blob: adda0cde24fc08b17fb2b86a00d8d8e40a7de5e5 [file] [log] [blame]
use self::collector::NodeCollector;
pub use self::definitions::{
DefKey, DefPath, DefPathData, DefPathHash, Definitions, DisambiguatedDefPathData,
};
use crate::dep_graph::{DepGraph, DepKind, DepNode, DepNodeIndex};
use crate::middle::cstore::CrateStoreDyn;
use crate::ty::query::Providers;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::svh::Svh;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, DefIndex, LocalDefId, CRATE_DEF_INDEX};
use rustc_hir::intravisit;
use rustc_hir::itemlikevisit::ItemLikeVisitor;
use rustc_hir::print::Nested;
use rustc_hir::*;
use rustc_index::vec::IndexVec;
use rustc_span::hygiene::MacroKind;
use rustc_span::source_map::Spanned;
use rustc_span::symbol::kw;
use rustc_span::Span;
use rustc_target::spec::abi::Abi;
use syntax::ast::{self, Name, NodeId};
pub mod blocks;
mod collector;
pub mod definitions;
mod hir_id_validator;
/// Represents an entry and its parent `HirId`.
#[derive(Copy, Clone, Debug)]
pub struct Entry<'hir> {
parent: HirId,
dep_node: DepNodeIndex,
node: Node<'hir>,
}
impl<'hir> Entry<'hir> {
fn parent_node(self) -> Option<HirId> {
match self.node {
Node::Crate | Node::MacroDef(_) => None,
_ => Some(self.parent),
}
}
fn fn_decl(&self) -> Option<&'hir FnDecl<'hir>> {
match self.node {
Node::Item(ref item) => match item.kind {
ItemKind::Fn(ref sig, _, _) => Some(&sig.decl),
_ => None,
},
Node::TraitItem(ref item) => match item.kind {
TraitItemKind::Method(ref sig, _) => Some(&sig.decl),
_ => None,
},
Node::ImplItem(ref item) => match item.kind {
ImplItemKind::Method(ref sig, _) => Some(&sig.decl),
_ => None,
},
Node::Expr(ref expr) => match expr.kind {
ExprKind::Closure(_, ref fn_decl, ..) => Some(fn_decl),
_ => None,
},
_ => None,
}
}
fn fn_sig(&self) -> Option<&'hir FnSig<'hir>> {
match &self.node {
Node::Item(item) => match &item.kind {
ItemKind::Fn(sig, _, _) => Some(sig),
_ => None,
},
Node::TraitItem(item) => match &item.kind {
TraitItemKind::Method(sig, _) => Some(sig),
_ => None,
},
Node::ImplItem(item) => match &item.kind {
ImplItemKind::Method(sig, _) => Some(sig),
_ => None,
},
_ => None,
}
}
fn associated_body(self) -> Option<BodyId> {
match self.node {
Node::Item(item) => match item.kind {
ItemKind::Const(_, body) | ItemKind::Static(.., body) | ItemKind::Fn(.., body) => {
Some(body)
}
_ => None,
},
Node::TraitItem(item) => match item.kind {
TraitItemKind::Const(_, Some(body))
| TraitItemKind::Method(_, TraitMethod::Provided(body)) => Some(body),
_ => None,
},
Node::ImplItem(item) => match item.kind {
ImplItemKind::Const(_, body) | ImplItemKind::Method(_, body) => Some(body),
_ => None,
},
Node::AnonConst(constant) => Some(constant.body),
Node::Expr(expr) => match expr.kind {
ExprKind::Closure(.., body, _, _) => Some(body),
_ => None,
},
_ => None,
}
}
fn is_body_owner(self, hir_id: HirId) -> bool {
match self.associated_body() {
Some(b) => b.hir_id == hir_id,
None => false,
}
}
}
/// This type is effectively a `HashMap<HirId, Entry<'hir>>`,
/// but it is implemented as 2 layers of arrays.
/// - first we have `A = IndexVec<DefIndex, B>` mapping `DefIndex`s to an inner value
/// - which is `B = IndexVec<ItemLocalId, Option<Entry<'hir>>` which gives you the `Entry`.
pub(super) type HirEntryMap<'hir> = IndexVec<DefIndex, IndexVec<ItemLocalId, Option<Entry<'hir>>>>;
/// Represents a mapping from `NodeId`s to AST elements and their parent `NodeId`s.
#[derive(Clone)]
pub struct Map<'hir> {
krate: &'hir Crate<'hir>,
pub dep_graph: DepGraph,
/// The SVH of the local crate.
pub crate_hash: Svh,
map: HirEntryMap<'hir>,
definitions: Definitions,
/// The reverse mapping of `node_to_hir_id`.
hir_to_node_id: FxHashMap<HirId, NodeId>,
}
struct ParentHirIterator<'map, 'hir> {
current_id: HirId,
map: &'map Map<'hir>,
}
impl<'map, 'hir> ParentHirIterator<'map, 'hir> {
fn new(current_id: HirId, map: &'map Map<'hir>) -> Self {
Self { current_id, map }
}
}
impl<'hir> Iterator for ParentHirIterator<'_, 'hir> {
type Item = (HirId, Node<'hir>);
fn next(&mut self) -> Option<Self::Item> {
if self.current_id == CRATE_HIR_ID {
return None;
}
loop {
// There are nodes that do not have entries, so we need to skip them.
let parent_id = self.map.get_parent_node(self.current_id);
if parent_id == self.current_id {
self.current_id = CRATE_HIR_ID;
return None;
}
self.current_id = parent_id;
if let Some(entry) = self.map.find_entry(parent_id) {
return Some((parent_id, entry.node));
}
// If this `HirId` doesn't have an `Entry`, skip it and look for its `parent_id`.
}
}
}
impl<'hir> Map<'hir> {
/// This is used internally in the dependency tracking system.
/// Use the `krate` method to ensure your dependency on the
/// crate is tracked.
pub fn untracked_krate(&self) -> &Crate<'hir> {
&self.krate
}
#[inline]
fn lookup(&self, id: HirId) -> Option<&Entry<'hir>> {
let local_map = self.map.get(id.owner)?;
local_map.get(id.local_id)?.as_ref()
}
/// Registers a read in the dependency graph of the AST node with
/// the given `id`. This needs to be called each time a public
/// function returns the HIR for a node -- in other words, when it
/// "reveals" the content of a node to the caller (who might not
/// otherwise have had access to those contents, and hence needs a
/// read recorded). If the function just returns a DefId or
/// HirId, no actual content was returned, so no read is needed.
pub fn read(&self, hir_id: HirId) {
if let Some(entry) = self.lookup(hir_id) {
self.dep_graph.read_index(entry.dep_node);
} else {
bug!("called `HirMap::read()` with invalid `HirId`: {:?}", hir_id)
}
}
#[inline]
pub fn definitions(&self) -> &Definitions {
&self.definitions
}
pub fn def_key(&self, def_id: DefId) -> DefKey {
assert!(def_id.is_local());
self.definitions.def_key(def_id.index)
}
pub fn def_path_from_hir_id(&self, id: HirId) -> Option<DefPath> {
self.opt_local_def_id(id).map(|def_id| self.def_path(def_id))
}
pub fn def_path(&self, def_id: DefId) -> DefPath {
assert!(def_id.is_local());
self.definitions.def_path(def_id.index)
}
#[inline]
pub fn local_def_id_from_node_id(&self, node: NodeId) -> DefId {
self.opt_local_def_id_from_node_id(node).unwrap_or_else(|| {
let hir_id = self.node_to_hir_id(node);
bug!(
"local_def_id_from_node_id: no entry for `{}`, which has a map of `{:?}`",
node,
self.find_entry(hir_id)
)
})
}
#[inline]
pub fn local_def_id(&self, hir_id: HirId) -> DefId {
self.opt_local_def_id(hir_id).unwrap_or_else(|| {
bug!(
"local_def_id: no entry for `{:?}`, which has a map of `{:?}`",
hir_id,
self.find_entry(hir_id)
)
})
}
#[inline]
pub fn opt_local_def_id(&self, hir_id: HirId) -> Option<DefId> {
let node_id = self.hir_to_node_id(hir_id);
self.definitions.opt_local_def_id(node_id)
}
#[inline]
pub fn opt_local_def_id_from_node_id(&self, node: NodeId) -> Option<DefId> {
self.definitions.opt_local_def_id(node)
}
#[inline]
pub fn as_local_node_id(&self, def_id: DefId) -> Option<NodeId> {
self.definitions.as_local_node_id(def_id)
}
#[inline]
pub fn as_local_hir_id(&self, def_id: DefId) -> Option<HirId> {
self.definitions.as_local_hir_id(def_id)
}
#[inline]
pub fn hir_to_node_id(&self, hir_id: HirId) -> NodeId {
self.hir_to_node_id[&hir_id]
}
#[inline]
pub fn node_to_hir_id(&self, node_id: NodeId) -> HirId {
self.definitions.node_to_hir_id(node_id)
}
#[inline]
pub fn def_index_to_hir_id(&self, def_index: DefIndex) -> HirId {
self.definitions.def_index_to_hir_id(def_index)
}
#[inline]
pub fn local_def_id_to_hir_id(&self, def_id: LocalDefId) -> HirId {
self.definitions.def_index_to_hir_id(def_id.to_def_id().index)
}
pub fn def_kind(&self, hir_id: HirId) -> Option<DefKind> {
let node = if let Some(node) = self.find(hir_id) { node } else { return None };
Some(match node {
Node::Item(item) => match item.kind {
ItemKind::Static(..) => DefKind::Static,
ItemKind::Const(..) => DefKind::Const,
ItemKind::Fn(..) => DefKind::Fn,
ItemKind::Mod(..) => DefKind::Mod,
ItemKind::OpaqueTy(..) => DefKind::OpaqueTy,
ItemKind::TyAlias(..) => DefKind::TyAlias,
ItemKind::Enum(..) => DefKind::Enum,
ItemKind::Struct(..) => DefKind::Struct,
ItemKind::Union(..) => DefKind::Union,
ItemKind::Trait(..) => DefKind::Trait,
ItemKind::TraitAlias(..) => DefKind::TraitAlias,
ItemKind::ExternCrate(_)
| ItemKind::Use(..)
| ItemKind::ForeignMod(..)
| ItemKind::GlobalAsm(..)
| ItemKind::Impl { .. } => return None,
},
Node::ForeignItem(item) => match item.kind {
ForeignItemKind::Fn(..) => DefKind::Fn,
ForeignItemKind::Static(..) => DefKind::Static,
ForeignItemKind::Type => DefKind::ForeignTy,
},
Node::TraitItem(item) => match item.kind {
TraitItemKind::Const(..) => DefKind::AssocConst,
TraitItemKind::Method(..) => DefKind::Method,
TraitItemKind::Type(..) => DefKind::AssocTy,
},
Node::ImplItem(item) => match item.kind {
ImplItemKind::Const(..) => DefKind::AssocConst,
ImplItemKind::Method(..) => DefKind::Method,
ImplItemKind::TyAlias(..) => DefKind::AssocTy,
ImplItemKind::OpaqueTy(..) => DefKind::AssocOpaqueTy,
},
Node::Variant(_) => DefKind::Variant,
Node::Ctor(variant_data) => {
// FIXME(eddyb) is this even possible, if we have a `Node::Ctor`?
if variant_data.ctor_hir_id().is_none() {
return None;
}
let ctor_of = match self.find(self.get_parent_node(hir_id)) {
Some(Node::Item(..)) => def::CtorOf::Struct,
Some(Node::Variant(..)) => def::CtorOf::Variant,
_ => unreachable!(),
};
DefKind::Ctor(ctor_of, def::CtorKind::from_hir(variant_data))
}
Node::AnonConst(_)
| Node::Field(_)
| Node::Expr(_)
| Node::Stmt(_)
| Node::PathSegment(_)
| Node::Ty(_)
| Node::TraitRef(_)
| Node::Pat(_)
| Node::Binding(_)
| Node::Local(_)
| Node::Param(_)
| Node::Arm(_)
| Node::Lifetime(_)
| Node::Visibility(_)
| Node::Block(_)
| Node::Crate => return None,
Node::MacroDef(_) => DefKind::Macro(MacroKind::Bang),
Node::GenericParam(param) => match param.kind {
GenericParamKind::Lifetime { .. } => return None,
GenericParamKind::Type { .. } => DefKind::TyParam,
GenericParamKind::Const { .. } => DefKind::ConstParam,
},
})
}
fn find_entry(&self, id: HirId) -> Option<Entry<'hir>> {
self.lookup(id).cloned()
}
pub fn item(&self, id: HirId) -> &'hir Item<'hir> {
self.read(id);
// N.B., intentionally bypass `self.krate()` so that we
// do not trigger a read of the whole krate here
self.krate.item(id)
}
pub fn trait_item(&self, id: TraitItemId) -> &'hir TraitItem<'hir> {
self.read(id.hir_id);
// N.B., intentionally bypass `self.krate()` so that we
// do not trigger a read of the whole krate here
self.krate.trait_item(id)
}
pub fn impl_item(&self, id: ImplItemId) -> &'hir ImplItem<'hir> {
self.read(id.hir_id);
// N.B., intentionally bypass `self.krate()` so that we
// do not trigger a read of the whole krate here
self.krate.impl_item(id)
}
pub fn body(&self, id: BodyId) -> &'hir Body<'hir> {
self.read(id.hir_id);
// N.B., intentionally bypass `self.krate()` so that we
// do not trigger a read of the whole krate here
self.krate.body(id)
}
pub fn fn_decl_by_hir_id(&self, hir_id: HirId) -> Option<&'hir FnDecl<'hir>> {
if let Some(entry) = self.find_entry(hir_id) {
entry.fn_decl()
} else {
bug!("no entry for hir_id `{}`", hir_id)
}
}
pub fn fn_sig_by_hir_id(&self, hir_id: HirId) -> Option<&'hir FnSig<'hir>> {
if let Some(entry) = self.find_entry(hir_id) {
entry.fn_sig()
} else {
bug!("no entry for hir_id `{}`", hir_id)
}
}
/// Returns the `HirId` that corresponds to the definition of
/// which this is the body of, i.e., a `fn`, `const` or `static`
/// item (possibly associated), a closure, or a `hir::AnonConst`.
pub fn body_owner(&self, BodyId { hir_id }: BodyId) -> HirId {
let parent = self.get_parent_node(hir_id);
assert!(self.lookup(parent).map_or(false, |e| e.is_body_owner(hir_id)));
parent
}
pub fn body_owner_def_id(&self, id: BodyId) -> DefId {
self.local_def_id(self.body_owner(id))
}
/// Given a `HirId`, returns the `BodyId` associated with it,
/// if the node is a body owner, otherwise returns `None`.
pub fn maybe_body_owned_by(&self, hir_id: HirId) -> Option<BodyId> {
if let Some(entry) = self.find_entry(hir_id) {
if self.dep_graph.is_fully_enabled() {
let hir_id_owner = hir_id.owner;
let def_path_hash = self.definitions.def_path_hash(hir_id_owner);
self.dep_graph.read(def_path_hash.to_dep_node(DepKind::HirBody));
}
entry.associated_body()
} else {
bug!("no entry for id `{}`", hir_id)
}
}
/// Given a body owner's id, returns the `BodyId` associated with it.
pub fn body_owned_by(&self, id: HirId) -> BodyId {
self.maybe_body_owned_by(id).unwrap_or_else(|| {
span_bug!(
self.span(id),
"body_owned_by: {} has no associated body",
self.node_to_string(id)
);
})
}
pub fn body_owner_kind(&self, id: HirId) -> BodyOwnerKind {
match self.get(id) {
Node::Item(&Item { kind: ItemKind::Const(..), .. })
| Node::TraitItem(&TraitItem { kind: TraitItemKind::Const(..), .. })
| Node::ImplItem(&ImplItem { kind: ImplItemKind::Const(..), .. })
| Node::AnonConst(_) => BodyOwnerKind::Const,
Node::Ctor(..)
| Node::Item(&Item { kind: ItemKind::Fn(..), .. })
| Node::TraitItem(&TraitItem { kind: TraitItemKind::Method(..), .. })
| Node::ImplItem(&ImplItem { kind: ImplItemKind::Method(..), .. }) => BodyOwnerKind::Fn,
Node::Item(&Item { kind: ItemKind::Static(_, m, _), .. }) => BodyOwnerKind::Static(m),
Node::Expr(&Expr { kind: ExprKind::Closure(..), .. }) => BodyOwnerKind::Closure,
node => bug!("{:#?} is not a body node", node),
}
}
pub fn ty_param_owner(&self, id: HirId) -> HirId {
match self.get(id) {
Node::Item(&Item { kind: ItemKind::Trait(..), .. })
| Node::Item(&Item { kind: ItemKind::TraitAlias(..), .. }) => id,
Node::GenericParam(_) => self.get_parent_node(id),
_ => bug!("ty_param_owner: {} not a type parameter", self.node_to_string(id)),
}
}
pub fn ty_param_name(&self, id: HirId) -> Name {
match self.get(id) {
Node::Item(&Item { kind: ItemKind::Trait(..), .. })
| Node::Item(&Item { kind: ItemKind::TraitAlias(..), .. }) => kw::SelfUpper,
Node::GenericParam(param) => param.name.ident().name,
_ => bug!("ty_param_name: {} not a type parameter", self.node_to_string(id)),
}
}
pub fn trait_impls(&self, trait_did: DefId) -> &'hir [HirId] {
self.dep_graph.read(DepNode::new_no_params(DepKind::AllLocalTraitImpls));
// N.B., intentionally bypass `self.krate()` so that we
// do not trigger a read of the whole krate here
self.krate.trait_impls.get(&trait_did).map_or(&[], |xs| &xs[..])
}
/// Gets the attributes on the crate. This is preferable to
/// invoking `krate.attrs` because it registers a tighter
/// dep-graph access.
pub fn krate_attrs(&self) -> &'hir [ast::Attribute] {
let def_path_hash = self.definitions.def_path_hash(CRATE_DEF_INDEX);
self.dep_graph.read(def_path_hash.to_dep_node(DepKind::Hir));
&self.krate.attrs
}
pub fn get_module(&self, module: DefId) -> (&'hir Mod<'hir>, Span, HirId) {
let hir_id = self.as_local_hir_id(module).unwrap();
self.read(hir_id);
match self.find_entry(hir_id).unwrap().node {
Node::Item(&Item { span, kind: ItemKind::Mod(ref m), .. }) => (m, span, hir_id),
Node::Crate => (&self.krate.module, self.krate.span, hir_id),
node => panic!("not a module: {:?}", node),
}
}
pub fn visit_item_likes_in_module<V>(&self, module: DefId, visitor: &mut V)
where
V: ItemLikeVisitor<'hir>,
{
let hir_id = self.as_local_hir_id(module).unwrap();
// Read the module so we'll be re-executed if new items
// appear immediately under in the module. If some new item appears
// in some nested item in the module, we'll be re-executed due to reads
// in the expect_* calls the loops below
self.read(hir_id);
let module = &self.krate.modules[&hir_id];
for id in &module.items {
visitor.visit_item(self.expect_item(*id));
}
for id in &module.trait_items {
visitor.visit_trait_item(self.expect_trait_item(id.hir_id));
}
for id in &module.impl_items {
visitor.visit_impl_item(self.expect_impl_item(id.hir_id));
}
}
/// Retrieves the `Node` corresponding to `id`, panicking if it cannot be found.
pub fn get(&self, id: HirId) -> Node<'hir> {
// read recorded by `find`
self.find(id).unwrap_or_else(|| bug!("couldn't find hir id {} in the HIR map", id))
}
pub fn get_if_local(&self, id: DefId) -> Option<Node<'hir>> {
self.as_local_hir_id(id).map(|id| self.get(id)) // read recorded by `get`
}
pub fn get_generics(&self, id: DefId) -> Option<&'hir Generics<'hir>> {
self.get_if_local(id).and_then(|node| match node {
Node::ImplItem(ref impl_item) => Some(&impl_item.generics),
Node::TraitItem(ref trait_item) => Some(&trait_item.generics),
Node::Item(ref item) => match item.kind {
ItemKind::Fn(_, ref generics, _)
| ItemKind::TyAlias(_, ref generics)
| ItemKind::Enum(_, ref generics)
| ItemKind::Struct(_, ref generics)
| ItemKind::Union(_, ref generics)
| ItemKind::Trait(_, _, ref generics, ..)
| ItemKind::TraitAlias(ref generics, _)
| ItemKind::Impl { ref generics, .. } => Some(generics),
_ => None,
},
_ => None,
})
}
/// Retrieves the `Node` corresponding to `id`, returning `None` if cannot be found.
pub fn find(&self, hir_id: HirId) -> Option<Node<'hir>> {
let result = self
.find_entry(hir_id)
.and_then(|entry| if let Node::Crate = entry.node { None } else { Some(entry.node) });
if result.is_some() {
self.read(hir_id);
}
result
}
/// Similar to `get_parent`; returns the parent HIR Id, or just `hir_id` if there
/// is no parent. Note that the parent may be `CRATE_HIR_ID`, which is not itself
/// present in the map, so passing the return value of `get_parent_node` to
/// `get` may in fact panic.
/// This function returns the immediate parent in the HIR, whereas `get_parent`
/// returns the enclosing item. Note that this might not be the actual parent
/// node in the HIR -- some kinds of nodes are not in the map and these will
/// never appear as the parent node. Thus, you can always walk the parent nodes
/// from a node to the root of the HIR (unless you get back the same ID here,
/// which can happen if the ID is not in the map itself or is just weird).
pub fn get_parent_node(&self, hir_id: HirId) -> HirId {
if self.dep_graph.is_fully_enabled() {
let hir_id_owner = hir_id.owner;
let def_path_hash = self.definitions.def_path_hash(hir_id_owner);
self.dep_graph.read(def_path_hash.to_dep_node(DepKind::HirBody));
}
self.find_entry(hir_id).and_then(|x| x.parent_node()).unwrap_or(hir_id)
}
/// Checks if the node is an argument. An argument is a local variable whose
/// immediate parent is an item or a closure.
pub fn is_argument(&self, id: HirId) -> bool {
match self.find(id) {
Some(Node::Binding(_)) => (),
_ => return false,
}
match self.find(self.get_parent_node(id)) {
Some(Node::Item(_)) | Some(Node::TraitItem(_)) | Some(Node::ImplItem(_)) => true,
Some(Node::Expr(e)) => match e.kind {
ExprKind::Closure(..) => true,
_ => false,
},
_ => false,
}
}
/// Whether the expression pointed at by `hir_id` belongs to a `const` evaluation context.
/// Used exclusively for diagnostics, to avoid suggestion function calls.
pub fn is_const_context(&self, hir_id: HirId) -> bool {
let parent_id = self.get_parent_item(hir_id);
match self.get(parent_id) {
Node::Item(&Item { kind: ItemKind::Const(..), .. })
| Node::TraitItem(&TraitItem { kind: TraitItemKind::Const(..), .. })
| Node::ImplItem(&ImplItem { kind: ImplItemKind::Const(..), .. })
| Node::AnonConst(_)
| Node::Item(&Item { kind: ItemKind::Static(..), .. }) => true,
Node::Item(&Item { kind: ItemKind::Fn(ref sig, ..), .. }) => {
sig.header.constness == Constness::Const
}
_ => false,
}
}
/// Wether `hir_id` corresponds to a `mod` or a crate.
pub fn is_hir_id_module(&self, hir_id: HirId) -> bool {
match self.lookup(hir_id) {
Some(Entry { node: Node::Item(Item { kind: ItemKind::Mod(_), .. }), .. })
| Some(Entry { node: Node::Crate, .. }) => true,
_ => false,
}
}
/// Retrieves the `HirId` for `id`'s enclosing method, unless there's a
/// `while` or `loop` before reaching it, as block tail returns are not
/// available in them.
///
/// ```
/// fn foo(x: usize) -> bool {
/// if x == 1 {
/// true // If `get_return_block` gets passed the `id` corresponding
/// } else { // to this, it will return `foo`'s `HirId`.
/// false
/// }
/// }
/// ```
///
/// ```
/// fn foo(x: usize) -> bool {
/// loop {
/// true // If `get_return_block` gets passed the `id` corresponding
/// } // to this, it will return `None`.
/// false
/// }
/// ```
pub fn get_return_block(&self, id: HirId) -> Option<HirId> {
let mut iter = ParentHirIterator::new(id, &self).peekable();
let mut ignore_tail = false;
if let Some(entry) = self.find_entry(id) {
if let Node::Expr(Expr { kind: ExprKind::Ret(_), .. }) = entry.node {
// When dealing with `return` statements, we don't care about climbing only tail
// expressions.
ignore_tail = true;
}
}
while let Some((hir_id, node)) = iter.next() {
if let (Some((_, next_node)), false) = (iter.peek(), ignore_tail) {
match next_node {
Node::Block(Block { expr: None, .. }) => return None,
Node::Block(Block { expr: Some(expr), .. }) => {
if hir_id != expr.hir_id {
// The current node is not the tail expression of its parent.
return None;
}
}
_ => {}
}
}
match node {
Node::Item(_)
| Node::ForeignItem(_)
| Node::TraitItem(_)
| Node::Expr(Expr { kind: ExprKind::Closure(..), .. })
| Node::ImplItem(_) => return Some(hir_id),
Node::Expr(ref expr) => {
match expr.kind {
// Ignore `return`s on the first iteration
ExprKind::Loop(..) | ExprKind::Ret(..) => return None,
_ => {}
}
}
Node::Local(_) => return None,
_ => {}
}
}
None
}
/// Retrieves the `HirId` for `id`'s parent item, or `id` itself if no
/// parent item is in this map. The "parent item" is the closest parent node
/// in the HIR which is recorded by the map and is an item, either an item
/// in a module, trait, or impl.
pub fn get_parent_item(&self, hir_id: HirId) -> HirId {
for (hir_id, node) in ParentHirIterator::new(hir_id, &self) {
match node {
Node::Crate
| Node::Item(_)
| Node::ForeignItem(_)
| Node::TraitItem(_)
| Node::ImplItem(_) => return hir_id,
_ => {}
}
}
hir_id
}
/// Returns the `DefId` of `id`'s nearest module parent, or `id` itself if no
/// module parent is in this map.
pub fn get_module_parent(&self, id: HirId) -> DefId {
self.local_def_id(self.get_module_parent_node(id))
}
/// Returns the `HirId` of `id`'s nearest module parent, or `id` itself if no
/// module parent is in this map.
pub fn get_module_parent_node(&self, hir_id: HirId) -> HirId {
for (hir_id, node) in ParentHirIterator::new(hir_id, &self) {
if let Node::Item(&Item { kind: ItemKind::Mod(_), .. }) = node {
return hir_id;
}
}
CRATE_HIR_ID
}
/// When on a match arm tail expression or on a match arm, give back the enclosing `match`
/// expression.
///
/// Used by error reporting when there's a type error in a match arm caused by the `match`
/// expression needing to be unit.
pub fn get_match_if_cause(&self, hir_id: HirId) -> Option<&'hir Expr<'hir>> {
for (_, node) in ParentHirIterator::new(hir_id, &self) {
match node {
Node::Item(_) | Node::ForeignItem(_) | Node::TraitItem(_) | Node::ImplItem(_) => {
break;
}
Node::Expr(expr) => match expr.kind {
ExprKind::Match(_, _, _) => return Some(expr),
_ => {}
},
Node::Stmt(stmt) => match stmt.kind {
StmtKind::Local(_) => break,
_ => {}
},
_ => {}
}
}
None
}
/// Returns the nearest enclosing scope. A scope is roughly an item or block.
pub fn get_enclosing_scope(&self, hir_id: HirId) -> Option<HirId> {
for (hir_id, node) in ParentHirIterator::new(hir_id, &self) {
if match node {
Node::Item(i) => match i.kind {
ItemKind::Fn(..)
| ItemKind::Mod(..)
| ItemKind::Enum(..)
| ItemKind::Struct(..)
| ItemKind::Union(..)
| ItemKind::Trait(..)
| ItemKind::Impl { .. } => true,
_ => false,
},
Node::ForeignItem(fi) => match fi.kind {
ForeignItemKind::Fn(..) => true,
_ => false,
},
Node::TraitItem(ti) => match ti.kind {
TraitItemKind::Method(..) => true,
_ => false,
},
Node::ImplItem(ii) => match ii.kind {
ImplItemKind::Method(..) => true,
_ => false,
},
Node::Block(_) => true,
_ => false,
} {
return Some(hir_id);
}
}
None
}
/// Returns the defining scope for an opaque type definition.
pub fn get_defining_scope(&self, id: HirId) -> HirId {
let mut scope = id;
loop {
scope = self.get_enclosing_scope(scope).unwrap_or(CRATE_HIR_ID);
if scope == CRATE_HIR_ID {
return CRATE_HIR_ID;
}
match self.get(scope) {
Node::Item(i) => match i.kind {
ItemKind::OpaqueTy(OpaqueTy { impl_trait_fn: None, .. }) => {}
_ => break,
},
Node::Block(_) => {}
_ => break,
}
}
scope
}
pub fn get_parent_did(&self, id: HirId) -> DefId {
self.local_def_id(self.get_parent_item(id))
}
pub fn get_foreign_abi(&self, hir_id: HirId) -> Abi {
let parent = self.get_parent_item(hir_id);
if let Some(entry) = self.find_entry(parent) {
if let Entry {
node: Node::Item(Item { kind: ItemKind::ForeignMod(ref nm), .. }), ..
} = entry
{
self.read(hir_id); // reveals some of the content of a node
return nm.abi;
}
}
bug!("expected foreign mod or inlined parent, found {}", self.node_to_string(parent))
}
pub fn expect_item(&self, id: HirId) -> &'hir Item<'hir> {
match self.find(id) {
// read recorded by `find`
Some(Node::Item(item)) => item,
_ => bug!("expected item, found {}", self.node_to_string(id)),
}
}
pub fn expect_impl_item(&self, id: HirId) -> &'hir ImplItem<'hir> {
match self.find(id) {
Some(Node::ImplItem(item)) => item,
_ => bug!("expected impl item, found {}", self.node_to_string(id)),
}
}
pub fn expect_trait_item(&self, id: HirId) -> &'hir TraitItem<'hir> {
match self.find(id) {
Some(Node::TraitItem(item)) => item,
_ => bug!("expected trait item, found {}", self.node_to_string(id)),
}
}
pub fn expect_variant_data(&self, id: HirId) -> &'hir VariantData<'hir> {
match self.find(id) {
Some(Node::Item(i)) => match i.kind {
ItemKind::Struct(ref struct_def, _) | ItemKind::Union(ref struct_def, _) => {
struct_def
}
_ => bug!("struct ID bound to non-struct {}", self.node_to_string(id)),
},
Some(Node::Variant(variant)) => &variant.data,
Some(Node::Ctor(data)) => data,
_ => bug!("expected struct or variant, found {}", self.node_to_string(id)),
}
}
pub fn expect_variant(&self, id: HirId) -> &'hir Variant<'hir> {
match self.find(id) {
Some(Node::Variant(variant)) => variant,
_ => bug!("expected variant, found {}", self.node_to_string(id)),
}
}
pub fn expect_foreign_item(&self, id: HirId) -> &'hir ForeignItem<'hir> {
match self.find(id) {
Some(Node::ForeignItem(item)) => item,
_ => bug!("expected foreign item, found {}", self.node_to_string(id)),
}
}
pub fn expect_expr(&self, id: HirId) -> &'hir Expr<'hir> {
match self.find(id) {
// read recorded by find
Some(Node::Expr(expr)) => expr,
_ => bug!("expected expr, found {}", self.node_to_string(id)),
}
}
pub fn opt_name(&self, id: HirId) -> Option<Name> {
Some(match self.get(id) {
Node::Item(i) => i.ident.name,
Node::ForeignItem(fi) => fi.ident.name,
Node::ImplItem(ii) => ii.ident.name,
Node::TraitItem(ti) => ti.ident.name,
Node::Variant(v) => v.ident.name,
Node::Field(f) => f.ident.name,
Node::Lifetime(lt) => lt.name.ident().name,
Node::GenericParam(param) => param.name.ident().name,
Node::Binding(&Pat { kind: PatKind::Binding(_, _, l, _), .. }) => l.name,
Node::Ctor(..) => self.name(self.get_parent_item(id)),
_ => return None,
})
}
pub fn name(&self, id: HirId) -> Name {
match self.opt_name(id) {
Some(name) => name,
None => bug!("no name for {}", self.node_to_string(id)),
}
}
/// Given a node ID, gets a list of attributes associated with the AST
/// corresponding to the node-ID.
pub fn attrs(&self, id: HirId) -> &'hir [ast::Attribute] {
self.read(id); // reveals attributes on the node
let attrs = match self.find_entry(id).map(|entry| entry.node) {
Some(Node::Param(a)) => Some(&a.attrs[..]),
Some(Node::Local(l)) => Some(&l.attrs[..]),
Some(Node::Item(i)) => Some(&i.attrs[..]),
Some(Node::ForeignItem(fi)) => Some(&fi.attrs[..]),
Some(Node::TraitItem(ref ti)) => Some(&ti.attrs[..]),
Some(Node::ImplItem(ref ii)) => Some(&ii.attrs[..]),
Some(Node::Variant(ref v)) => Some(&v.attrs[..]),
Some(Node::Field(ref f)) => Some(&f.attrs[..]),
Some(Node::Expr(ref e)) => Some(&*e.attrs),
Some(Node::Stmt(ref s)) => Some(s.kind.attrs()),
Some(Node::Arm(ref a)) => Some(&*a.attrs),
Some(Node::GenericParam(param)) => Some(&param.attrs[..]),
// Unit/tuple structs/variants take the attributes straight from
// the struct/variant definition.
Some(Node::Ctor(..)) => return self.attrs(self.get_parent_item(id)),
Some(Node::Crate) => Some(&self.krate.attrs[..]),
_ => None,
};
attrs.unwrap_or(&[])
}
/// Returns an iterator that yields all the hir ids in the map.
fn all_ids<'a>(&'a self) -> impl Iterator<Item = HirId> + 'a {
// This code is a bit awkward because the map is implemented as 2 levels of arrays,
// see the comment on `HirEntryMap`.
// Iterate over all the indices and return a reference to
// local maps and their index given that they exist.
self.map.iter_enumerated().flat_map(move |(owner, local_map)| {
// Iterate over each valid entry in the local map.
local_map.iter_enumerated().filter_map(move |(i, entry)| {
entry.map(move |_| {
// Reconstruct the `HirId` based on the 3 indices we used to find it.
HirId { owner, local_id: i }
})
})
})
}
/// Returns an iterator that yields the node id's with paths that
/// match `parts`. (Requires `parts` is non-empty.)
///
/// For example, if given `parts` equal to `["bar", "quux"]`, then
/// the iterator will produce node id's for items with paths
/// such as `foo::bar::quux`, `bar::quux`, `other::bar::quux`, and
/// any other such items it can find in the map.
pub fn nodes_matching_suffix<'a>(
&'a self,
parts: &'a [String],
) -> impl Iterator<Item = NodeId> + 'a {
let nodes = NodesMatchingSuffix {
map: self,
item_name: parts.last().unwrap(),
in_which: &parts[..parts.len() - 1],
};
self.all_ids()
.filter(move |hir| nodes.matches_suffix(*hir))
.map(move |hir| self.hir_to_node_id(hir))
}
pub fn span(&self, hir_id: HirId) -> Span {
self.read(hir_id); // reveals span from node
match self.find_entry(hir_id).map(|entry| entry.node) {
Some(Node::Param(param)) => param.span,
Some(Node::Item(item)) => item.span,
Some(Node::ForeignItem(foreign_item)) => foreign_item.span,
Some(Node::TraitItem(trait_method)) => trait_method.span,
Some(Node::ImplItem(impl_item)) => impl_item.span,
Some(Node::Variant(variant)) => variant.span,
Some(Node::Field(field)) => field.span,
Some(Node::AnonConst(constant)) => self.body(constant.body).value.span,
Some(Node::Expr(expr)) => expr.span,
Some(Node::Stmt(stmt)) => stmt.span,
Some(Node::PathSegment(seg)) => seg.ident.span,
Some(Node::Ty(ty)) => ty.span,
Some(Node::TraitRef(tr)) => tr.path.span,
Some(Node::Binding(pat)) => pat.span,
Some(Node::Pat(pat)) => pat.span,
Some(Node::Arm(arm)) => arm.span,
Some(Node::Block(block)) => block.span,
Some(Node::Ctor(..)) => match self.find(self.get_parent_node(hir_id)) {
Some(Node::Item(item)) => item.span,
Some(Node::Variant(variant)) => variant.span,
_ => unreachable!(),
},
Some(Node::Lifetime(lifetime)) => lifetime.span,
Some(Node::GenericParam(param)) => param.span,
Some(Node::Visibility(&Spanned {
node: VisibilityKind::Restricted { ref path, .. },
..
})) => path.span,
Some(Node::Visibility(v)) => bug!("unexpected Visibility {:?}", v),
Some(Node::Local(local)) => local.span,
Some(Node::MacroDef(macro_def)) => macro_def.span,
Some(Node::Crate) => self.krate.span,
None => bug!("hir::map::Map::span: id not in map: {:?}", hir_id),
}
}
pub fn span_if_local(&self, id: DefId) -> Option<Span> {
self.as_local_hir_id(id).map(|id| self.span(id))
}
pub fn res_span(&self, res: Res) -> Option<Span> {
match res {
Res::Err => None,
Res::Local(id) => Some(self.span(id)),
res => self.span_if_local(res.opt_def_id()?),
}
}
pub fn node_to_string(&self, id: HirId) -> String {
hir_id_to_string(self, id, true)
}
pub fn hir_to_user_string(&self, id: HirId) -> String {
hir_id_to_string(self, id, false)
}
pub fn hir_to_pretty_string(&self, id: HirId) -> String {
print::to_string(self, |s| s.print_node(self.get(id)))
}
}
impl<'hir> intravisit::Map<'hir> for Map<'hir> {
fn body(&self, id: BodyId) -> &'hir Body<'hir> {
self.body(id)
}
fn item(&self, id: HirId) -> &'hir Item<'hir> {
self.item(id)
}
fn trait_item(&self, id: TraitItemId) -> &'hir TraitItem<'hir> {
self.trait_item(id)
}
fn impl_item(&self, id: ImplItemId) -> &'hir ImplItem<'hir> {
self.impl_item(id)
}
}
pub struct NodesMatchingSuffix<'a> {
map: &'a Map<'a>,
item_name: &'a String,
in_which: &'a [String],
}
impl<'a> NodesMatchingSuffix<'a> {
/// Returns `true` only if some suffix of the module path for parent
/// matches `self.in_which`.
///
/// In other words: let `[x_0,x_1,...,x_k]` be `self.in_which`;
/// returns true if parent's path ends with the suffix
/// `x_0::x_1::...::x_k`.
fn suffix_matches(&self, parent: HirId) -> bool {
let mut cursor = parent;
for part in self.in_which.iter().rev() {
let (mod_id, mod_name) = match find_first_mod_parent(self.map, cursor) {
None => return false,
Some((node_id, name)) => (node_id, name),
};
if mod_name.as_str() != *part {
return false;
}
cursor = self.map.get_parent_item(mod_id);
}
return true;
// Finds the first mod in parent chain for `id`, along with
// that mod's name.
//
// If `id` itself is a mod named `m` with parent `p`, then
// returns `Some(id, m, p)`. If `id` has no mod in its parent
// chain, then returns `None`.
fn find_first_mod_parent(map: &Map<'_>, mut id: HirId) -> Option<(HirId, Name)> {
loop {
if let Node::Item(item) = map.find(id)? {
if item_is_mod(&item) {
return Some((id, item.ident.name));
}
}
let parent = map.get_parent_item(id);
if parent == id {
return None;
}
id = parent;
}
fn item_is_mod(item: &Item<'_>) -> bool {
match item.kind {
ItemKind::Mod(_) => true,
_ => false,
}
}
}
}
// We are looking at some node `n` with a given name and parent
// id; do their names match what I am seeking?
fn matches_names(&self, parent_of_n: HirId, name: Name) -> bool {
name.as_str() == *self.item_name && self.suffix_matches(parent_of_n)
}
fn matches_suffix(&self, hir: HirId) -> bool {
let name = match self.map.find_entry(hir).map(|entry| entry.node) {
Some(Node::Item(n)) => n.name(),
Some(Node::ForeignItem(n)) => n.name(),
Some(Node::TraitItem(n)) => n.name(),
Some(Node::ImplItem(n)) => n.name(),
Some(Node::Variant(n)) => n.name(),
Some(Node::Field(n)) => n.name(),
_ => return false,
};
self.matches_names(self.map.get_parent_item(hir), name)
}
}
trait Named {
fn name(&self) -> Name;
}
impl<T: Named> Named for Spanned<T> {
fn name(&self) -> Name {
self.node.name()
}
}
impl Named for Item<'_> {
fn name(&self) -> Name {
self.ident.name
}
}
impl Named for ForeignItem<'_> {
fn name(&self) -> Name {
self.ident.name
}
}
impl Named for Variant<'_> {
fn name(&self) -> Name {
self.ident.name
}
}
impl Named for StructField<'_> {
fn name(&self) -> Name {
self.ident.name
}
}
impl Named for TraitItem<'_> {
fn name(&self) -> Name {
self.ident.name
}
}
impl Named for ImplItem<'_> {
fn name(&self) -> Name {
self.ident.name
}
}
pub fn map_crate<'hir>(
sess: &rustc_session::Session,
cstore: &CrateStoreDyn,
krate: &'hir Crate<'hir>,
dep_graph: DepGraph,
definitions: Definitions,
) -> Map<'hir> {
let _prof_timer = sess.prof.generic_activity("build_hir_map");
// Build the reverse mapping of `node_to_hir_id`.
let hir_to_node_id = definitions
.node_to_hir_id
.iter_enumerated()
.map(|(node_id, &hir_id)| (hir_id, node_id))
.collect();
let (map, crate_hash) = {
let hcx = crate::ich::StableHashingContext::new(sess, krate, &definitions, cstore);
let mut collector =
NodeCollector::root(sess, krate, &dep_graph, &definitions, &hir_to_node_id, hcx);
intravisit::walk_crate(&mut collector, krate);
let crate_disambiguator = sess.local_crate_disambiguator();
let cmdline_args = sess.opts.dep_tracking_hash();
collector.finalize_and_compute_crate_hash(crate_disambiguator, cstore, cmdline_args)
};
let map = Map { krate, dep_graph, crate_hash, map, hir_to_node_id, definitions };
sess.time("validate_HIR_map", || {
hir_id_validator::check_crate(&map, sess);
});
map
}
/// Identical to the `PpAnn` implementation for `hir::Crate`,
/// except it avoids creating a dependency on the whole crate.
impl<'hir> print::PpAnn for Map<'hir> {
fn nested(&self, state: &mut print::State<'_>, nested: print::Nested) {
match nested {
Nested::Item(id) => state.print_item(self.expect_item(id.id)),
Nested::TraitItem(id) => state.print_trait_item(self.trait_item(id)),
Nested::ImplItem(id) => state.print_impl_item(self.impl_item(id)),
Nested::Body(id) => state.print_expr(&self.body(id).value),
Nested::BodyParamPat(id, i) => state.print_pat(&self.body(id).params[i].pat),
}
}
}
fn hir_id_to_string(map: &Map<'_>, id: HirId, include_id: bool) -> String {
let id_str = format!(" (hir_id={})", id);
let id_str = if include_id { &id_str[..] } else { "" };
let path_str = || {
// This functionality is used for debugging, try to use `TyCtxt` to get
// the user-friendly path, otherwise fall back to stringifying `DefPath`.
crate::ty::tls::with_opt(|tcx| {
if let Some(tcx) = tcx {
let def_id = map.local_def_id(id);
tcx.def_path_str(def_id)
} else if let Some(path) = map.def_path_from_hir_id(id) {
path.data
.into_iter()
.map(|elem| elem.data.to_string())
.collect::<Vec<_>>()
.join("::")
} else {
String::from("<missing path>")
}
})
};
match map.find(id) {
Some(Node::Item(item)) => {
let item_str = match item.kind {
ItemKind::ExternCrate(..) => "extern crate",
ItemKind::Use(..) => "use",
ItemKind::Static(..) => "static",
ItemKind::Const(..) => "const",
ItemKind::Fn(..) => "fn",
ItemKind::Mod(..) => "mod",
ItemKind::ForeignMod(..) => "foreign mod",
ItemKind::GlobalAsm(..) => "global asm",
ItemKind::TyAlias(..) => "ty",
ItemKind::OpaqueTy(..) => "opaque type",
ItemKind::Enum(..) => "enum",
ItemKind::Struct(..) => "struct",
ItemKind::Union(..) => "union",
ItemKind::Trait(..) => "trait",
ItemKind::TraitAlias(..) => "trait alias",
ItemKind::Impl { .. } => "impl",
};
format!("{} {}{}", item_str, path_str(), id_str)
}
Some(Node::ForeignItem(_)) => format!("foreign item {}{}", path_str(), id_str),
Some(Node::ImplItem(ii)) => match ii.kind {
ImplItemKind::Const(..) => {
format!("assoc const {} in {}{}", ii.ident, path_str(), id_str)
}
ImplItemKind::Method(..) => format!("method {} in {}{}", ii.ident, path_str(), id_str),
ImplItemKind::TyAlias(_) => {
format!("assoc type {} in {}{}", ii.ident, path_str(), id_str)
}
ImplItemKind::OpaqueTy(_) => {
format!("assoc opaque type {} in {}{}", ii.ident, path_str(), id_str)
}
},
Some(Node::TraitItem(ti)) => {
let kind = match ti.kind {
TraitItemKind::Const(..) => "assoc constant",
TraitItemKind::Method(..) => "trait method",
TraitItemKind::Type(..) => "assoc type",
};
format!("{} {} in {}{}", kind, ti.ident, path_str(), id_str)
}
Some(Node::Variant(ref variant)) => {
format!("variant {} in {}{}", variant.ident, path_str(), id_str)
}
Some(Node::Field(ref field)) => {
format!("field {} in {}{}", field.ident, path_str(), id_str)
}
Some(Node::AnonConst(_)) => format!("const {}{}", map.hir_to_pretty_string(id), id_str),
Some(Node::Expr(_)) => format!("expr {}{}", map.hir_to_pretty_string(id), id_str),
Some(Node::Stmt(_)) => format!("stmt {}{}", map.hir_to_pretty_string(id), id_str),
Some(Node::PathSegment(_)) => {
format!("path segment {}{}", map.hir_to_pretty_string(id), id_str)
}
Some(Node::Ty(_)) => format!("type {}{}", map.hir_to_pretty_string(id), id_str),
Some(Node::TraitRef(_)) => format!("trait_ref {}{}", map.hir_to_pretty_string(id), id_str),
Some(Node::Binding(_)) => format!("local {}{}", map.hir_to_pretty_string(id), id_str),
Some(Node::Pat(_)) => format!("pat {}{}", map.hir_to_pretty_string(id), id_str),
Some(Node::Param(_)) => format!("param {}{}", map.hir_to_pretty_string(id), id_str),
Some(Node::Arm(_)) => format!("arm {}{}", map.hir_to_pretty_string(id), id_str),
Some(Node::Block(_)) => format!("block {}{}", map.hir_to_pretty_string(id), id_str),
Some(Node::Local(_)) => format!("local {}{}", map.hir_to_pretty_string(id), id_str),
Some(Node::Ctor(..)) => format!("ctor {}{}", path_str(), id_str),
Some(Node::Lifetime(_)) => format!("lifetime {}{}", map.hir_to_pretty_string(id), id_str),
Some(Node::GenericParam(ref param)) => format!("generic_param {:?}{}", param, id_str),
Some(Node::Visibility(ref vis)) => format!("visibility {:?}{}", vis, id_str),
Some(Node::MacroDef(_)) => format!("macro {}{}", path_str(), id_str),
Some(Node::Crate) => String::from("root_crate"),
None => format!("unknown node{}", id_str),
}
}
pub fn provide(providers: &mut Providers<'_>) {
providers.def_kind = |tcx, def_id| {
if let Some(hir_id) = tcx.hir().as_local_hir_id(def_id) {
tcx.hir().def_kind(hir_id)
} else {
bug!("calling local def_kind query provider for upstream DefId: {:?}", def_id);
}
};
}