blob: 7dded96e18efde448effb85f955c42128f61a0ea [file] [log] [blame]
//! Implementation of compiling various phases of the compiler and standard
//! library.
//!
//! This module contains some of the real meat in the rustbuild build system
//! which is where Cargo is used to compiler the standard library, libtest, and
//! compiler. This module is also responsible for assembling the sysroot as it
//! goes along from the output of the previous stage.
use std::borrow::Cow;
use std::env;
use std::fs;
use std::io::prelude::*;
use std::io::BufReader;
use std::path::{Path, PathBuf};
use std::process::{exit, Command, Stdio};
use std::str;
use build_helper::{output, t, up_to_date};
use filetime::FileTime;
use serde::Deserialize;
use crate::builder::Cargo;
use crate::dist;
use crate::native;
use crate::util::{exe, is_dylib};
use crate::{Compiler, GitRepo, Mode};
use crate::builder::{Builder, Kind, RunConfig, ShouldRun, Step};
use crate::cache::{Interned, INTERNER};
#[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)]
pub struct Std {
pub target: Interned<String>,
pub compiler: Compiler,
}
impl Step for Std {
type Output = ();
const DEFAULT: bool = true;
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.all_krates("test")
}
fn make_run(run: RunConfig<'_>) {
run.builder.ensure(Std {
compiler: run.builder.compiler(run.builder.top_stage, run.host),
target: run.target,
});
}
/// Builds the standard library.
///
/// This will build the standard library for a particular stage of the build
/// using the `compiler` targeting the `target` architecture. The artifacts
/// created will also be linked into the sysroot directory.
fn run(self, builder: &Builder<'_>) {
let target = self.target;
let compiler = self.compiler;
if builder.config.keep_stage.contains(&compiler.stage) {
builder.info("Warning: Using a potentially old libstd. This may not behave well.");
builder.ensure(StdLink { compiler, target_compiler: compiler, target });
return;
}
let mut target_deps = builder.ensure(StartupObjects { compiler, target });
let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target);
if compiler_to_use != compiler {
builder.ensure(Std { compiler: compiler_to_use, target });
builder.info(&format!("Uplifting stage1 std ({} -> {})", compiler_to_use.host, target));
// Even if we're not building std this stage, the new sysroot must
// still contain the third party objects needed by various targets.
copy_third_party_objects(builder, &compiler, target);
builder.ensure(StdLink {
compiler: compiler_to_use,
target_compiler: compiler,
target,
});
return;
}
target_deps.extend(copy_third_party_objects(builder, &compiler, target).into_iter());
let mut cargo = builder.cargo(compiler, Mode::Std, target, "build");
std_cargo(builder, target, &mut cargo);
builder.info(&format!(
"Building stage{} std artifacts ({} -> {})",
compiler.stage, &compiler.host, target
));
run_cargo(
builder,
cargo,
vec![],
&libstd_stamp(builder, compiler, target),
target_deps,
false,
);
builder.ensure(StdLink {
compiler: builder.compiler(compiler.stage, builder.config.build),
target_compiler: compiler,
target,
});
}
}
/// Copies third party objects needed by various targets.
fn copy_third_party_objects(
builder: &Builder<'_>,
compiler: &Compiler,
target: Interned<String>,
) -> Vec<PathBuf> {
let libdir = builder.sysroot_libdir(*compiler, target);
let mut target_deps = vec![];
let mut copy_and_stamp = |sourcedir: &Path, name: &str| {
let target = libdir.join(name);
builder.copy(&sourcedir.join(name), &target);
target_deps.push(target);
};
// Copies the crt(1,i,n).o startup objects
//
// Since musl supports fully static linking, we can cross link for it even
// with a glibc-targeting toolchain, given we have the appropriate startup
// files. As those shipped with glibc won't work, copy the ones provided by
// musl so we have them on linux-gnu hosts.
if target.contains("musl") {
let srcdir = builder.musl_root(target).unwrap().join("lib");
for &obj in &["crt1.o", "crti.o", "crtn.o"] {
copy_and_stamp(&srcdir, obj);
}
} else if target.ends_with("-wasi") {
let srcdir = builder.wasi_root(target).unwrap().join("lib/wasm32-wasi");
copy_and_stamp(&srcdir, "crt1.o");
}
// Copies libunwind.a compiled to be linked wit x86_64-fortanix-unknown-sgx.
//
// This target needs to be linked to Fortanix's port of llvm's libunwind.
// libunwind requires support for rwlock and printing to stderr,
// which is provided by std for this target.
if target == "x86_64-fortanix-unknown-sgx" {
let src_path_env = "X86_FORTANIX_SGX_LIBS";
let src =
env::var(src_path_env).unwrap_or_else(|_| panic!("{} not found in env", src_path_env));
copy_and_stamp(Path::new(&src), "libunwind.a");
}
if builder.config.sanitizers && compiler.stage != 0 {
// The sanitizers are only copied in stage1 or above,
// to avoid creating dependency on LLVM.
target_deps.extend(copy_sanitizers(builder, &compiler, target));
}
target_deps
}
/// Configure cargo to compile the standard library, adding appropriate env vars
/// and such.
pub fn std_cargo(builder: &Builder<'_>, target: Interned<String>, cargo: &mut Cargo) {
if let Some(target) = env::var_os("MACOSX_STD_DEPLOYMENT_TARGET") {
cargo.env("MACOSX_DEPLOYMENT_TARGET", target);
}
// Determine if we're going to compile in optimized C intrinsics to
// the `compiler-builtins` crate. These intrinsics live in LLVM's
// `compiler-rt` repository, but our `src/llvm-project` submodule isn't
// always checked out, so we need to conditionally look for this. (e.g. if
// an external LLVM is used we skip the LLVM submodule checkout).
//
// Note that this shouldn't affect the correctness of `compiler-builtins`,
// but only its speed. Some intrinsics in C haven't been translated to Rust
// yet but that's pretty rare. Other intrinsics have optimized
// implementations in C which have only had slower versions ported to Rust,
// so we favor the C version where we can, but it's not critical.
//
// If `compiler-rt` is available ensure that the `c` feature of the
// `compiler-builtins` crate is enabled and it's configured to learn where
// `compiler-rt` is located.
let compiler_builtins_root = builder.src.join("src/llvm-project/compiler-rt");
let compiler_builtins_c_feature = if compiler_builtins_root.exists() {
cargo.env("RUST_COMPILER_RT_ROOT", &compiler_builtins_root);
" compiler-builtins-c".to_string()
} else {
String::new()
};
if builder.no_std(target) == Some(true) {
let mut features = "compiler-builtins-mem".to_string();
features.push_str(&compiler_builtins_c_feature);
// for no-std targets we only compile a few no_std crates
cargo
.args(&["-p", "alloc"])
.arg("--manifest-path")
.arg(builder.src.join("src/liballoc/Cargo.toml"))
.arg("--features")
.arg("compiler-builtins-mem compiler-builtins-c");
} else {
let mut features = builder.std_features();
features.push_str(&compiler_builtins_c_feature);
cargo
.arg("--features")
.arg(features)
.arg("--manifest-path")
.arg(builder.src.join("src/libtest/Cargo.toml"));
// Help the libc crate compile by assisting it in finding various
// sysroot native libraries.
if target.contains("musl") {
if let Some(p) = builder.musl_root(target) {
let root = format!("native={}/lib", p.to_str().unwrap());
cargo.rustflag("-L").rustflag(&root);
}
}
if target.ends_with("-wasi") {
if let Some(p) = builder.wasi_root(target) {
let root = format!("native={}/lib/wasm32-wasi", p.to_str().unwrap());
cargo.rustflag("-L").rustflag(&root);
}
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
struct StdLink {
pub compiler: Compiler,
pub target_compiler: Compiler,
pub target: Interned<String>,
}
impl Step for StdLink {
type Output = ();
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.never()
}
/// Link all libstd rlibs/dylibs into the sysroot location.
///
/// Links those artifacts generated by `compiler` to the `stage` compiler's
/// sysroot for the specified `host` and `target`.
///
/// Note that this assumes that `compiler` has already generated the libstd
/// libraries for `target`, and this method will find them in the relevant
/// output directory.
fn run(self, builder: &Builder<'_>) {
let compiler = self.compiler;
let target_compiler = self.target_compiler;
let target = self.target;
builder.info(&format!(
"Copying stage{} std from stage{} ({} -> {} / {})",
target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target
));
let libdir = builder.sysroot_libdir(target_compiler, target);
let hostdir = builder.sysroot_libdir(target_compiler, compiler.host);
add_to_sysroot(builder, &libdir, &hostdir, &libstd_stamp(builder, compiler, target));
}
}
/// Copies sanitizer runtime libraries into target libdir.
fn copy_sanitizers(
builder: &Builder<'_>,
compiler: &Compiler,
target: Interned<String>,
) -> Vec<PathBuf> {
let runtimes: Vec<native::SanitizerRuntime> = builder.ensure(native::Sanitizers { target });
if builder.config.dry_run {
return Vec::new();
}
let mut target_deps = Vec::new();
let libdir = builder.sysroot_libdir(*compiler, target);
for runtime in &runtimes {
let dst = libdir.join(&runtime.name);
builder.copy(&runtime.path, &dst);
if target == "x86_64-apple-darwin" {
// Update the library install name reflect the fact it has been renamed.
let status = Command::new("install_name_tool")
.arg("-id")
.arg(format!("@rpath/{}", runtime.name))
.arg(&dst)
.status()
.expect("failed to execute `install_name_tool`");
assert!(status.success());
}
target_deps.push(dst);
}
target_deps
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct StartupObjects {
pub compiler: Compiler,
pub target: Interned<String>,
}
impl Step for StartupObjects {
type Output = Vec<PathBuf>;
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.path("src/rtstartup")
}
fn make_run(run: RunConfig<'_>) {
run.builder.ensure(StartupObjects {
compiler: run.builder.compiler(run.builder.top_stage, run.host),
target: run.target,
});
}
/// Builds and prepare startup objects like rsbegin.o and rsend.o
///
/// These are primarily used on Windows right now for linking executables/dlls.
/// They don't require any library support as they're just plain old object
/// files, so we just use the nightly snapshot compiler to always build them (as
/// no other compilers are guaranteed to be available).
fn run(self, builder: &Builder<'_>) -> Vec<PathBuf> {
let for_compiler = self.compiler;
let target = self.target;
if !target.contains("windows-gnu") {
return vec![];
}
let mut target_deps = vec![];
let src_dir = &builder.src.join("src/rtstartup");
let dst_dir = &builder.native_dir(target).join("rtstartup");
let sysroot_dir = &builder.sysroot_libdir(for_compiler, target);
t!(fs::create_dir_all(dst_dir));
for file in &["rsbegin", "rsend"] {
let src_file = &src_dir.join(file.to_string() + ".rs");
let dst_file = &dst_dir.join(file.to_string() + ".o");
if !up_to_date(src_file, dst_file) {
let mut cmd = Command::new(&builder.initial_rustc);
builder.run(
cmd.env("RUSTC_BOOTSTRAP", "1")
.arg("--cfg")
.arg("bootstrap")
.arg("--target")
.arg(target)
.arg("--emit=obj")
.arg("-o")
.arg(dst_file)
.arg(src_file),
);
}
let target = sysroot_dir.join((*file).to_string() + ".o");
builder.copy(dst_file, &target);
target_deps.push(target);
}
for obj in ["crt2.o", "dllcrt2.o"].iter() {
let src = compiler_file(builder, builder.cc(target), target, obj);
let target = sysroot_dir.join(obj);
builder.copy(&src, &target);
target_deps.push(target);
}
target_deps
}
}
#[derive(Debug, PartialOrd, Ord, Copy, Clone, PartialEq, Eq, Hash)]
pub struct Rustc {
pub target: Interned<String>,
pub compiler: Compiler,
}
impl Step for Rustc {
type Output = ();
const ONLY_HOSTS: bool = true;
const DEFAULT: bool = true;
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.all_krates("rustc-main")
}
fn make_run(run: RunConfig<'_>) {
run.builder.ensure(Rustc {
compiler: run.builder.compiler(run.builder.top_stage, run.host),
target: run.target,
});
}
/// Builds the compiler.
///
/// This will build the compiler for a particular stage of the build using
/// the `compiler` targeting the `target` architecture. The artifacts
/// created will also be linked into the sysroot directory.
fn run(self, builder: &Builder<'_>) {
let compiler = self.compiler;
let target = self.target;
builder.ensure(Std { compiler, target });
if builder.config.keep_stage.contains(&compiler.stage) {
builder.info("Warning: Using a potentially old librustc. This may not behave well.");
builder.ensure(RustcLink { compiler, target_compiler: compiler, target });
return;
}
let compiler_to_use = builder.compiler_for(compiler.stage, compiler.host, target);
if compiler_to_use != compiler {
builder.ensure(Rustc { compiler: compiler_to_use, target });
builder
.info(&format!("Uplifting stage1 rustc ({} -> {})", builder.config.build, target));
builder.ensure(RustcLink {
compiler: compiler_to_use,
target_compiler: compiler,
target,
});
return;
}
// Ensure that build scripts and proc macros have a std / libproc_macro to link against.
builder.ensure(Std {
compiler: builder.compiler(self.compiler.stage, builder.config.build),
target: builder.config.build,
});
let mut cargo = builder.cargo(compiler, Mode::Rustc, target, "build");
rustc_cargo(builder, &mut cargo, target);
builder.info(&format!(
"Building stage{} compiler artifacts ({} -> {})",
compiler.stage, &compiler.host, target
));
run_cargo(
builder,
cargo,
vec![],
&librustc_stamp(builder, compiler, target),
vec![],
false,
);
// We used to build librustc_codegen_llvm as a separate step,
// which produced a dylib that the compiler would dlopen() at runtime.
// This meant that we only needed to make sure that libLLVM.so was
// installed by the time we went to run a tool using it - since
// librustc_codegen_llvm was effectively a standalone artifact,
// other crates were completely oblivious to its dependency
// on `libLLVM.so` during build time.
//
// However, librustc_codegen_llvm is now built as an ordinary
// crate during the same step as the rest of the compiler crates.
// This means that any crates depending on it will see the fact
// that it uses `libLLVM.so` as a native library, and will
// cause us to pass `-llibLLVM.so` to the linker when we link
// a binary.
//
// For `rustc` itself, this works out fine.
// During the `Assemble` step, we call `dist::maybe_install_llvm_dylib`
// to copy libLLVM.so into the `stage` directory. We then link
// the compiler binary, which will find `libLLVM.so` in the correct place.
//
// However, this is insufficient for tools that are build against stage0
// (e.g. stage1 rustdoc). Since `Assemble` for stage0 doesn't actually do anything,
// we won't have `libLLVM.so` in the stage0 sysroot. In the past, this wasn't
// a problem - we would copy the tool binary into its correct stage directory
// (e.g. stage1 for a stage1 rustdoc built against a stage0 compiler).
// Since libLLVM.so wasn't resolved until runtime, it was fine for it to
// not exist while we were building it.
//
// To ensure that we can still build stage1 tools against a stage0 compiler,
// we explicitly copy libLLVM.so into the stage0 sysroot when building
// the stage0 compiler. This ensures that tools built against stage0
// will see libLLVM.so at build time, making the linker happy.
if compiler.stage == 0 {
builder.info(&format!("Installing libLLVM.so to stage 0 ({})", compiler.host));
let sysroot = builder.sysroot(compiler);
dist::maybe_install_llvm_dylib(builder, compiler.host, &sysroot);
}
builder.ensure(RustcLink {
compiler: builder.compiler(compiler.stage, builder.config.build),
target_compiler: compiler,
target,
});
}
}
pub fn rustc_cargo(builder: &Builder<'_>, cargo: &mut Cargo, target: Interned<String>) {
cargo
.arg("--features")
.arg(builder.rustc_features())
.arg("--manifest-path")
.arg(builder.src.join("src/rustc/Cargo.toml"));
rustc_cargo_env(builder, cargo, target);
}
pub fn rustc_cargo_env(builder: &Builder<'_>, cargo: &mut Cargo, target: Interned<String>) {
// Set some configuration variables picked up by build scripts and
// the compiler alike
cargo
.env("CFG_RELEASE", builder.rust_release())
.env("CFG_RELEASE_CHANNEL", &builder.config.channel)
.env("CFG_VERSION", builder.rust_version())
.env("CFG_PREFIX", builder.config.prefix.clone().unwrap_or_default());
let libdir_relative = builder.config.libdir_relative().unwrap_or_else(|| Path::new("lib"));
cargo.env("CFG_LIBDIR_RELATIVE", libdir_relative);
if let Some(ref ver_date) = builder.rust_info.commit_date() {
cargo.env("CFG_VER_DATE", ver_date);
}
if let Some(ref ver_hash) = builder.rust_info.sha() {
cargo.env("CFG_VER_HASH", ver_hash);
}
if !builder.unstable_features() {
cargo.env("CFG_DISABLE_UNSTABLE_FEATURES", "1");
}
if let Some(ref s) = builder.config.rustc_default_linker {
cargo.env("CFG_DEFAULT_LINKER", s);
}
if builder.config.rustc_parallel {
cargo.rustflag("--cfg=parallel_compiler");
}
if builder.config.rust_verify_llvm_ir {
cargo.env("RUSTC_VERIFY_LLVM_IR", "1");
}
// Pass down configuration from the LLVM build into the build of
// librustc_llvm and librustc_codegen_llvm.
//
// Note that this is disabled if LLVM itself is disabled or we're in a check
// build, where if we're in a check build there's no need to build all of
// LLVM and such.
if builder.config.llvm_enabled() && builder.kind != Kind::Check {
if builder.is_rust_llvm(target) {
cargo.env("LLVM_RUSTLLVM", "1");
}
let llvm_config = builder.ensure(native::Llvm { target });
cargo.env("LLVM_CONFIG", &llvm_config);
let target_config = builder.config.target_config.get(&target);
if let Some(s) = target_config.and_then(|c| c.llvm_config.as_ref()) {
cargo.env("CFG_LLVM_ROOT", s);
}
// Some LLVM linker flags (-L and -l) may be needed to link librustc_llvm.
if let Some(ref s) = builder.config.llvm_ldflags {
cargo.env("LLVM_LINKER_FLAGS", s);
}
// Building with a static libstdc++ is only supported on linux right now,
// not for MSVC or macOS
if builder.config.llvm_static_stdcpp
&& !target.contains("freebsd")
&& !target.contains("msvc")
&& !target.contains("apple")
{
let file = compiler_file(builder, builder.cxx(target).unwrap(), target, "libstdc++.a");
cargo.env("LLVM_STATIC_STDCPP", file);
}
if builder.config.llvm_link_shared || builder.config.llvm_thin_lto {
cargo.env("LLVM_LINK_SHARED", "1");
}
if builder.config.llvm_use_libcxx {
cargo.env("LLVM_USE_LIBCXX", "1");
}
if builder.config.llvm_optimize && !builder.config.llvm_release_debuginfo {
cargo.env("LLVM_NDEBUG", "1");
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
struct RustcLink {
pub compiler: Compiler,
pub target_compiler: Compiler,
pub target: Interned<String>,
}
impl Step for RustcLink {
type Output = ();
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.never()
}
/// Same as `std_link`, only for librustc
fn run(self, builder: &Builder<'_>) {
let compiler = self.compiler;
let target_compiler = self.target_compiler;
let target = self.target;
builder.info(&format!(
"Copying stage{} rustc from stage{} ({} -> {} / {})",
target_compiler.stage, compiler.stage, &compiler.host, target_compiler.host, target
));
add_to_sysroot(
builder,
&builder.sysroot_libdir(target_compiler, target),
&builder.sysroot_libdir(target_compiler, compiler.host),
&librustc_stamp(builder, compiler, target),
);
}
}
/// Cargo's output path for the standard library in a given stage, compiled
/// by a particular compiler for the specified target.
pub fn libstd_stamp(
builder: &Builder<'_>,
compiler: Compiler,
target: Interned<String>,
) -> PathBuf {
builder.cargo_out(compiler, Mode::Std, target).join(".libstd.stamp")
}
/// Cargo's output path for librustc in a given stage, compiled by a particular
/// compiler for the specified target.
pub fn librustc_stamp(
builder: &Builder<'_>,
compiler: Compiler,
target: Interned<String>,
) -> PathBuf {
builder.cargo_out(compiler, Mode::Rustc, target).join(".librustc.stamp")
}
pub fn compiler_file(
builder: &Builder<'_>,
compiler: &Path,
target: Interned<String>,
file: &str,
) -> PathBuf {
let mut cmd = Command::new(compiler);
cmd.args(builder.cflags(target, GitRepo::Rustc));
cmd.arg(format!("-print-file-name={}", file));
let out = output(&mut cmd);
PathBuf::from(out.trim())
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct Sysroot {
pub compiler: Compiler,
}
impl Step for Sysroot {
type Output = Interned<PathBuf>;
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.never()
}
/// Returns the sysroot for the `compiler` specified that *this build system
/// generates*.
///
/// That is, the sysroot for the stage0 compiler is not what the compiler
/// thinks it is by default, but it's the same as the default for stages
/// 1-3.
fn run(self, builder: &Builder<'_>) -> Interned<PathBuf> {
let compiler = self.compiler;
let sysroot = if compiler.stage == 0 {
builder.out.join(&compiler.host).join("stage0-sysroot")
} else {
builder.out.join(&compiler.host).join(format!("stage{}", compiler.stage))
};
let _ = fs::remove_dir_all(&sysroot);
t!(fs::create_dir_all(&sysroot));
INTERNER.intern_path(sysroot)
}
}
#[derive(Debug, Copy, PartialOrd, Ord, Clone, PartialEq, Eq, Hash)]
pub struct Assemble {
/// The compiler which we will produce in this step. Assemble itself will
/// take care of ensuring that the necessary prerequisites to do so exist,
/// that is, this target can be a stage2 compiler and Assemble will build
/// previous stages for you.
pub target_compiler: Compiler,
}
impl Step for Assemble {
type Output = Compiler;
fn should_run(run: ShouldRun<'_>) -> ShouldRun<'_> {
run.never()
}
/// Prepare a new compiler from the artifacts in `stage`
///
/// This will assemble a compiler in `build/$host/stage$stage`. The compiler
/// must have been previously produced by the `stage - 1` builder.build
/// compiler.
fn run(self, builder: &Builder<'_>) -> Compiler {
let target_compiler = self.target_compiler;
if target_compiler.stage == 0 {
assert_eq!(
builder.config.build, target_compiler.host,
"Cannot obtain compiler for non-native build triple at stage 0"
);
// The stage 0 compiler for the build triple is always pre-built.
return target_compiler;
}
// Get the compiler that we'll use to bootstrap ourselves.
//
// Note that this is where the recursive nature of the bootstrap
// happens, as this will request the previous stage's compiler on
// downwards to stage 0.
//
// Also note that we're building a compiler for the host platform. We
// only assume that we can run `build` artifacts, which means that to
// produce some other architecture compiler we need to start from
// `build` to get there.
//
// FIXME: Perhaps we should download those libraries?
// It would make builds faster...
//
// FIXME: It may be faster if we build just a stage 1 compiler and then
// use that to bootstrap this compiler forward.
let build_compiler = builder.compiler(target_compiler.stage - 1, builder.config.build);
// Build the libraries for this compiler to link to (i.e., the libraries
// it uses at runtime). NOTE: Crates the target compiler compiles don't
// link to these. (FIXME: Is that correct? It seems to be correct most
// of the time but I think we do link to these for stage2/bin compilers
// when not performing a full bootstrap).
builder.ensure(Rustc { compiler: build_compiler, target: target_compiler.host });
let lld_install = if builder.config.lld_enabled {
Some(builder.ensure(native::Lld { target: target_compiler.host }))
} else {
None
};
let stage = target_compiler.stage;
let host = target_compiler.host;
builder.info(&format!("Assembling stage{} compiler ({})", stage, host));
// Link in all dylibs to the libdir
let sysroot = builder.sysroot(target_compiler);
let rustc_libdir = builder.rustc_libdir(target_compiler);
t!(fs::create_dir_all(&rustc_libdir));
let src_libdir = builder.sysroot_libdir(build_compiler, host);
for f in builder.read_dir(&src_libdir) {
let filename = f.file_name().into_string().unwrap();
if is_dylib(&filename) {
builder.copy(&f.path(), &rustc_libdir.join(&filename));
}
}
let libdir = builder.sysroot_libdir(target_compiler, target_compiler.host);
if let Some(lld_install) = lld_install {
let src_exe = exe("lld", &target_compiler.host);
let dst_exe = exe("rust-lld", &target_compiler.host);
// we prepend this bin directory to the user PATH when linking Rust binaries. To
// avoid shadowing the system LLD we rename the LLD we provide to `rust-lld`.
let dst = libdir.parent().unwrap().join("bin");
t!(fs::create_dir_all(&dst));
builder.copy(&lld_install.join("bin").join(&src_exe), &dst.join(&dst_exe));
}
// Ensure that `libLLVM.so` ends up in the newly build compiler directory,
// so that it can be found when the newly built `rustc` is run.
dist::maybe_install_llvm_dylib(builder, target_compiler.host, &sysroot);
// Link the compiler binary itself into place
let out_dir = builder.cargo_out(build_compiler, Mode::Rustc, host);
let rustc = out_dir.join(exe("rustc_binary", &*host));
let bindir = sysroot.join("bin");
t!(fs::create_dir_all(&bindir));
let compiler = builder.rustc(target_compiler);
builder.copy(&rustc, &compiler);
target_compiler
}
}
/// Link some files into a rustc sysroot.
///
/// For a particular stage this will link the file listed in `stamp` into the
/// `sysroot_dst` provided.
pub fn add_to_sysroot(
builder: &Builder<'_>,
sysroot_dst: &Path,
sysroot_host_dst: &Path,
stamp: &Path,
) {
t!(fs::create_dir_all(&sysroot_dst));
t!(fs::create_dir_all(&sysroot_host_dst));
for (path, host) in builder.read_stamp_file(stamp) {
if host {
builder.copy(&path, &sysroot_host_dst.join(path.file_name().unwrap()));
} else {
builder.copy(&path, &sysroot_dst.join(path.file_name().unwrap()));
}
}
}
pub fn run_cargo(
builder: &Builder<'_>,
cargo: Cargo,
tail_args: Vec<String>,
stamp: &Path,
additional_target_deps: Vec<PathBuf>,
is_check: bool,
) -> Vec<PathBuf> {
if builder.config.dry_run {
return Vec::new();
}
// `target_root_dir` looks like $dir/$target/release
let target_root_dir = stamp.parent().unwrap();
// `target_deps_dir` looks like $dir/$target/release/deps
let target_deps_dir = target_root_dir.join("deps");
// `host_root_dir` looks like $dir/release
let host_root_dir = target_root_dir
.parent()
.unwrap() // chop off `release`
.parent()
.unwrap() // chop off `$target`
.join(target_root_dir.file_name().unwrap());
// Spawn Cargo slurping up its JSON output. We'll start building up the
// `deps` array of all files it generated along with a `toplevel` array of
// files we need to probe for later.
let mut deps = Vec::new();
let mut toplevel = Vec::new();
let ok = stream_cargo(builder, cargo, tail_args, &mut |msg| {
let (filenames, crate_types) = match msg {
CargoMessage::CompilerArtifact {
filenames,
target: CargoTarget { crate_types },
..
} => (filenames, crate_types),
_ => return,
};
for filename in filenames {
// Skip files like executables
if !(filename.ends_with(".rlib")
|| filename.ends_with(".lib")
|| filename.ends_with(".a")
|| is_dylib(&filename)
|| (is_check && filename.ends_with(".rmeta")))
{
continue;
}
let filename = Path::new(&*filename);
// If this was an output file in the "host dir" we don't actually
// worry about it, it's not relevant for us
if filename.starts_with(&host_root_dir) {
// Unless it's a proc macro used in the compiler
if crate_types.iter().any(|t| t == "proc-macro") {
deps.push((filename.to_path_buf(), true));
}
continue;
}
// If this was output in the `deps` dir then this is a precise file
// name (hash included) so we start tracking it.
if filename.starts_with(&target_deps_dir) {
deps.push((filename.to_path_buf(), false));
continue;
}
// Otherwise this was a "top level artifact" which right now doesn't
// have a hash in the name, but there's a version of this file in
// the `deps` folder which *does* have a hash in the name. That's
// the one we'll want to we'll probe for it later.
//
// We do not use `Path::file_stem` or `Path::extension` here,
// because some generated files may have multiple extensions e.g.
// `std-<hash>.dll.lib` on Windows. The aforementioned methods only
// split the file name by the last extension (`.lib`) while we need
// to split by all extensions (`.dll.lib`).
let expected_len = t!(filename.metadata()).len();
let filename = filename.file_name().unwrap().to_str().unwrap();
let mut parts = filename.splitn(2, '.');
let file_stem = parts.next().unwrap().to_owned();
let extension = parts.next().unwrap().to_owned();
toplevel.push((file_stem, extension, expected_len));
}
});
if !ok {
exit(1);
}
// Ok now we need to actually find all the files listed in `toplevel`. We've
// got a list of prefix/extensions and we basically just need to find the
// most recent file in the `deps` folder corresponding to each one.
let contents = t!(target_deps_dir.read_dir())
.map(|e| t!(e))
.map(|e| (e.path(), e.file_name().into_string().unwrap(), t!(e.metadata())))
.collect::<Vec<_>>();
for (prefix, extension, expected_len) in toplevel {
let candidates = contents.iter().filter(|&&(_, ref filename, ref meta)| {
filename.starts_with(&prefix[..])
&& filename[prefix.len()..].starts_with('-')
&& filename.ends_with(&extension[..])
&& meta.len() == expected_len
});
let max = candidates
.max_by_key(|&&(_, _, ref metadata)| FileTime::from_last_modification_time(metadata));
let path_to_add = match max {
Some(triple) => triple.0.to_str().unwrap(),
None => panic!("no output generated for {:?} {:?}", prefix, extension),
};
if is_dylib(path_to_add) {
let candidate = format!("{}.lib", path_to_add);
let candidate = PathBuf::from(candidate);
if candidate.exists() {
deps.push((candidate, false));
}
}
deps.push((path_to_add.into(), false));
}
deps.extend(additional_target_deps.into_iter().map(|d| (d, false)));
deps.sort();
let mut new_contents = Vec::new();
for (dep, proc_macro) in deps.iter() {
new_contents.extend(if *proc_macro { b"h" } else { b"t" });
new_contents.extend(dep.to_str().unwrap().as_bytes());
new_contents.extend(b"\0");
}
t!(fs::write(&stamp, &new_contents));
deps.into_iter().map(|(d, _)| d).collect()
}
pub fn stream_cargo(
builder: &Builder<'_>,
cargo: Cargo,
tail_args: Vec<String>,
cb: &mut dyn FnMut(CargoMessage<'_>),
) -> bool {
let mut cargo = Command::from(cargo);
if builder.config.dry_run {
return true;
}
// Instruct Cargo to give us json messages on stdout, critically leaving
// stderr as piped so we can get those pretty colors.
let mut message_format = String::from("json-render-diagnostics");
if let Some(s) = &builder.config.rustc_error_format {
message_format.push_str(",json-diagnostic-");
message_format.push_str(s);
}
cargo.arg("--message-format").arg(message_format).stdout(Stdio::piped());
for arg in tail_args {
cargo.arg(arg);
}
builder.verbose(&format!("running: {:?}", cargo));
let mut child = match cargo.spawn() {
Ok(child) => child,
Err(e) => panic!("failed to execute command: {:?}\nerror: {}", cargo, e),
};
// Spawn Cargo slurping up its JSON output. We'll start building up the
// `deps` array of all files it generated along with a `toplevel` array of
// files we need to probe for later.
let stdout = BufReader::new(child.stdout.take().unwrap());
for line in stdout.lines() {
let line = t!(line);
match serde_json::from_str::<CargoMessage<'_>>(&line) {
Ok(msg) => cb(msg),
// If this was informational, just print it out and continue
Err(_) => println!("{}", line),
}
}
// Make sure Cargo actually succeeded after we read all of its stdout.
let status = t!(child.wait());
if !status.success() {
eprintln!(
"command did not execute successfully: {:?}\n\
expected success, got: {}",
cargo, status
);
}
status.success()
}
#[derive(Deserialize)]
pub struct CargoTarget<'a> {
crate_types: Vec<Cow<'a, str>>,
}
#[derive(Deserialize)]
#[serde(tag = "reason", rename_all = "kebab-case")]
pub enum CargoMessage<'a> {
CompilerArtifact {
package_id: Cow<'a, str>,
features: Vec<Cow<'a, str>>,
filenames: Vec<Cow<'a, str>>,
target: CargoTarget<'a>,
},
BuildScriptExecuted {
package_id: Cow<'a, str>,
},
}