into_iter_constructors)] |
| /// use std::array::IntoIter; |
| /// |
| /// pub fn get_bytes(b: bool) -> IntoIter<i8, 4> { |
| /// if b { |
| /// [1, 2, 3, 4].into_iter() |
| /// } else { |
| /// [].into_iter() // error[E0308]: mismatched types |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// But using this method you can get an empty iterator of appropriate size: |
| /// ```edition2021 |
| /// #![feature(array_into_iter_constructors)] |
| /// use std::array::IntoIter; |
| /// |
| /// pub fn get_bytes(b: bool) -> IntoIter<i8, 4> { |
| /// if b { |
| /// [1, 2, 3, 4].into_iter() |
| /// } else { |
| /// IntoIter::empty() |
| /// } |
| /// } |
| /// |
| /// assert_eq!(get_bytes(true).collect::<Vec<_>>(), vec![1, 2, 3, 4]); |
| /// assert_eq!(get_bytes(false).collect::<Vec<_>>(), vec![]); |
| /// ``` |
| #[unstable(feature = "array_into_iter_constructors", issue = "91583")] |
| #[rustc_const_unstable(feature = "const_array_into_iter_constructors", issue = "91583")] |
| pub const fn empty() -> Self { |
| let buffer = [const { MaybeUninit::uninit() }; N]; |
| let initialized = 0..0; |
| |
| // SAFETY: We're telling it that none of the elements are initialized, |
| // which is trivially true. And ∀N: usize, 0 <= N. |
| unsafe { Self::new_unchecked(buffer, initialized) } |
| } |
| |
| /// Returns an immutable slice of all elements that have not been yielded |
| /// yet. |
| #[stable(feature = "array_value_iter", since = "1.51.0")] |
| pub fn as_slice(&self) -> &[T] { |
| // SAFETY: We know that all elements within `alive` are properly initialized. |
| unsafe { |
| let slice = self.data.get_unchecked(self.alive.clone()); |
| MaybeUninit::slice_assume_init_ref(slice) |
| } |
| } |
| |
| /// Returns a mutable slice of all elements that have not been yielded yet. |
| #[stable(feature = "array_value_iter", since = "1.51.0")] |
| pub fn as_mut_slice(&mut self) -> &mut [T] { |
| // SAFETY: We know that all elements within `alive` are properly initialized. |
| unsafe { |
| let slice = self.data.get_unchecked_mut(self.alive.clone()); |
| MaybeUninit::slice_assume_init_mut(slice) |
| } |
| } |
| } |
| |
| #[stable(feature = "array_value_iter_impls", since = "1.40.0")] |
| impl<T, const N: usize> Iterator for IntoIter<T, N> { |
| type Item = T; |
| fn next(&mut self) -> Option<Self::Item> { |
| // Get the next index from the front. |
| // |
| // Increasing `alive.start` by 1 maintains the invariant regarding |
| // `alive`. However, due to this change, for a short time, the alive |
| // zone is not `data[alive]` anymore, but `data[idx..alive.end]`. |
| self.alive.next().map(|idx| { |
| // Read the element from the array. |
| // SAFETY: `idx` is an index into the former "alive" region of the |
| // array. Reading this element means that `data[idx]` is regarded as |
| // dead now (i.e. do not touch). As `idx` was the start of the |
| // alive-zone, the alive zone is now `data[alive]` again, restoring |
| // all invariants. |
| unsafe { self.data.get_unchecked(idx).assume_init_read() } |
| }) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| let len = self.len(); |
| (len, Some(len)) |
| } |
| |
| #[inline] |
| fn fold<Acc, Fold>(mut self, init: Acc, mut fold: Fold) -> Acc |
| where |
| Fold: FnMut(Acc, Self::Item) -> Acc, |
| { |
| let data = &mut self.data; |
| iter::ByRefSized(&mut self.alive).fold(init, |acc, idx| { |
| // SAFETY: idx is obtained by folding over the `alive` range, which implies the |
| // value is currently considered alive but as the range is being consumed each value |
| // we read here will only be read once and then considered dead. |
| fold(acc, unsafe { data.get_unchecked(idx).assume_init_read() }) |
| }) |
| } |
| |
| fn count(self) -> usize { |
| self.len() |
| } |
| |
| fn last(mut self) -> Option<Self::Item> { |
| self.next_back() |
| } |
| |
| fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>> { |
| // This also moves the start, which marks them as conceptually "dropped", |
| // so if anything goes bad then our drop impl won't double-free them. |
| let range_to_drop = self.alive.take_prefix(n); |
| let remaining = n - range_to_drop.len(); |
| |
| // SAFETY: These elements are currently initialized, so it's fine to drop them. |
| unsafe { |
| let slice = self.data.get_unchecked_mut(range_to_drop); |
| ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(slice)); |
| } |
| |
| NonZero::new(remaining).map_or(Ok(()), Err) |
| } |
| |
| #[inline] |
| unsafe fn __iterator_get_unchecked(&mut self, idx: usize) -> Self::Item { |
| // SAFETY: The caller must provide an idx that is in bound of the remainder. |
| unsafe { self.data.as_ptr().add(self.alive.start()).add(idx).cast::<T>().read() } |
| } |
| } |
| |
| #[stable(feature = "array_value_iter_impls", since = "1.40.0")] |
| impl<T, const N: usize> DoubleEndedIterator for IntoIter<T, N> { |
| fn next_back(&mut self) -> Option<Self::Item> { |
| // Get the next index from the back. |
| // |
| // Decreasing `alive.end` by 1 maintains the invariant regarding |
| // `alive`. However, due to this change, for a short time, the alive |
| // zone is not `data[alive]` anymore, but `data[alive.start..=idx]`. |
| self.alive.next_back().map(|idx| { |
| // Read the element from the array. |
| // SAFETY: `idx` is an index into the former "alive" region of the |
| // array. Reading this element means that `data[idx]` is regarded as |
| // dead now (i.e. do not touch). As `idx` was the end of the |
| // alive-zone, the alive zone is now `data[alive]` again, restoring |
| // all invariants. |
| unsafe { self.data.get_unchecked(idx).assume_init_read() } |
| }) |
| } |
| |
| #[inline] |
| fn rfold<Acc, Fold>(mut self, init: Acc, mut rfold: Fold) -> Acc |
| where |
| Fold: FnMut(Acc, Self::Item) -> Acc, |
| { |
| let data = &mut self.data; |
| iter::ByRefSized(&mut self.alive).rfold(init, |acc, idx| { |
| // SAFETY: idx is obtained by folding over the `alive` range, which implies the |
| // value is currently considered alive but as the range is being consumed each value |
| // we read here will only be read once and then considered dead. |
| rfold(acc, unsafe { data.get_unchecked(idx).assume_init_read() }) |
| }) |
| } |
| |
| fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>> { |
| // This also moves the end, which marks them as conceptually "dropped", |
| // so if anything goes bad then our drop impl won't double-free them. |
| let range_to_drop = self.alive.take_suffix(n); |
| let remaining = n - range_to_drop.len(); |
| |
| // SAFETY: These elements are currently initialized, so it's fine to drop them. |
| unsafe { |
| let slice = self.data.get_unchecked_mut(range_to_drop); |
| ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(slice)); |
| } |
| |
| NonZero::new(remaining).map_or(Ok(()), Err) |
| } |
| } |
| |
| #[stable(feature = "array_value_iter_impls", since = "1.40.0")] |
| impl<T, const N: usize> Drop for IntoIter<T, N> { |
| fn drop(&mut self) { |
| // SAFETY: This is safe: `as_mut_slice` returns exactly the sub-slice |
| // of elements that have not been moved out yet and that remain |
| // to be dropped. |
| unsafe { ptr::drop_in_place(self.as_mut_slice()) } |
| } |
| } |
| |
| #[stable(feature = "array_value_iter_impls", since = "1.40.0")] |
| impl<T, const N: usize> ExactSizeIterator for IntoIter<T, N> { |
| fn len(&self) -> usize { |
| self.alive.len() |
| } |
| fn is_empty(&self) -> bool { |
| self.alive.is_empty() |
| } |
| } |
| |
| #[stable(feature = "array_value_iter_impls", since = "1.40.0")] |
| impl<T, const N: usize> FusedIterator for IntoIter<T, N> {} |
| |
| // The iterator indeed reports the correct length. The number of "alive" |
| // elements (that will still be yielded) is the length of the range `alive`. |
| // This range is decremented in length in either `next` or `next_back`. It is |
| // always decremented by 1 in those methods, but only if `Some(_)` is returned. |
| #[stable(feature = "array_value_iter_impls", since = "1.40.0")] |
| unsafe impl<T, const N: usize> TrustedLen for IntoIter<T, N> {} |
| |
| #[doc(hidden)] |
| #[unstable(issue = "none", feature = "std_internals")] |
| #[rustc_unsafe_specialization_marker] |
| pub trait NonDrop {} |
| |
| // T: Copy as approximation for !Drop since get_unchecked does not advance self.alive |
| // and thus we can't implement drop-handling |
| #[unstable(issue = "none", feature = "std_internals")] |
| impl<T: Copy> NonDrop for T {} |
| |
| #[doc(hidden)] |
| #[unstable(issue = "none", feature = "std_internals")] |
| unsafe impl<T, const N: usize> TrustedRandomAccessNoCoerce for IntoIter<T, N> |
| where |
| T: NonDrop, |
| { |
| const MAY_HAVE_SIDE_EFFECT: bool = false; |
| } |
| |
| #[stable(feature = "array_value_iter_impls", since = "1.40.0")] |
| impl<T: Clone, const N: usize> Clone for IntoIter<T, N> { |
| fn clone(&self) -> Self { |
| // Note, we don't really need to match the exact same alive range, so |
| // we can just clone into offset 0 regardless of where `self` is. |
| let mut new = |
| Self { data: [const { MaybeUninit::uninit() }; N], alive: IndexRange::zero_to(0) }; |
| |
| // Clone all alive elements. |
| for (src, dst) in iter::zip(self.as_slice(), &mut new.data) { |
| // Write a clone into the new array, then update its alive range. |
| // If cloning panics, we'll correctly drop the previous items. |
| dst.write(src.clone()); |
| // This addition cannot overflow as we're iterating a slice |
| new.alive = IndexRange::zero_to(new.alive.end() + 1); |
| } |
| |
| new |
| } |
| } |
| |
| #[stable(feature = "array_value_iter_impls", since = "1.40.0")] |
| impl<T: fmt::Debug, const N: usize> fmt::Debug for IntoIter<T, N> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| // Only print the elements that were not yielded yet: we cannot |
| // access the yielded elements anymore. |
| f.debug_tuple("IntoIter").field(&self.as_slice()).finish() |
| } |
| } |