| use std::cmp::Ordering; |
| |
| use rustc_type_ir::data_structures::HashMap; |
| use rustc_type_ir::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable}; |
| use rustc_type_ir::inherent::*; |
| use rustc_type_ir::visit::TypeVisitableExt; |
| use rustc_type_ir::{ |
| self as ty, Canonical, CanonicalTyVarKind, CanonicalVarInfo, CanonicalVarKind, InferCtxtLike, |
| Interner, |
| }; |
| |
| use crate::delegate::SolverDelegate; |
| |
| /// Whether we're canonicalizing a query input or the query response. |
| /// |
| /// When canonicalizing an input we're in the context of the caller |
| /// while canonicalizing the response happens in the context of the |
| /// query. |
| #[derive(Debug, Clone, Copy)] |
| pub enum CanonicalizeMode { |
| Input, |
| /// FIXME: We currently return region constraints referring to |
| /// placeholders and inference variables from a binder instantiated |
| /// inside of the query. |
| /// |
| /// In the long term we should eagerly deal with these constraints |
| /// inside of the query and only propagate constraints which are |
| /// actually nameable by the caller. |
| Response { |
| /// The highest universe nameable by the caller. |
| /// |
| /// All variables in a universe nameable by the caller get mapped |
| /// to the root universe in the response and then mapped back to |
| /// their correct universe when applying the query response in the |
| /// context of the caller. |
| /// |
| /// This doesn't work for universes created inside of the query so |
| /// we do remember their universe in the response. |
| max_input_universe: ty::UniverseIndex, |
| }, |
| } |
| |
| pub struct Canonicalizer<'a, D: SolverDelegate<Interner = I>, I: Interner> { |
| delegate: &'a D, |
| |
| // Immutable field. |
| canonicalize_mode: CanonicalizeMode, |
| |
| // Mutable fields. |
| variables: &'a mut Vec<I::GenericArg>, |
| primitive_var_infos: Vec<CanonicalVarInfo<I>>, |
| variable_lookup_table: HashMap<I::GenericArg, usize>, |
| binder_index: ty::DebruijnIndex, |
| |
| /// We only use the debruijn index during lookup. We don't need to |
| /// track the `variables` as each generic arg only results in a single |
| /// bound variable regardless of how many times it is encountered. |
| cache: HashMap<(ty::DebruijnIndex, I::Ty), I::Ty>, |
| } |
| |
| impl<'a, D: SolverDelegate<Interner = I>, I: Interner> Canonicalizer<'a, D, I> { |
| pub fn canonicalize<T: TypeFoldable<I>>( |
| delegate: &'a D, |
| canonicalize_mode: CanonicalizeMode, |
| variables: &'a mut Vec<I::GenericArg>, |
| value: T, |
| ) -> ty::Canonical<I, T> { |
| let mut canonicalizer = Canonicalizer { |
| delegate, |
| canonicalize_mode, |
| |
| variables, |
| variable_lookup_table: Default::default(), |
| primitive_var_infos: Vec::new(), |
| binder_index: ty::INNERMOST, |
| |
| cache: Default::default(), |
| }; |
| |
| let value = value.fold_with(&mut canonicalizer); |
| assert!(!value.has_infer(), "unexpected infer in {value:?}"); |
| assert!(!value.has_placeholders(), "unexpected placeholders in {value:?}"); |
| |
| let (max_universe, variables) = canonicalizer.finalize(); |
| |
| let defining_opaque_types = delegate.defining_opaque_types(); |
| Canonical { defining_opaque_types, max_universe, variables, value } |
| } |
| |
| fn get_or_insert_bound_var( |
| &mut self, |
| arg: impl Into<I::GenericArg>, |
| canonical_var_info: CanonicalVarInfo<I>, |
| ) -> ty::BoundVar { |
| // FIXME: 16 is made up and arbitrary. We should look at some |
| // perf data here. |
| let arg = arg.into(); |
| let idx = if self.variables.len() > 16 { |
| if self.variable_lookup_table.is_empty() { |
| self.variable_lookup_table.extend(self.variables.iter().copied().zip(0..)); |
| } |
| |
| *self.variable_lookup_table.entry(arg).or_insert_with(|| { |
| let var = self.variables.len(); |
| self.variables.push(arg); |
| self.primitive_var_infos.push(canonical_var_info); |
| var |
| }) |
| } else { |
| self.variables.iter().position(|&v| v == arg).unwrap_or_else(|| { |
| let var = self.variables.len(); |
| self.variables.push(arg); |
| self.primitive_var_infos.push(canonical_var_info); |
| var |
| }) |
| }; |
| |
| ty::BoundVar::from(idx) |
| } |
| |
| fn finalize(self) -> (ty::UniverseIndex, I::CanonicalVars) { |
| let mut var_infos = self.primitive_var_infos; |
| // See the rustc-dev-guide section about how we deal with universes |
| // during canonicalization in the new solver. |
| match self.canonicalize_mode { |
| // We try to deduplicate as many query calls as possible and hide |
| // all information which should not matter for the solver. |
| // |
| // For this we compress universes as much as possible. |
| CanonicalizeMode::Input => {} |
| // When canonicalizing a response we map a universes already entered |
| // by the caller to the root universe and only return useful universe |
| // information for placeholders and inference variables created inside |
| // of the query. |
| CanonicalizeMode::Response { max_input_universe } => { |
| for var in var_infos.iter_mut() { |
| let uv = var.universe(); |
| let new_uv = ty::UniverseIndex::from( |
| uv.index().saturating_sub(max_input_universe.index()), |
| ); |
| *var = var.with_updated_universe(new_uv); |
| } |
| let max_universe = var_infos |
| .iter() |
| .map(|info| info.universe()) |
| .max() |
| .unwrap_or(ty::UniverseIndex::ROOT); |
| |
| let var_infos = self.delegate.cx().mk_canonical_var_infos(&var_infos); |
| return (max_universe, var_infos); |
| } |
| } |
| |
| // Given a `var_infos` with existentials `En` and universals `Un` in |
| // universes `n`, this algorithm compresses them in place so that: |
| // |
| // - the new universe indices are as small as possible |
| // - we create a new universe if we would otherwise |
| // 1. put existentials from a different universe into the same one |
| // 2. put a placeholder in the same universe as an existential which cannot name it |
| // |
| // Let's walk through an example: |
| // - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 0, next_orig_uv: 0 |
| // - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 0, next_orig_uv: 1 |
| // - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 1, next_orig_uv: 2 |
| // - var_infos: [E0, U1, E5, U1, E1, E6, U6], curr_compressed_uv: 1, next_orig_uv: 5 |
| // - var_infos: [E0, U1, E2, U1, E1, E6, U6], curr_compressed_uv: 2, next_orig_uv: 6 |
| // - var_infos: [E0, U1, E1, U1, E1, E3, U3], curr_compressed_uv: 2, next_orig_uv: - |
| // |
| // This algorithm runs in `O(mn)` where `n` is the number of different universes and |
| // `m` the number of variables. This should be fine as both are expected to be small. |
| let mut curr_compressed_uv = ty::UniverseIndex::ROOT; |
| let mut existential_in_new_uv = None; |
| let mut next_orig_uv = Some(ty::UniverseIndex::ROOT); |
| while let Some(orig_uv) = next_orig_uv.take() { |
| let mut update_uv = |var: &mut CanonicalVarInfo<I>, orig_uv, is_existential| { |
| let uv = var.universe(); |
| match uv.cmp(&orig_uv) { |
| Ordering::Less => (), // Already updated |
| Ordering::Equal => { |
| if is_existential { |
| if existential_in_new_uv.is_some_and(|uv| uv < orig_uv) { |
| // Condition 1. |
| // |
| // We already put an existential from a outer universe |
| // into the current compressed universe, so we need to |
| // create a new one. |
| curr_compressed_uv = curr_compressed_uv.next_universe(); |
| } |
| |
| // `curr_compressed_uv` will now contain an existential from |
| // `orig_uv`. Trying to canonicalizing an existential from |
| // a higher universe has to therefore use a new compressed |
| // universe. |
| existential_in_new_uv = Some(orig_uv); |
| } else if existential_in_new_uv.is_some() { |
| // Condition 2. |
| // |
| // `var` is a placeholder from a universe which is not nameable |
| // by an existential which we already put into the compressed |
| // universe `curr_compressed_uv`. We therefore have to create a |
| // new universe for `var`. |
| curr_compressed_uv = curr_compressed_uv.next_universe(); |
| existential_in_new_uv = None; |
| } |
| |
| *var = var.with_updated_universe(curr_compressed_uv); |
| } |
| Ordering::Greater => { |
| // We can ignore this variable in this iteration. We only look at |
| // universes which actually occur in the input for performance. |
| // |
| // For this we set `next_orig_uv` to the next smallest, not yet compressed, |
| // universe of the input. |
| if next_orig_uv.map_or(true, |curr_next_uv| uv.cannot_name(curr_next_uv)) { |
| next_orig_uv = Some(uv); |
| } |
| } |
| } |
| }; |
| |
| // For each universe which occurs in the input, we first iterate over all |
| // placeholders and then over all inference variables. |
| // |
| // Whenever we compress the universe of a placeholder, no existential with |
| // an already compressed universe can name that placeholder. |
| for is_existential in [false, true] { |
| for var in var_infos.iter_mut() { |
| // We simply put all regions from the input into the highest |
| // compressed universe, so we only deal with them at the end. |
| if !var.is_region() { |
| if is_existential == var.is_existential() { |
| update_uv(var, orig_uv, is_existential) |
| } |
| } |
| } |
| } |
| } |
| |
| // We put all regions into a separate universe. |
| let mut first_region = true; |
| for var in var_infos.iter_mut() { |
| if var.is_region() { |
| if first_region { |
| first_region = false; |
| curr_compressed_uv = curr_compressed_uv.next_universe(); |
| } |
| assert!(var.is_existential()); |
| *var = var.with_updated_universe(curr_compressed_uv); |
| } |
| } |
| |
| let var_infos = self.delegate.cx().mk_canonical_var_infos(&var_infos); |
| (curr_compressed_uv, var_infos) |
| } |
| |
| fn cached_fold_ty(&mut self, t: I::Ty) -> I::Ty { |
| let kind = match t.kind() { |
| ty::Infer(i) => match i { |
| ty::TyVar(vid) => { |
| assert_eq!( |
| self.delegate.opportunistic_resolve_ty_var(vid), |
| t, |
| "ty vid should have been resolved fully before canonicalization" |
| ); |
| |
| CanonicalVarKind::Ty(CanonicalTyVarKind::General( |
| self.delegate |
| .universe_of_ty(vid) |
| .unwrap_or_else(|| panic!("ty var should have been resolved: {t:?}")), |
| )) |
| } |
| ty::IntVar(vid) => { |
| assert_eq!( |
| self.delegate.opportunistic_resolve_int_var(vid), |
| t, |
| "ty vid should have been resolved fully before canonicalization" |
| ); |
| CanonicalVarKind::Ty(CanonicalTyVarKind::Int) |
| } |
| ty::FloatVar(vid) => { |
| assert_eq!( |
| self.delegate.opportunistic_resolve_float_var(vid), |
| t, |
| "ty vid should have been resolved fully before canonicalization" |
| ); |
| CanonicalVarKind::Ty(CanonicalTyVarKind::Float) |
| } |
| ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => { |
| panic!("fresh vars not expected in canonicalization") |
| } |
| }, |
| ty::Placeholder(placeholder) => match self.canonicalize_mode { |
| CanonicalizeMode::Input => CanonicalVarKind::PlaceholderTy(PlaceholderLike::new( |
| placeholder.universe(), |
| self.variables.len().into(), |
| )), |
| CanonicalizeMode::Response { .. } => CanonicalVarKind::PlaceholderTy(placeholder), |
| }, |
| ty::Param(_) => match self.canonicalize_mode { |
| CanonicalizeMode::Input => CanonicalVarKind::PlaceholderTy(PlaceholderLike::new( |
| ty::UniverseIndex::ROOT, |
| self.variables.len().into(), |
| )), |
| CanonicalizeMode::Response { .. } => panic!("param ty in response: {t:?}"), |
| }, |
| ty::Bool |
| | ty::Char |
| | ty::Int(_) |
| | ty::Uint(_) |
| | ty::Float(_) |
| | ty::Adt(_, _) |
| | ty::Foreign(_) |
| | ty::Str |
| | ty::Array(_, _) |
| | ty::Slice(_) |
| | ty::RawPtr(_, _) |
| | ty::Ref(_, _, _) |
| | ty::Pat(_, _) |
| | ty::FnDef(_, _) |
| | ty::FnPtr(..) |
| | ty::Dynamic(_, _, _) |
| | ty::Closure(..) |
| | ty::CoroutineClosure(..) |
| | ty::Coroutine(_, _) |
| | ty::CoroutineWitness(..) |
| | ty::Never |
| | ty::Tuple(_) |
| | ty::Alias(_, _) |
| | ty::Bound(_, _) |
| | ty::Error(_) => { |
| return t.super_fold_with(self); |
| } |
| }; |
| |
| let var = self.get_or_insert_bound_var(t, CanonicalVarInfo { kind }); |
| |
| Ty::new_anon_bound(self.cx(), self.binder_index, var) |
| } |
| } |
| |
| impl<D: SolverDelegate<Interner = I>, I: Interner> TypeFolder<I> for Canonicalizer<'_, D, I> { |
| fn cx(&self) -> I { |
| self.delegate.cx() |
| } |
| |
| fn fold_binder<T>(&mut self, t: ty::Binder<I, T>) -> ty::Binder<I, T> |
| where |
| T: TypeFoldable<I>, |
| { |
| self.binder_index.shift_in(1); |
| let t = t.super_fold_with(self); |
| self.binder_index.shift_out(1); |
| t |
| } |
| |
| fn fold_region(&mut self, r: I::Region) -> I::Region { |
| let kind = match r.kind() { |
| ty::ReBound(..) => return r, |
| |
| // We may encounter `ReStatic` in item signatures or the hidden type |
| // of an opaque. `ReErased` should only be encountered in the hidden |
| // type of an opaque for regions that are ignored for the purposes of |
| // captures. |
| // |
| // FIXME: We should investigate the perf implications of not uniquifying |
| // `ReErased`. We may be able to short-circuit registering region |
| // obligations if we encounter a `ReErased` on one side, for example. |
| ty::ReStatic | ty::ReErased | ty::ReError(_) => match self.canonicalize_mode { |
| CanonicalizeMode::Input => CanonicalVarKind::Region(ty::UniverseIndex::ROOT), |
| CanonicalizeMode::Response { .. } => return r, |
| }, |
| |
| ty::ReEarlyParam(_) | ty::ReLateParam(_) => match self.canonicalize_mode { |
| CanonicalizeMode::Input => CanonicalVarKind::Region(ty::UniverseIndex::ROOT), |
| CanonicalizeMode::Response { .. } => { |
| panic!("unexpected region in response: {r:?}") |
| } |
| }, |
| |
| ty::RePlaceholder(placeholder) => match self.canonicalize_mode { |
| // We canonicalize placeholder regions as existentials in query inputs. |
| CanonicalizeMode::Input => CanonicalVarKind::Region(ty::UniverseIndex::ROOT), |
| CanonicalizeMode::Response { max_input_universe } => { |
| // If we have a placeholder region inside of a query, it must be from |
| // a new universe. |
| if max_input_universe.can_name(placeholder.universe()) { |
| panic!("new placeholder in universe {max_input_universe:?}: {r:?}"); |
| } |
| CanonicalVarKind::PlaceholderRegion(placeholder) |
| } |
| }, |
| |
| ty::ReVar(vid) => { |
| assert_eq!( |
| self.delegate.opportunistic_resolve_lt_var(vid), |
| r, |
| "region vid should have been resolved fully before canonicalization" |
| ); |
| match self.canonicalize_mode { |
| CanonicalizeMode::Input => CanonicalVarKind::Region(ty::UniverseIndex::ROOT), |
| CanonicalizeMode::Response { .. } => { |
| CanonicalVarKind::Region(self.delegate.universe_of_lt(vid).unwrap()) |
| } |
| } |
| } |
| }; |
| |
| let var = self.get_or_insert_bound_var(r, CanonicalVarInfo { kind }); |
| |
| Region::new_anon_bound(self.cx(), self.binder_index, var) |
| } |
| |
| fn fold_ty(&mut self, t: I::Ty) -> I::Ty { |
| if let Some(&ty) = self.cache.get(&(self.binder_index, t)) { |
| ty |
| } else { |
| let res = self.cached_fold_ty(t); |
| assert!(self.cache.insert((self.binder_index, t), res).is_none()); |
| res |
| } |
| } |
| |
| fn fold_const(&mut self, c: I::Const) -> I::Const { |
| let kind = match c.kind() { |
| ty::ConstKind::Infer(i) => match i { |
| ty::InferConst::Var(vid) => { |
| assert_eq!( |
| self.delegate.opportunistic_resolve_ct_var(vid), |
| c, |
| "const vid should have been resolved fully before canonicalization" |
| ); |
| CanonicalVarKind::Const(self.delegate.universe_of_ct(vid).unwrap()) |
| } |
| ty::InferConst::EffectVar(_) => CanonicalVarKind::Effect, |
| ty::InferConst::Fresh(_) => todo!(), |
| }, |
| ty::ConstKind::Placeholder(placeholder) => match self.canonicalize_mode { |
| CanonicalizeMode::Input => CanonicalVarKind::PlaceholderConst( |
| PlaceholderLike::new(placeholder.universe(), self.variables.len().into()), |
| ), |
| CanonicalizeMode::Response { .. } => { |
| CanonicalVarKind::PlaceholderConst(placeholder) |
| } |
| }, |
| ty::ConstKind::Param(_) => match self.canonicalize_mode { |
| CanonicalizeMode::Input => CanonicalVarKind::PlaceholderConst( |
| PlaceholderLike::new(ty::UniverseIndex::ROOT, self.variables.len().into()), |
| ), |
| CanonicalizeMode::Response { .. } => panic!("param ty in response: {c:?}"), |
| }, |
| // FIXME: See comment above -- we could fold the region separately or something. |
| ty::ConstKind::Bound(_, _) |
| | ty::ConstKind::Unevaluated(_) |
| | ty::ConstKind::Value(_, _) |
| | ty::ConstKind::Error(_) |
| | ty::ConstKind::Expr(_) => return c.super_fold_with(self), |
| }; |
| |
| let var = self.get_or_insert_bound_var(c, CanonicalVarInfo { kind }); |
| |
| Const::new_anon_bound(self.cx(), self.binder_index, var) |
| } |
| } |