blob: c9f24764cc2a1709ea88363acef795682c3554b9 [file] [log] [blame]
//! Inlining pass for MIR functions.
use std::iter;
use std::ops::{Range, RangeFrom};
use rustc_attr::InlineAttr;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefId;
use rustc_index::Idx;
use rustc_index::bit_set::BitSet;
use rustc_middle::bug;
use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
use rustc_middle::mir::visit::*;
use rustc_middle::mir::*;
use rustc_middle::ty::{
self, Instance, InstanceKind, ParamEnv, Ty, TyCtxt, TypeFlags, TypeVisitableExt,
};
use rustc_session::config::{DebugInfo, OptLevel};
use rustc_span::source_map::Spanned;
use rustc_span::sym;
use rustc_target::abi::FieldIdx;
use rustc_target::spec::abi::Abi;
use tracing::{debug, instrument, trace, trace_span};
use crate::cost_checker::CostChecker;
use crate::deref_separator::deref_finder;
use crate::simplify::simplify_cfg;
use crate::util;
use crate::validate::validate_types;
pub(crate) mod cycle;
const TOP_DOWN_DEPTH_LIMIT: usize = 5;
// Made public so that `mir_drops_elaborated_and_const_checked` can be overridden
// by custom rustc drivers, running all the steps by themselves. See #114628.
pub struct Inline;
#[derive(Clone, Debug)]
struct CallSite<'tcx> {
callee: Instance<'tcx>,
fn_sig: ty::PolyFnSig<'tcx>,
block: BasicBlock,
source_info: SourceInfo,
}
impl<'tcx> crate::MirPass<'tcx> for Inline {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
// FIXME(#127234): Coverage instrumentation currently doesn't handle inlined
// MIR correctly when Modified Condition/Decision Coverage is enabled.
if sess.instrument_coverage_mcdc() {
return false;
}
if let Some(enabled) = sess.opts.unstable_opts.inline_mir {
return enabled;
}
match sess.mir_opt_level() {
0 | 1 => false,
2 => {
(sess.opts.optimize == OptLevel::Default
|| sess.opts.optimize == OptLevel::Aggressive)
&& sess.opts.incremental == None
}
_ => true,
}
}
fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
let span = trace_span!("inline", body = %tcx.def_path_str(body.source.def_id()));
let _guard = span.enter();
if inline(tcx, body) {
debug!("running simplify cfg on {:?}", body.source);
simplify_cfg(body);
deref_finder(tcx, body);
}
}
}
fn inline<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) -> bool {
let def_id = body.source.def_id().expect_local();
// Only do inlining into fn bodies.
if !tcx.hir().body_owner_kind(def_id).is_fn_or_closure() {
return false;
}
if body.source.promoted.is_some() {
return false;
}
// Avoid inlining into coroutines, since their `optimized_mir` is used for layout computation,
// which can create a cycle, even when no attempt is made to inline the function in the other
// direction.
if body.coroutine.is_some() {
return false;
}
let param_env = tcx.param_env_reveal_all_normalized(def_id);
let codegen_fn_attrs = tcx.codegen_fn_attrs(def_id);
let mut this = Inliner {
tcx,
param_env,
codegen_fn_attrs,
history: Vec::new(),
changed: false,
caller_is_inline_forwarder: matches!(
codegen_fn_attrs.inline,
InlineAttr::Hint | InlineAttr::Always
) && body_is_forwarder(body),
};
let blocks = START_BLOCK..body.basic_blocks.next_index();
this.process_blocks(body, blocks);
this.changed
}
struct Inliner<'tcx> {
tcx: TyCtxt<'tcx>,
param_env: ParamEnv<'tcx>,
/// Caller codegen attributes.
codegen_fn_attrs: &'tcx CodegenFnAttrs,
/// Stack of inlined instances.
/// We only check the `DefId` and not the args because we want to
/// avoid inlining cases of polymorphic recursion.
/// The number of `DefId`s is finite, so checking history is enough
/// to ensure that we do not loop endlessly while inlining.
history: Vec<DefId>,
/// Indicates that the caller body has been modified.
changed: bool,
/// Indicates that the caller is #[inline] and just calls another function,
/// and thus we can inline less into it as it'll be inlined itself.
caller_is_inline_forwarder: bool,
}
impl<'tcx> Inliner<'tcx> {
fn process_blocks(&mut self, caller_body: &mut Body<'tcx>, blocks: Range<BasicBlock>) {
// How many callsites in this body are we allowed to inline? We need to limit this in order
// to prevent super-linear growth in MIR size
let inline_limit = match self.history.len() {
0 => usize::MAX,
1..=TOP_DOWN_DEPTH_LIMIT => 1,
_ => return,
};
let mut inlined_count = 0;
for bb in blocks {
let bb_data = &caller_body[bb];
if bb_data.is_cleanup {
continue;
}
let Some(callsite) = self.resolve_callsite(caller_body, bb, bb_data) else {
continue;
};
let span = trace_span!("process_blocks", %callsite.callee, ?bb);
let _guard = span.enter();
match self.try_inlining(caller_body, &callsite) {
Err(reason) => {
debug!("not-inlined {} [{}]", callsite.callee, reason);
}
Ok(new_blocks) => {
debug!("inlined {}", callsite.callee);
self.changed = true;
self.history.push(callsite.callee.def_id());
self.process_blocks(caller_body, new_blocks);
self.history.pop();
inlined_count += 1;
if inlined_count == inline_limit {
debug!("inline count reached");
return;
}
}
}
}
}
/// Attempts to inline a callsite into the caller body. When successful returns basic blocks
/// containing the inlined body. Otherwise returns an error describing why inlining didn't take
/// place.
fn try_inlining(
&self,
caller_body: &mut Body<'tcx>,
callsite: &CallSite<'tcx>,
) -> Result<std::ops::Range<BasicBlock>, &'static str> {
self.check_mir_is_available(caller_body, callsite.callee)?;
let callee_attrs = self.tcx.codegen_fn_attrs(callsite.callee.def_id());
let cross_crate_inlinable = self.tcx.cross_crate_inlinable(callsite.callee.def_id());
self.check_codegen_attributes(callsite, callee_attrs, cross_crate_inlinable)?;
// Intrinsic fallback bodies are automatically made cross-crate inlineable,
// but at this stage we don't know whether codegen knows the intrinsic,
// so just conservatively don't inline it.
if self.tcx.has_attr(callsite.callee.def_id(), sym::rustc_intrinsic) {
return Err("Callee is an intrinsic, do not inline fallback bodies");
}
let terminator = caller_body[callsite.block].terminator.as_ref().unwrap();
let TerminatorKind::Call { args, destination, .. } = &terminator.kind else { bug!() };
let destination_ty = destination.ty(&caller_body.local_decls, self.tcx).ty;
for arg in args {
if !arg.node.ty(&caller_body.local_decls, self.tcx).is_sized(self.tcx, self.param_env) {
// We do not allow inlining functions with unsized params. Inlining these functions
// could create unsized locals, which are unsound and being phased out.
return Err("Call has unsized argument");
}
}
let callee_body = try_instance_mir(self.tcx, callsite.callee.def)?;
self.check_mir_body(callsite, callee_body, callee_attrs, cross_crate_inlinable)?;
if !self.tcx.consider_optimizing(|| {
format!("Inline {:?} into {:?}", callsite.callee, caller_body.source)
}) {
return Err("optimization fuel exhausted");
}
let Ok(callee_body) = callsite.callee.try_instantiate_mir_and_normalize_erasing_regions(
self.tcx,
self.param_env,
ty::EarlyBinder::bind(callee_body.clone()),
) else {
return Err("failed to normalize callee body");
};
// Normally, this shouldn't be required, but trait normalization failure can create a
// validation ICE.
if !validate_types(
self.tcx,
MirPhase::Runtime(RuntimePhase::Optimized),
self.param_env,
&callee_body,
&caller_body,
)
.is_empty()
{
return Err("failed to validate callee body");
}
// Check call signature compatibility.
// Normally, this shouldn't be required, but trait normalization failure can create a
// validation ICE.
let output_type = callee_body.return_ty();
if !util::relate_types(self.tcx, self.param_env, ty::Covariant, output_type, destination_ty)
{
trace!(?output_type, ?destination_ty);
return Err("failed to normalize return type");
}
if callsite.fn_sig.abi() == Abi::RustCall {
// FIXME: Don't inline user-written `extern "rust-call"` functions,
// since this is generally perf-negative on rustc, and we hope that
// LLVM will inline these functions instead.
if callee_body.spread_arg.is_some() {
return Err("do not inline user-written rust-call functions");
}
let (self_arg, arg_tuple) = match &args[..] {
[arg_tuple] => (None, arg_tuple),
[self_arg, arg_tuple] => (Some(self_arg), arg_tuple),
_ => bug!("Expected `rust-call` to have 1 or 2 args"),
};
let self_arg_ty =
self_arg.map(|self_arg| self_arg.node.ty(&caller_body.local_decls, self.tcx));
let arg_tuple_ty = arg_tuple.node.ty(&caller_body.local_decls, self.tcx);
let ty::Tuple(arg_tuple_tys) = *arg_tuple_ty.kind() else {
bug!("Closure arguments are not passed as a tuple");
};
for (arg_ty, input) in
self_arg_ty.into_iter().chain(arg_tuple_tys).zip(callee_body.args_iter())
{
let input_type = callee_body.local_decls[input].ty;
if !util::relate_types(self.tcx, self.param_env, ty::Covariant, input_type, arg_ty)
{
trace!(?arg_ty, ?input_type);
return Err("failed to normalize tuple argument type");
}
}
} else {
for (arg, input) in args.iter().zip(callee_body.args_iter()) {
let input_type = callee_body.local_decls[input].ty;
let arg_ty = arg.node.ty(&caller_body.local_decls, self.tcx);
if !util::relate_types(self.tcx, self.param_env, ty::Covariant, input_type, arg_ty)
{
trace!(?arg_ty, ?input_type);
return Err("failed to normalize argument type");
}
}
}
let old_blocks = caller_body.basic_blocks.next_index();
self.inline_call(caller_body, callsite, callee_body);
let new_blocks = old_blocks..caller_body.basic_blocks.next_index();
Ok(new_blocks)
}
fn check_mir_is_available(
&self,
caller_body: &Body<'tcx>,
callee: Instance<'tcx>,
) -> Result<(), &'static str> {
let caller_def_id = caller_body.source.def_id();
let callee_def_id = callee.def_id();
if callee_def_id == caller_def_id {
return Err("self-recursion");
}
match callee.def {
InstanceKind::Item(_) => {
// If there is no MIR available (either because it was not in metadata or
// because it has no MIR because it's an extern function), then the inliner
// won't cause cycles on this.
if !self.tcx.is_mir_available(callee_def_id) {
return Err("item MIR unavailable");
}
}
// These have no own callable MIR.
InstanceKind::Intrinsic(_) | InstanceKind::Virtual(..) => {
return Err("instance without MIR (intrinsic / virtual)");
}
// FIXME(#127030): `ConstParamHasTy` has bad interactions with
// the drop shim builder, which does not evaluate predicates in
// the correct param-env for types being dropped. Stall resolving
// the MIR for this instance until all of its const params are
// substituted.
InstanceKind::DropGlue(_, Some(ty)) if ty.has_type_flags(TypeFlags::HAS_CT_PARAM) => {
return Err("still needs substitution");
}
// This cannot result in an immediate cycle since the callee MIR is a shim, which does
// not get any optimizations run on it. Any subsequent inlining may cause cycles, but we
// do not need to catch this here, we can wait until the inliner decides to continue
// inlining a second time.
InstanceKind::VTableShim(_)
| InstanceKind::ReifyShim(..)
| InstanceKind::FnPtrShim(..)
| InstanceKind::ClosureOnceShim { .. }
| InstanceKind::ConstructCoroutineInClosureShim { .. }
| InstanceKind::DropGlue(..)
| InstanceKind::CloneShim(..)
| InstanceKind::ThreadLocalShim(..)
| InstanceKind::FnPtrAddrShim(..)
| InstanceKind::AsyncDropGlueCtorShim(..) => return Ok(()),
}
if self.tcx.is_constructor(callee_def_id) {
trace!("constructors always have MIR");
// Constructor functions cannot cause a query cycle.
return Ok(());
}
if callee_def_id.is_local() {
// If we know for sure that the function we're calling will itself try to
// call us, then we avoid inlining that function.
if self.tcx.mir_callgraph_reachable((callee, caller_def_id.expect_local())) {
return Err("caller might be reachable from callee (query cycle avoidance)");
}
Ok(())
} else {
// This cannot result in an immediate cycle since the callee MIR is from another crate
// and is already optimized. Any subsequent inlining may cause cycles, but we do
// not need to catch this here, we can wait until the inliner decides to continue
// inlining a second time.
trace!("functions from other crates always have MIR");
Ok(())
}
}
fn resolve_callsite(
&self,
caller_body: &Body<'tcx>,
bb: BasicBlock,
bb_data: &BasicBlockData<'tcx>,
) -> Option<CallSite<'tcx>> {
// Only consider direct calls to functions
let terminator = bb_data.terminator();
// FIXME(explicit_tail_calls): figure out if we can inline tail calls
if let TerminatorKind::Call { ref func, fn_span, .. } = terminator.kind {
let func_ty = func.ty(caller_body, self.tcx);
if let ty::FnDef(def_id, args) = *func_ty.kind() {
// To resolve an instance its args have to be fully normalized.
let args = self.tcx.try_normalize_erasing_regions(self.param_env, args).ok()?;
let callee =
Instance::try_resolve(self.tcx, self.param_env, def_id, args).ok().flatten()?;
if let InstanceKind::Virtual(..) | InstanceKind::Intrinsic(_) = callee.def {
return None;
}
if self.history.contains(&callee.def_id()) {
return None;
}
let fn_sig = self.tcx.fn_sig(def_id).instantiate(self.tcx, args);
// Additionally, check that the body that we're inlining actually agrees
// with the ABI of the trait that the item comes from.
if let InstanceKind::Item(instance_def_id) = callee.def
&& self.tcx.def_kind(instance_def_id) == DefKind::AssocFn
&& let instance_fn_sig = self.tcx.fn_sig(instance_def_id).skip_binder()
&& instance_fn_sig.abi() != fn_sig.abi()
{
return None;
}
let source_info = SourceInfo { span: fn_span, ..terminator.source_info };
return Some(CallSite { callee, fn_sig, block: bb, source_info });
}
}
None
}
/// Returns an error if inlining is not possible based on codegen attributes alone. A success
/// indicates that inlining decision should be based on other criteria.
fn check_codegen_attributes(
&self,
callsite: &CallSite<'tcx>,
callee_attrs: &CodegenFnAttrs,
cross_crate_inlinable: bool,
) -> Result<(), &'static str> {
if self.tcx.has_attr(callsite.callee.def_id(), sym::rustc_no_mir_inline) {
return Err("#[rustc_no_mir_inline]");
}
if let InlineAttr::Never = callee_attrs.inline {
return Err("never inline hint");
}
// Reachability pass defines which functions are eligible for inlining. Generally inlining
// other functions is incorrect because they could reference symbols that aren't exported.
let is_generic = callsite
.callee
.args
.non_erasable_generics(self.tcx, callsite.callee.def_id())
.next()
.is_some();
if !is_generic && !cross_crate_inlinable {
return Err("not exported");
}
if callsite.fn_sig.c_variadic() {
return Err("C variadic");
}
if callee_attrs.flags.contains(CodegenFnAttrFlags::COLD) {
return Err("cold");
}
if callee_attrs.no_sanitize != self.codegen_fn_attrs.no_sanitize {
return Err("incompatible sanitizer set");
}
// Two functions are compatible if the callee has no attribute (meaning
// that it's codegen agnostic), or sets an attribute that is identical
// to this function's attribute.
if callee_attrs.instruction_set.is_some()
&& callee_attrs.instruction_set != self.codegen_fn_attrs.instruction_set
{
return Err("incompatible instruction set");
}
let callee_feature_names = callee_attrs.target_features.iter().map(|f| f.name);
let this_feature_names = self.codegen_fn_attrs.target_features.iter().map(|f| f.name);
if callee_feature_names.ne(this_feature_names) {
// In general it is not correct to inline a callee with target features that are a
// subset of the caller. This is because the callee might contain calls, and the ABI of
// those calls depends on the target features of the surrounding function. By moving a
// `Call` terminator from one MIR body to another with more target features, we might
// change the ABI of that call!
return Err("incompatible target features");
}
Ok(())
}
/// Returns inlining decision that is based on the examination of callee MIR body.
/// Assumes that codegen attributes have been checked for compatibility already.
#[instrument(level = "debug", skip(self, callee_body))]
fn check_mir_body(
&self,
callsite: &CallSite<'tcx>,
callee_body: &Body<'tcx>,
callee_attrs: &CodegenFnAttrs,
cross_crate_inlinable: bool,
) -> Result<(), &'static str> {
let tcx = self.tcx;
if let Some(_) = callee_body.tainted_by_errors {
return Err("Body is tainted");
}
let mut threshold = if self.caller_is_inline_forwarder {
self.tcx.sess.opts.unstable_opts.inline_mir_forwarder_threshold.unwrap_or(30)
} else if cross_crate_inlinable {
self.tcx.sess.opts.unstable_opts.inline_mir_hint_threshold.unwrap_or(100)
} else {
self.tcx.sess.opts.unstable_opts.inline_mir_threshold.unwrap_or(50)
};
// Give a bonus functions with a small number of blocks,
// We normally have two or three blocks for even
// very small functions.
if callee_body.basic_blocks.len() <= 3 {
threshold += threshold / 4;
}
debug!(" final inline threshold = {}", threshold);
// FIXME: Give a bonus to functions with only a single caller
let mut checker =
CostChecker::new(self.tcx, self.param_env, Some(callsite.callee), callee_body);
checker.add_function_level_costs();
// Traverse the MIR manually so we can account for the effects of inlining on the CFG.
let mut work_list = vec![START_BLOCK];
let mut visited = BitSet::new_empty(callee_body.basic_blocks.len());
while let Some(bb) = work_list.pop() {
if !visited.insert(bb.index()) {
continue;
}
let blk = &callee_body.basic_blocks[bb];
checker.visit_basic_block_data(bb, blk);
let term = blk.terminator();
if let TerminatorKind::Drop { ref place, target, unwind, replace: _ } = term.kind {
work_list.push(target);
// If the place doesn't actually need dropping, treat it like a regular goto.
let ty = callsite.callee.instantiate_mir(
self.tcx,
ty::EarlyBinder::bind(&place.ty(callee_body, tcx).ty),
);
if ty.needs_drop(tcx, self.param_env)
&& let UnwindAction::Cleanup(unwind) = unwind
{
work_list.push(unwind);
}
} else if callee_attrs.instruction_set != self.codegen_fn_attrs.instruction_set
&& matches!(term.kind, TerminatorKind::InlineAsm { .. })
{
// During the attribute checking stage we allow a callee with no
// instruction_set assigned to count as compatible with a function that does
// assign one. However, during this stage we require an exact match when any
// inline-asm is detected. LLVM will still possibly do an inline later on
// if the no-attribute function ends up with the same instruction set anyway.
return Err("Cannot move inline-asm across instruction sets");
} else if let TerminatorKind::TailCall { .. } = term.kind {
// FIXME(explicit_tail_calls): figure out how exactly functions containing tail
// calls can be inlined (and if they even should)
return Err("can't inline functions with tail calls");
} else {
work_list.extend(term.successors())
}
}
// N.B. We still apply our cost threshold to #[inline(always)] functions.
// That attribute is often applied to very large functions that exceed LLVM's (very
// generous) inlining threshold. Such functions are very poor MIR inlining candidates.
// Always inlining #[inline(always)] functions in MIR, on net, slows down the compiler.
let cost = checker.cost();
if cost <= threshold {
debug!("INLINING {:?} [cost={} <= threshold={}]", callsite, cost, threshold);
Ok(())
} else {
debug!("NOT inlining {:?} [cost={} > threshold={}]", callsite, cost, threshold);
Err("cost above threshold")
}
}
fn inline_call(
&self,
caller_body: &mut Body<'tcx>,
callsite: &CallSite<'tcx>,
mut callee_body: Body<'tcx>,
) {
let terminator = caller_body[callsite.block].terminator.take().unwrap();
let TerminatorKind::Call { func, args, destination, unwind, target, .. } = terminator.kind
else {
bug!("unexpected terminator kind {:?}", terminator.kind);
};
let return_block = if let Some(block) = target {
// Prepare a new block for code that should execute when call returns. We don't use
// target block directly since it might have other predecessors.
let mut data = BasicBlockData::new(Some(Terminator {
source_info: terminator.source_info,
kind: TerminatorKind::Goto { target: block },
}));
data.is_cleanup = caller_body[block].is_cleanup;
Some(caller_body.basic_blocks_mut().push(data))
} else {
None
};
// If the call is something like `a[*i] = f(i)`, where
// `i : &mut usize`, then just duplicating the `a[*i]`
// Place could result in two different locations if `f`
// writes to `i`. To prevent this we need to create a temporary
// borrow of the place and pass the destination as `*temp` instead.
fn dest_needs_borrow(place: Place<'_>) -> bool {
for elem in place.projection.iter() {
match elem {
ProjectionElem::Deref | ProjectionElem::Index(_) => return true,
_ => {}
}
}
false
}
let dest = if dest_needs_borrow(destination) {
trace!("creating temp for return destination");
let dest = Rvalue::Ref(
self.tcx.lifetimes.re_erased,
BorrowKind::Mut { kind: MutBorrowKind::Default },
destination,
);
let dest_ty = dest.ty(caller_body, self.tcx);
let temp =
Place::from(self.new_call_temp(caller_body, callsite, dest_ty, return_block));
caller_body[callsite.block].statements.push(Statement {
source_info: callsite.source_info,
kind: StatementKind::Assign(Box::new((temp, dest))),
});
self.tcx.mk_place_deref(temp)
} else {
destination
};
// Always create a local to hold the destination, as `RETURN_PLACE` may appear
// where a full `Place` is not allowed.
let (remap_destination, destination_local) = if let Some(d) = dest.as_local() {
(false, d)
} else {
(
true,
self.new_call_temp(
caller_body,
callsite,
destination.ty(caller_body, self.tcx).ty,
return_block,
),
)
};
// Copy the arguments if needed.
let args = self.make_call_args(args, callsite, caller_body, &callee_body, return_block);
let mut integrator = Integrator {
args: &args,
new_locals: Local::new(caller_body.local_decls.len())..,
new_scopes: SourceScope::new(caller_body.source_scopes.len())..,
new_blocks: BasicBlock::new(caller_body.basic_blocks.len())..,
destination: destination_local,
callsite_scope: caller_body.source_scopes[callsite.source_info.scope].clone(),
callsite,
cleanup_block: unwind,
in_cleanup_block: false,
return_block,
tcx: self.tcx,
always_live_locals: BitSet::new_filled(callee_body.local_decls.len()),
};
// Map all `Local`s, `SourceScope`s and `BasicBlock`s to new ones
// (or existing ones, in a few special cases) in the caller.
integrator.visit_body(&mut callee_body);
// If there are any locals without storage markers, give them storage only for the
// duration of the call.
for local in callee_body.vars_and_temps_iter() {
if integrator.always_live_locals.contains(local) {
let new_local = integrator.map_local(local);
caller_body[callsite.block].statements.push(Statement {
source_info: callsite.source_info,
kind: StatementKind::StorageLive(new_local),
});
}
}
if let Some(block) = return_block {
// To avoid repeated O(n) insert, push any new statements to the end and rotate
// the slice once.
let mut n = 0;
if remap_destination {
caller_body[block].statements.push(Statement {
source_info: callsite.source_info,
kind: StatementKind::Assign(Box::new((
dest,
Rvalue::Use(Operand::Move(destination_local.into())),
))),
});
n += 1;
}
for local in callee_body.vars_and_temps_iter().rev() {
if integrator.always_live_locals.contains(local) {
let new_local = integrator.map_local(local);
caller_body[block].statements.push(Statement {
source_info: callsite.source_info,
kind: StatementKind::StorageDead(new_local),
});
n += 1;
}
}
caller_body[block].statements.rotate_right(n);
}
// Insert all of the (mapped) parts of the callee body into the caller.
caller_body.local_decls.extend(callee_body.drain_vars_and_temps());
caller_body.source_scopes.append(&mut callee_body.source_scopes);
if self
.tcx
.sess
.opts
.unstable_opts
.inline_mir_preserve_debug
.unwrap_or(self.tcx.sess.opts.debuginfo != DebugInfo::None)
{
// Note that we need to preserve these in the standard library so that
// people working on rust can build with or without debuginfo while
// still getting consistent results from the mir-opt tests.
caller_body.var_debug_info.append(&mut callee_body.var_debug_info);
}
caller_body.basic_blocks_mut().append(callee_body.basic_blocks_mut());
caller_body[callsite.block].terminator = Some(Terminator {
source_info: callsite.source_info,
kind: TerminatorKind::Goto { target: integrator.map_block(START_BLOCK) },
});
// Copy required constants from the callee_body into the caller_body. Although we are only
// pushing unevaluated consts to `required_consts`, here they may have been evaluated
// because we are calling `instantiate_and_normalize_erasing_regions` -- so we filter again.
caller_body.required_consts.as_mut().unwrap().extend(
callee_body.required_consts().into_iter().filter(|ct| ct.const_.is_required_const()),
);
// Now that we incorporated the callee's `required_consts`, we can remove the callee from
// `mentioned_items` -- but we have to take their `mentioned_items` in return. This does
// some extra work here to save the monomorphization collector work later. It helps a lot,
// since monomorphization can avoid a lot of work when the "mentioned items" are similar to
// the actually used items. By doing this we can entirely avoid visiting the callee!
// We need to reconstruct the `required_item` for the callee so that we can find and
// remove it.
let callee_item = MentionedItem::Fn(func.ty(caller_body, self.tcx));
let caller_mentioned_items = caller_body.mentioned_items.as_mut().unwrap();
if let Some(idx) = caller_mentioned_items.iter().position(|item| item.node == callee_item) {
// We found the callee, so remove it and add its items instead.
caller_mentioned_items.remove(idx);
caller_mentioned_items.extend(callee_body.mentioned_items());
} else {
// If we can't find the callee, there's no point in adding its items. Probably it
// already got removed by being inlined elsewhere in the same function, so we already
// took its items.
}
}
fn make_call_args(
&self,
args: Box<[Spanned<Operand<'tcx>>]>,
callsite: &CallSite<'tcx>,
caller_body: &mut Body<'tcx>,
callee_body: &Body<'tcx>,
return_block: Option<BasicBlock>,
) -> Box<[Local]> {
let tcx = self.tcx;
// There is a bit of a mismatch between the *caller* of a closure and the *callee*.
// The caller provides the arguments wrapped up in a tuple:
//
// tuple_tmp = (a, b, c)
// Fn::call(closure_ref, tuple_tmp)
//
// meanwhile the closure body expects the arguments (here, `a`, `b`, and `c`)
// as distinct arguments. (This is the "rust-call" ABI hack.) Normally, codegen has
// the job of unpacking this tuple. But here, we are codegen. =) So we want to create
// a vector like
//
// [closure_ref, tuple_tmp.0, tuple_tmp.1, tuple_tmp.2]
//
// Except for one tiny wrinkle: we don't actually want `tuple_tmp.0`. It's more convenient
// if we "spill" that into *another* temporary, so that we can map the argument
// variable in the callee MIR directly to an argument variable on our side.
// So we introduce temporaries like:
//
// tmp0 = tuple_tmp.0
// tmp1 = tuple_tmp.1
// tmp2 = tuple_tmp.2
//
// and the vector is `[closure_ref, tmp0, tmp1, tmp2]`.
if callsite.fn_sig.abi() == Abi::RustCall && callee_body.spread_arg.is_none() {
// FIXME(edition_2024): switch back to a normal method call.
let mut args = <_>::into_iter(args);
let self_ = self.create_temp_if_necessary(
args.next().unwrap().node,
callsite,
caller_body,
return_block,
);
let tuple = self.create_temp_if_necessary(
args.next().unwrap().node,
callsite,
caller_body,
return_block,
);
assert!(args.next().is_none());
let tuple = Place::from(tuple);
let ty::Tuple(tuple_tys) = tuple.ty(caller_body, tcx).ty.kind() else {
bug!("Closure arguments are not passed as a tuple");
};
// The `closure_ref` in our example above.
let closure_ref_arg = iter::once(self_);
// The `tmp0`, `tmp1`, and `tmp2` in our example above.
let tuple_tmp_args = tuple_tys.iter().enumerate().map(|(i, ty)| {
// This is e.g., `tuple_tmp.0` in our example above.
let tuple_field = Operand::Move(tcx.mk_place_field(tuple, FieldIdx::new(i), ty));
// Spill to a local to make e.g., `tmp0`.
self.create_temp_if_necessary(tuple_field, callsite, caller_body, return_block)
});
closure_ref_arg.chain(tuple_tmp_args).collect()
} else {
// FIXME(edition_2024): switch back to a normal method call.
<_>::into_iter(args)
.map(|a| self.create_temp_if_necessary(a.node, callsite, caller_body, return_block))
.collect()
}
}
/// If `arg` is already a temporary, returns it. Otherwise, introduces a fresh
/// temporary `T` and an instruction `T = arg`, and returns `T`.
fn create_temp_if_necessary(
&self,
arg: Operand<'tcx>,
callsite: &CallSite<'tcx>,
caller_body: &mut Body<'tcx>,
return_block: Option<BasicBlock>,
) -> Local {
// Reuse the operand if it is a moved temporary.
if let Operand::Move(place) = &arg
&& let Some(local) = place.as_local()
&& caller_body.local_kind(local) == LocalKind::Temp
{
return local;
}
// Otherwise, create a temporary for the argument.
trace!("creating temp for argument {:?}", arg);
let arg_ty = arg.ty(caller_body, self.tcx);
let local = self.new_call_temp(caller_body, callsite, arg_ty, return_block);
caller_body[callsite.block].statements.push(Statement {
source_info: callsite.source_info,
kind: StatementKind::Assign(Box::new((Place::from(local), Rvalue::Use(arg)))),
});
local
}
/// Introduces a new temporary into the caller body that is live for the duration of the call.
fn new_call_temp(
&self,
caller_body: &mut Body<'tcx>,
callsite: &CallSite<'tcx>,
ty: Ty<'tcx>,
return_block: Option<BasicBlock>,
) -> Local {
let local = caller_body.local_decls.push(LocalDecl::new(ty, callsite.source_info.span));
caller_body[callsite.block].statements.push(Statement {
source_info: callsite.source_info,
kind: StatementKind::StorageLive(local),
});
if let Some(block) = return_block {
caller_body[block].statements.insert(0, Statement {
source_info: callsite.source_info,
kind: StatementKind::StorageDead(local),
});
}
local
}
}
/**
* Integrator.
*
* Integrates blocks from the callee function into the calling function.
* Updates block indices, references to locals and other control flow
* stuff.
*/
struct Integrator<'a, 'tcx> {
args: &'a [Local],
new_locals: RangeFrom<Local>,
new_scopes: RangeFrom<SourceScope>,
new_blocks: RangeFrom<BasicBlock>,
destination: Local,
callsite_scope: SourceScopeData<'tcx>,
callsite: &'a CallSite<'tcx>,
cleanup_block: UnwindAction,
in_cleanup_block: bool,
return_block: Option<BasicBlock>,
tcx: TyCtxt<'tcx>,
always_live_locals: BitSet<Local>,
}
impl Integrator<'_, '_> {
fn map_local(&self, local: Local) -> Local {
let new = if local == RETURN_PLACE {
self.destination
} else {
let idx = local.index() - 1;
if idx < self.args.len() {
self.args[idx]
} else {
Local::new(self.new_locals.start.index() + (idx - self.args.len()))
}
};
trace!("mapping local `{:?}` to `{:?}`", local, new);
new
}
fn map_scope(&self, scope: SourceScope) -> SourceScope {
let new = SourceScope::new(self.new_scopes.start.index() + scope.index());
trace!("mapping scope `{:?}` to `{:?}`", scope, new);
new
}
fn map_block(&self, block: BasicBlock) -> BasicBlock {
let new = BasicBlock::new(self.new_blocks.start.index() + block.index());
trace!("mapping block `{:?}` to `{:?}`", block, new);
new
}
fn map_unwind(&self, unwind: UnwindAction) -> UnwindAction {
if self.in_cleanup_block {
match unwind {
UnwindAction::Cleanup(_) | UnwindAction::Continue => {
bug!("cleanup on cleanup block");
}
UnwindAction::Unreachable | UnwindAction::Terminate(_) => return unwind,
}
}
match unwind {
UnwindAction::Unreachable | UnwindAction::Terminate(_) => unwind,
UnwindAction::Cleanup(target) => UnwindAction::Cleanup(self.map_block(target)),
// Add an unwind edge to the original call's cleanup block
UnwindAction::Continue => self.cleanup_block,
}
}
}
impl<'tcx> MutVisitor<'tcx> for Integrator<'_, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_local(&mut self, local: &mut Local, _ctxt: PlaceContext, _location: Location) {
*local = self.map_local(*local);
}
fn visit_source_scope_data(&mut self, scope_data: &mut SourceScopeData<'tcx>) {
self.super_source_scope_data(scope_data);
if scope_data.parent_scope.is_none() {
// Attach the outermost callee scope as a child of the callsite
// scope, via the `parent_scope` and `inlined_parent_scope` chains.
scope_data.parent_scope = Some(self.callsite.source_info.scope);
assert_eq!(scope_data.inlined_parent_scope, None);
scope_data.inlined_parent_scope = if self.callsite_scope.inlined.is_some() {
Some(self.callsite.source_info.scope)
} else {
self.callsite_scope.inlined_parent_scope
};
// Mark the outermost callee scope as an inlined one.
assert_eq!(scope_data.inlined, None);
scope_data.inlined = Some((self.callsite.callee, self.callsite.source_info.span));
} else if scope_data.inlined_parent_scope.is_none() {
// Make it easy to find the scope with `inlined` set above.
scope_data.inlined_parent_scope = Some(self.map_scope(OUTERMOST_SOURCE_SCOPE));
}
}
fn visit_source_scope(&mut self, scope: &mut SourceScope) {
*scope = self.map_scope(*scope);
}
fn visit_basic_block_data(&mut self, block: BasicBlock, data: &mut BasicBlockData<'tcx>) {
self.in_cleanup_block = data.is_cleanup;
self.super_basic_block_data(block, data);
self.in_cleanup_block = false;
}
fn visit_retag(&mut self, kind: &mut RetagKind, place: &mut Place<'tcx>, loc: Location) {
self.super_retag(kind, place, loc);
// We have to patch all inlined retags to be aware that they are no longer
// happening on function entry.
if *kind == RetagKind::FnEntry {
*kind = RetagKind::Default;
}
}
fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
if let StatementKind::StorageLive(local) | StatementKind::StorageDead(local) =
statement.kind
{
self.always_live_locals.remove(local);
}
self.super_statement(statement, location);
}
fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, loc: Location) {
// Don't try to modify the implicit `_0` access on return (`return` terminators are
// replaced down below anyways).
if !matches!(terminator.kind, TerminatorKind::Return) {
self.super_terminator(terminator, loc);
}
match terminator.kind {
TerminatorKind::CoroutineDrop | TerminatorKind::Yield { .. } => bug!(),
TerminatorKind::Goto { ref mut target } => {
*target = self.map_block(*target);
}
TerminatorKind::SwitchInt { ref mut targets, .. } => {
for tgt in targets.all_targets_mut() {
*tgt = self.map_block(*tgt);
}
}
TerminatorKind::Drop { ref mut target, ref mut unwind, .. } => {
*target = self.map_block(*target);
*unwind = self.map_unwind(*unwind);
}
TerminatorKind::TailCall { .. } => {
// check_mir_body forbids tail calls
unreachable!()
}
TerminatorKind::Call { ref mut target, ref mut unwind, .. } => {
if let Some(ref mut tgt) = *target {
*tgt = self.map_block(*tgt);
}
*unwind = self.map_unwind(*unwind);
}
TerminatorKind::Assert { ref mut target, ref mut unwind, .. } => {
*target = self.map_block(*target);
*unwind = self.map_unwind(*unwind);
}
TerminatorKind::Return => {
terminator.kind = if let Some(tgt) = self.return_block {
TerminatorKind::Goto { target: tgt }
} else {
TerminatorKind::Unreachable
}
}
TerminatorKind::UnwindResume => {
terminator.kind = match self.cleanup_block {
UnwindAction::Cleanup(tgt) => TerminatorKind::Goto { target: tgt },
UnwindAction::Continue => TerminatorKind::UnwindResume,
UnwindAction::Unreachable => TerminatorKind::Unreachable,
UnwindAction::Terminate(reason) => TerminatorKind::UnwindTerminate(reason),
};
}
TerminatorKind::UnwindTerminate(_) => {}
TerminatorKind::Unreachable => {}
TerminatorKind::FalseEdge { ref mut real_target, ref mut imaginary_target } => {
*real_target = self.map_block(*real_target);
*imaginary_target = self.map_block(*imaginary_target);
}
TerminatorKind::FalseUnwind { real_target: _, unwind: _ } =>
// see the ordering of passes in the optimized_mir query.
{
bug!("False unwinds should have been removed before inlining")
}
TerminatorKind::InlineAsm { ref mut targets, ref mut unwind, .. } => {
for tgt in targets.iter_mut() {
*tgt = self.map_block(*tgt);
}
*unwind = self.map_unwind(*unwind);
}
}
}
}
#[instrument(skip(tcx), level = "debug")]
fn try_instance_mir<'tcx>(
tcx: TyCtxt<'tcx>,
instance: InstanceKind<'tcx>,
) -> Result<&'tcx Body<'tcx>, &'static str> {
if let ty::InstanceKind::DropGlue(_, Some(ty))
| ty::InstanceKind::AsyncDropGlueCtorShim(_, Some(ty)) = instance
&& let ty::Adt(def, args) = ty.kind()
{
let fields = def.all_fields();
for field in fields {
let field_ty = field.ty(tcx, args);
if field_ty.has_param() && field_ty.has_aliases() {
return Err("cannot build drop shim for polymorphic type");
}
}
}
Ok(tcx.instance_mir(instance))
}
fn body_is_forwarder(body: &Body<'_>) -> bool {
let TerminatorKind::Call { target, .. } = body.basic_blocks[START_BLOCK].terminator().kind
else {
return false;
};
if let Some(target) = target {
let TerminatorKind::Return = body.basic_blocks[target].terminator().kind else {
return false;
};
}
let max_blocks = if !body.is_polymorphic {
2
} else if target.is_none() {
3
} else {
4
};
if body.basic_blocks.len() > max_blocks {
return false;
}
body.basic_blocks.iter_enumerated().all(|(bb, bb_data)| {
bb == START_BLOCK
|| matches!(
bb_data.terminator().kind,
TerminatorKind::Return
| TerminatorKind::Drop { .. }
| TerminatorKind::UnwindResume
| TerminatorKind::UnwindTerminate(_)
)
})
}