| use std::assert_matches::assert_matches; |
| |
| use rustc_middle::bug; |
| use rustc_middle::ty::layout::{HasTyCtxt, LayoutCx, TyAndLayout}; |
| use rustc_target::abi::*; |
| |
| /// Enforce some basic invariants on layouts. |
| pub(super) fn sanity_check_layout<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLayout<'tcx>) { |
| let tcx = cx.tcx(); |
| |
| // Type-level uninhabitedness should always imply ABI uninhabitedness. |
| if layout.ty.is_privately_uninhabited(tcx, cx.param_env) { |
| assert!(layout.abi.is_uninhabited()); |
| } |
| |
| if layout.size.bytes() % layout.align.abi.bytes() != 0 { |
| bug!("size is not a multiple of align, in the following layout:\n{layout:#?}"); |
| } |
| if layout.size.bytes() >= tcx.data_layout.obj_size_bound() { |
| bug!("size is too large, in the following layout:\n{layout:#?}"); |
| } |
| |
| if !cfg!(debug_assertions) { |
| // Stop here, the rest is kind of expensive. |
| return; |
| } |
| |
| /// Yields non-ZST fields of the type |
| fn non_zst_fields<'tcx, 'a>( |
| cx: &'a LayoutCx<'tcx>, |
| layout: &'a TyAndLayout<'tcx>, |
| ) -> impl Iterator<Item = (Size, TyAndLayout<'tcx>)> + 'a { |
| (0..layout.layout.fields().count()).filter_map(|i| { |
| let field = layout.field(cx, i); |
| // Also checking `align == 1` here leads to test failures in |
| // `layout/zero-sized-array-union.rs`, where a type has a zero-size field with |
| // alignment 4 that still gets ignored during layout computation (which is okay |
| // since other fields already force alignment 4). |
| let zst = field.is_zst(); |
| (!zst).then(|| (layout.fields.offset(i), field)) |
| }) |
| } |
| |
| fn skip_newtypes<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLayout<'tcx>) -> TyAndLayout<'tcx> { |
| if matches!(layout.layout.variants(), Variants::Multiple { .. }) { |
| // Definitely not a newtype of anything. |
| return *layout; |
| } |
| let mut fields = non_zst_fields(cx, layout); |
| let Some(first) = fields.next() else { |
| // No fields here, so this could be a primitive or enum -- either way it's not a newtype around a thing |
| return *layout; |
| }; |
| if fields.next().is_none() { |
| let (offset, first) = first; |
| if offset == Size::ZERO && first.layout.size() == layout.size { |
| // This is a newtype, so keep recursing. |
| // FIXME(RalfJung): I don't think it would be correct to do any checks for |
| // alignment here, so we don't. Is that correct? |
| return skip_newtypes(cx, &first); |
| } |
| } |
| // No more newtypes here. |
| *layout |
| } |
| |
| fn check_layout_abi<'tcx>(cx: &LayoutCx<'tcx>, layout: &TyAndLayout<'tcx>) { |
| // Verify the ABI mandated alignment and size. |
| let align = layout.abi.inherent_align(cx).map(|align| align.abi); |
| let size = layout.abi.inherent_size(cx); |
| let Some((align, size)) = align.zip(size) else { |
| assert_matches!( |
| layout.layout.abi(), |
| Abi::Uninhabited | Abi::Aggregate { .. }, |
| "ABI unexpectedly missing alignment and/or size in {layout:#?}" |
| ); |
| return; |
| }; |
| assert_eq!( |
| layout.layout.align().abi, |
| align, |
| "alignment mismatch between ABI and layout in {layout:#?}" |
| ); |
| assert_eq!( |
| layout.layout.size(), |
| size, |
| "size mismatch between ABI and layout in {layout:#?}" |
| ); |
| |
| // Verify per-ABI invariants |
| match layout.layout.abi() { |
| Abi::Scalar(_) => { |
| // Check that this matches the underlying field. |
| let inner = skip_newtypes(cx, layout); |
| assert!( |
| matches!(inner.layout.abi(), Abi::Scalar(_)), |
| "`Scalar` type {} is newtype around non-`Scalar` type {}", |
| layout.ty, |
| inner.ty |
| ); |
| match inner.layout.fields() { |
| FieldsShape::Primitive => { |
| // Fine. |
| } |
| FieldsShape::Union(..) => { |
| // FIXME: I guess we could also check something here? Like, look at all fields? |
| return; |
| } |
| FieldsShape::Arbitrary { .. } => { |
| // Should be an enum, the only field is the discriminant. |
| assert!( |
| inner.ty.is_enum(), |
| "`Scalar` layout for non-primitive non-enum type {}", |
| inner.ty |
| ); |
| assert_eq!( |
| inner.layout.fields().count(), |
| 1, |
| "`Scalar` layout for multiple-field type in {inner:#?}", |
| ); |
| let offset = inner.layout.fields().offset(0); |
| let field = inner.field(cx, 0); |
| // The field should be at the right offset, and match the `scalar` layout. |
| assert_eq!( |
| offset, |
| Size::ZERO, |
| "`Scalar` field at non-0 offset in {inner:#?}", |
| ); |
| assert_eq!(field.size, size, "`Scalar` field with bad size in {inner:#?}",); |
| assert_eq!( |
| field.align.abi, align, |
| "`Scalar` field with bad align in {inner:#?}", |
| ); |
| assert!( |
| matches!(field.abi, Abi::Scalar(_)), |
| "`Scalar` field with bad ABI in {inner:#?}", |
| ); |
| } |
| _ => { |
| panic!("`Scalar` layout for non-primitive non-enum type {}", inner.ty); |
| } |
| } |
| } |
| Abi::ScalarPair(scalar1, scalar2) => { |
| // Check that the underlying pair of fields matches. |
| let inner = skip_newtypes(cx, layout); |
| assert!( |
| matches!(inner.layout.abi(), Abi::ScalarPair(..)), |
| "`ScalarPair` type {} is newtype around non-`ScalarPair` type {}", |
| layout.ty, |
| inner.ty |
| ); |
| if matches!(inner.layout.variants(), Variants::Multiple { .. }) { |
| // FIXME: ScalarPair for enums is enormously complicated and it is very hard |
| // to check anything about them. |
| return; |
| } |
| match inner.layout.fields() { |
| FieldsShape::Arbitrary { .. } => { |
| // Checked below. |
| } |
| FieldsShape::Union(..) => { |
| // FIXME: I guess we could also check something here? Like, look at all fields? |
| return; |
| } |
| _ => { |
| panic!("`ScalarPair` layout with unexpected field shape in {inner:#?}"); |
| } |
| } |
| let mut fields = non_zst_fields(cx, &inner); |
| let (offset1, field1) = fields.next().unwrap_or_else(|| { |
| panic!( |
| "`ScalarPair` layout for type with not even one non-ZST field: {inner:#?}" |
| ) |
| }); |
| let (offset2, field2) = fields.next().unwrap_or_else(|| { |
| panic!( |
| "`ScalarPair` layout for type with less than two non-ZST fields: {inner:#?}" |
| ) |
| }); |
| assert_matches!( |
| fields.next(), |
| None, |
| "`ScalarPair` layout for type with at least three non-ZST fields: {inner:#?}" |
| ); |
| // The fields might be in opposite order. |
| let (offset1, field1, offset2, field2) = if offset1 <= offset2 { |
| (offset1, field1, offset2, field2) |
| } else { |
| (offset2, field2, offset1, field1) |
| }; |
| // The fields should be at the right offset, and match the `scalar` layout. |
| let size1 = scalar1.size(cx); |
| let align1 = scalar1.align(cx).abi; |
| let size2 = scalar2.size(cx); |
| let align2 = scalar2.align(cx).abi; |
| assert_eq!( |
| offset1, |
| Size::ZERO, |
| "`ScalarPair` first field at non-0 offset in {inner:#?}", |
| ); |
| assert_eq!( |
| field1.size, size1, |
| "`ScalarPair` first field with bad size in {inner:#?}", |
| ); |
| assert_eq!( |
| field1.align.abi, align1, |
| "`ScalarPair` first field with bad align in {inner:#?}", |
| ); |
| assert_matches!( |
| field1.abi, |
| Abi::Scalar(_), |
| "`ScalarPair` first field with bad ABI in {inner:#?}", |
| ); |
| let field2_offset = size1.align_to(align2); |
| assert_eq!( |
| offset2, field2_offset, |
| "`ScalarPair` second field at bad offset in {inner:#?}", |
| ); |
| assert_eq!( |
| field2.size, size2, |
| "`ScalarPair` second field with bad size in {inner:#?}", |
| ); |
| assert_eq!( |
| field2.align.abi, align2, |
| "`ScalarPair` second field with bad align in {inner:#?}", |
| ); |
| assert_matches!( |
| field2.abi, |
| Abi::Scalar(_), |
| "`ScalarPair` second field with bad ABI in {inner:#?}", |
| ); |
| } |
| Abi::Vector { element, .. } => { |
| assert!(align >= element.align(cx).abi); // just sanity-checking `vector_align`. |
| // FIXME: Do some kind of check of the inner type, like for Scalar and ScalarPair. |
| } |
| Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check. |
| } |
| } |
| |
| check_layout_abi(cx, layout); |
| |
| if let Variants::Multiple { variants, .. } = &layout.variants { |
| for variant in variants.iter() { |
| // No nested "multiple". |
| assert_matches!(variant.variants, Variants::Single { .. }); |
| // Variants should have the same or a smaller size as the full thing, |
| // and same for alignment. |
| if variant.size > layout.size { |
| bug!( |
| "Type with size {} bytes has variant with size {} bytes: {layout:#?}", |
| layout.size.bytes(), |
| variant.size.bytes(), |
| ) |
| } |
| if variant.align.abi > layout.align.abi { |
| bug!( |
| "Type with alignment {} bytes has variant with alignment {} bytes: {layout:#?}", |
| layout.align.abi.bytes(), |
| variant.align.abi.bytes(), |
| ) |
| } |
| // Skip empty variants. |
| if variant.size == Size::ZERO |
| || variant.fields.count() == 0 |
| || variant.abi.is_uninhabited() |
| { |
| // These are never actually accessed anyway, so we can skip the coherence check |
| // for them. They also fail that check, since they have |
| // `Aggregate`/`Uninhabited` ABI even when the main type is |
| // `Scalar`/`ScalarPair`. (Note that sometimes, variants with fields have size |
| // 0, and sometimes, variants without fields have non-0 size.) |
| continue; |
| } |
| // The top-level ABI and the ABI of the variants should be coherent. |
| let scalar_coherent = |
| |s1: Scalar, s2: Scalar| s1.size(cx) == s2.size(cx) && s1.align(cx) == s2.align(cx); |
| let abi_coherent = match (layout.abi, variant.abi) { |
| (Abi::Scalar(s1), Abi::Scalar(s2)) => scalar_coherent(s1, s2), |
| (Abi::ScalarPair(a1, b1), Abi::ScalarPair(a2, b2)) => { |
| scalar_coherent(a1, a2) && scalar_coherent(b1, b2) |
| } |
| (Abi::Uninhabited, _) => true, |
| (Abi::Aggregate { .. }, _) => true, |
| _ => false, |
| }; |
| if !abi_coherent { |
| bug!( |
| "Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}", |
| variant |
| ); |
| } |
| } |
| } |
| } |