blob: 07f9b8fed8b57593c709d94cbef020083e8b732a [file] [log] [blame]
// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm::{self, ValueRef, AttributePlace};
use base;
use builder::Builder;
use common::{ty_fn_sig, C_usize};
use context::CodegenCx;
use cabi_x86;
use cabi_x86_64;
use cabi_x86_win64;
use cabi_arm;
use cabi_aarch64;
use cabi_powerpc;
use cabi_powerpc64;
use cabi_s390x;
use cabi_mips;
use cabi_mips64;
use cabi_asmjs;
use cabi_msp430;
use cabi_sparc;
use cabi_sparc64;
use cabi_nvptx;
use cabi_nvptx64;
use cabi_hexagon;
use mir::place::PlaceRef;
use mir::operand::OperandValue;
use type_::Type;
use type_of::{LayoutLlvmExt, PointerKind};
use rustc::ty::{self, Ty};
use rustc::ty::layout::{self, Align, Size, TyLayout};
use rustc::ty::layout::{HasDataLayout, LayoutOf};
use libc::c_uint;
use std::{cmp, iter};
pub use syntax::abi::Abi;
pub use rustc::ty::layout::{FAT_PTR_ADDR, FAT_PTR_EXTRA};
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum PassMode {
/// Ignore the argument (useful for empty struct).
Ignore,
/// Pass the argument directly.
Direct(ArgAttributes),
/// Pass a pair's elements directly in two arguments.
Pair(ArgAttributes, ArgAttributes),
/// Pass the argument after casting it, to either
/// a single uniform or a pair of registers.
Cast(CastTarget),
/// Pass the argument indirectly via a hidden pointer.
Indirect(ArgAttributes),
}
// Hack to disable non_upper_case_globals only for the bitflags! and not for the rest
// of this module
pub use self::attr_impl::ArgAttribute;
#[allow(non_upper_case_globals)]
#[allow(unused)]
mod attr_impl {
// The subset of llvm::Attribute needed for arguments, packed into a bitfield.
bitflags! {
#[derive(Default)]
pub struct ArgAttribute: u16 {
const ByVal = 1 << 0;
const NoAlias = 1 << 1;
const NoCapture = 1 << 2;
const NonNull = 1 << 3;
const ReadOnly = 1 << 4;
const SExt = 1 << 5;
const StructRet = 1 << 6;
const ZExt = 1 << 7;
const InReg = 1 << 8;
}
}
}
macro_rules! for_each_kind {
($flags: ident, $f: ident, $($kind: ident),+) => ({
$(if $flags.contains(ArgAttribute::$kind) { $f(llvm::Attribute::$kind) })+
})
}
impl ArgAttribute {
fn for_each_kind<F>(&self, mut f: F) where F: FnMut(llvm::Attribute) {
for_each_kind!(self, f,
ByVal, NoAlias, NoCapture, NonNull, ReadOnly, SExt, StructRet, ZExt, InReg)
}
}
/// A compact representation of LLVM attributes (at least those relevant for this module)
/// that can be manipulated without interacting with LLVM's Attribute machinery.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct ArgAttributes {
regular: ArgAttribute,
pointee_size: Size,
pointee_align: Option<Align>
}
impl ArgAttributes {
fn new() -> Self {
ArgAttributes {
regular: ArgAttribute::default(),
pointee_size: Size::from_bytes(0),
pointee_align: None,
}
}
pub fn set(&mut self, attr: ArgAttribute) -> &mut Self {
self.regular = self.regular | attr;
self
}
pub fn contains(&self, attr: ArgAttribute) -> bool {
self.regular.contains(attr)
}
pub fn apply_llfn(&self, idx: AttributePlace, llfn: ValueRef) {
let mut regular = self.regular;
unsafe {
let deref = self.pointee_size.bytes();
if deref != 0 {
if regular.contains(ArgAttribute::NonNull) {
llvm::LLVMRustAddDereferenceableAttr(llfn,
idx.as_uint(),
deref);
} else {
llvm::LLVMRustAddDereferenceableOrNullAttr(llfn,
idx.as_uint(),
deref);
}
regular -= ArgAttribute::NonNull;
}
if let Some(align) = self.pointee_align {
llvm::LLVMRustAddAlignmentAttr(llfn,
idx.as_uint(),
align.abi() as u32);
}
regular.for_each_kind(|attr| attr.apply_llfn(idx, llfn));
}
}
pub fn apply_callsite(&self, idx: AttributePlace, callsite: ValueRef) {
let mut regular = self.regular;
unsafe {
let deref = self.pointee_size.bytes();
if deref != 0 {
if regular.contains(ArgAttribute::NonNull) {
llvm::LLVMRustAddDereferenceableCallSiteAttr(callsite,
idx.as_uint(),
deref);
} else {
llvm::LLVMRustAddDereferenceableOrNullCallSiteAttr(callsite,
idx.as_uint(),
deref);
}
regular -= ArgAttribute::NonNull;
}
if let Some(align) = self.pointee_align {
llvm::LLVMRustAddAlignmentCallSiteAttr(callsite,
idx.as_uint(),
align.abi() as u32);
}
regular.for_each_kind(|attr| attr.apply_callsite(idx, callsite));
}
}
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum RegKind {
Integer,
Float,
Vector
}
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Reg {
pub kind: RegKind,
pub size: Size,
}
macro_rules! reg_ctor {
($name:ident, $kind:ident, $bits:expr) => {
pub fn $name() -> Reg {
Reg {
kind: RegKind::$kind,
size: Size::from_bits($bits)
}
}
}
}
impl Reg {
reg_ctor!(i8, Integer, 8);
reg_ctor!(i16, Integer, 16);
reg_ctor!(i32, Integer, 32);
reg_ctor!(i64, Integer, 64);
reg_ctor!(f32, Float, 32);
reg_ctor!(f64, Float, 64);
}
impl Reg {
pub fn align(&self, cx: &CodegenCx) -> Align {
let dl = cx.data_layout();
match self.kind {
RegKind::Integer => {
match self.size.bits() {
1 => dl.i1_align,
2...8 => dl.i8_align,
9...16 => dl.i16_align,
17...32 => dl.i32_align,
33...64 => dl.i64_align,
65...128 => dl.i128_align,
_ => bug!("unsupported integer: {:?}", self)
}
}
RegKind::Float => {
match self.size.bits() {
32 => dl.f32_align,
64 => dl.f64_align,
_ => bug!("unsupported float: {:?}", self)
}
}
RegKind::Vector => dl.vector_align(self.size)
}
}
pub fn llvm_type(&self, cx: &CodegenCx) -> Type {
match self.kind {
RegKind::Integer => Type::ix(cx, self.size.bits()),
RegKind::Float => {
match self.size.bits() {
32 => Type::f32(cx),
64 => Type::f64(cx),
_ => bug!("unsupported float: {:?}", self)
}
}
RegKind::Vector => {
Type::vector(&Type::i8(cx), self.size.bytes())
}
}
}
}
/// An argument passed entirely registers with the
/// same kind (e.g. HFA / HVA on PPC64 and AArch64).
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Uniform {
pub unit: Reg,
/// The total size of the argument, which can be:
/// * equal to `unit.size` (one scalar/vector)
/// * a multiple of `unit.size` (an array of scalar/vectors)
/// * if `unit.kind` is `Integer`, the last element
/// can be shorter, i.e. `{ i64, i64, i32 }` for
/// 64-bit integers with a total size of 20 bytes
pub total: Size,
}
impl From<Reg> for Uniform {
fn from(unit: Reg) -> Uniform {
Uniform {
unit,
total: unit.size
}
}
}
impl Uniform {
pub fn align(&self, cx: &CodegenCx) -> Align {
self.unit.align(cx)
}
pub fn llvm_type(&self, cx: &CodegenCx) -> Type {
let llunit = self.unit.llvm_type(cx);
if self.total <= self.unit.size {
return llunit;
}
let count = self.total.bytes() / self.unit.size.bytes();
let rem_bytes = self.total.bytes() % self.unit.size.bytes();
if rem_bytes == 0 {
return Type::array(&llunit, count);
}
// Only integers can be really split further.
assert_eq!(self.unit.kind, RegKind::Integer);
let args: Vec<_> = (0..count).map(|_| llunit)
.chain(iter::once(Type::ix(cx, rem_bytes * 8)))
.collect();
Type::struct_(cx, &args, false)
}
}
pub trait LayoutExt<'tcx> {
fn is_aggregate(&self) -> bool;
fn homogeneous_aggregate<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> Option<Reg>;
}
impl<'tcx> LayoutExt<'tcx> for TyLayout<'tcx> {
fn is_aggregate(&self) -> bool {
match self.abi {
layout::Abi::Uninhabited |
layout::Abi::Scalar(_) |
layout::Abi::Vector { .. } => false,
layout::Abi::ScalarPair(..) |
layout::Abi::Aggregate { .. } => true
}
}
fn homogeneous_aggregate<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> Option<Reg> {
match self.abi {
layout::Abi::Uninhabited => None,
// The primitive for this algorithm.
layout::Abi::Scalar(ref scalar) => {
let kind = match scalar.value {
layout::Int(..) |
layout::Pointer => RegKind::Integer,
layout::F32 |
layout::F64 => RegKind::Float
};
Some(Reg {
kind,
size: self.size
})
}
layout::Abi::Vector { .. } => {
Some(Reg {
kind: RegKind::Vector,
size: self.size
})
}
layout::Abi::ScalarPair(..) |
layout::Abi::Aggregate { .. } => {
let mut total = Size::from_bytes(0);
let mut result = None;
let is_union = match self.fields {
layout::FieldPlacement::Array { count, .. } => {
if count > 0 {
return self.field(cx, 0).homogeneous_aggregate(cx);
} else {
return None;
}
}
layout::FieldPlacement::Union(_) => true,
layout::FieldPlacement::Arbitrary { .. } => false
};
for i in 0..self.fields.count() {
if !is_union && total != self.fields.offset(i) {
return None;
}
let field = self.field(cx, i);
match (result, field.homogeneous_aggregate(cx)) {
// The field itself must be a homogeneous aggregate.
(_, None) => return None,
// If this is the first field, record the unit.
(None, Some(unit)) => {
result = Some(unit);
}
// For all following fields, the unit must be the same.
(Some(prev_unit), Some(unit)) => {
if prev_unit != unit {
return None;
}
}
}
// Keep track of the offset (without padding).
let size = field.size;
if is_union {
total = cmp::max(total, size);
} else {
total += size;
}
}
// There needs to be no padding.
if total != self.size {
None
} else {
result
}
}
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum CastTarget {
Uniform(Uniform),
Pair(Reg, Reg)
}
impl From<Reg> for CastTarget {
fn from(unit: Reg) -> CastTarget {
CastTarget::Uniform(Uniform::from(unit))
}
}
impl From<Uniform> for CastTarget {
fn from(uniform: Uniform) -> CastTarget {
CastTarget::Uniform(uniform)
}
}
impl CastTarget {
pub fn size(&self, cx: &CodegenCx) -> Size {
match *self {
CastTarget::Uniform(u) => u.total,
CastTarget::Pair(a, b) => {
(a.size.abi_align(a.align(cx)) + b.size)
.abi_align(self.align(cx))
}
}
}
pub fn align(&self, cx: &CodegenCx) -> Align {
match *self {
CastTarget::Uniform(u) => u.align(cx),
CastTarget::Pair(a, b) => {
cx.data_layout().aggregate_align
.max(a.align(cx))
.max(b.align(cx))
}
}
}
pub fn llvm_type(&self, cx: &CodegenCx) -> Type {
match *self {
CastTarget::Uniform(u) => u.llvm_type(cx),
CastTarget::Pair(a, b) => {
Type::struct_(cx, &[
a.llvm_type(cx),
b.llvm_type(cx)
], false)
}
}
}
}
/// Information about how to pass an argument to,
/// or return a value from, a function, under some ABI.
#[derive(Debug)]
pub struct ArgType<'tcx> {
pub layout: TyLayout<'tcx>,
/// Dummy argument, which is emitted before the real argument.
pub pad: Option<Reg>,
pub mode: PassMode,
}
impl<'a, 'tcx> ArgType<'tcx> {
fn new(layout: TyLayout<'tcx>) -> ArgType<'tcx> {
ArgType {
layout,
pad: None,
mode: PassMode::Direct(ArgAttributes::new()),
}
}
pub fn make_indirect(&mut self) {
assert_eq!(self.mode, PassMode::Direct(ArgAttributes::new()));
// Start with fresh attributes for the pointer.
let mut attrs = ArgAttributes::new();
// For non-immediate arguments the callee gets its own copy of
// the value on the stack, so there are no aliases. It's also
// program-invisible so can't possibly capture
attrs.set(ArgAttribute::NoAlias)
.set(ArgAttribute::NoCapture)
.set(ArgAttribute::NonNull);
attrs.pointee_size = self.layout.size;
// FIXME(eddyb) We should be doing this, but at least on
// i686-pc-windows-msvc, it results in wrong stack offsets.
// attrs.pointee_align = Some(self.layout.align);
self.mode = PassMode::Indirect(attrs);
}
pub fn make_indirect_byval(&mut self) {
self.make_indirect();
match self.mode {
PassMode::Indirect(ref mut attrs) => {
attrs.set(ArgAttribute::ByVal);
}
_ => bug!()
}
}
pub fn extend_integer_width_to(&mut self, bits: u64) {
// Only integers have signedness
if let layout::Abi::Scalar(ref scalar) = self.layout.abi {
if let layout::Int(i, signed) = scalar.value {
if i.size().bits() < bits {
if let PassMode::Direct(ref mut attrs) = self.mode {
attrs.set(if signed {
ArgAttribute::SExt
} else {
ArgAttribute::ZExt
});
}
}
}
}
}
pub fn cast_to<T: Into<CastTarget>>(&mut self, target: T) {
assert_eq!(self.mode, PassMode::Direct(ArgAttributes::new()));
self.mode = PassMode::Cast(target.into());
}
pub fn pad_with(&mut self, reg: Reg) {
self.pad = Some(reg);
}
pub fn is_indirect(&self) -> bool {
match self.mode {
PassMode::Indirect(_) => true,
_ => false
}
}
pub fn is_ignore(&self) -> bool {
self.mode == PassMode::Ignore
}
/// Get the LLVM type for an place of the original Rust type of
/// this argument/return, i.e. the result of `type_of::type_of`.
pub fn memory_ty(&self, cx: &CodegenCx<'a, 'tcx>) -> Type {
self.layout.llvm_type(cx)
}
/// Store a direct/indirect value described by this ArgType into a
/// place for the original Rust type of this argument/return.
/// Can be used for both storing formal arguments into Rust variables
/// or results of call/invoke instructions into their destinations.
pub fn store(&self, bx: &Builder<'a, 'tcx>, val: ValueRef, dst: PlaceRef<'tcx>) {
if self.is_ignore() {
return;
}
let cx = bx.cx;
if self.is_indirect() {
OperandValue::Ref(val, self.layout.align).store(bx, dst)
} else if let PassMode::Cast(cast) = self.mode {
// FIXME(eddyb): Figure out when the simpler Store is safe, clang
// uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}.
let can_store_through_cast_ptr = false;
if can_store_through_cast_ptr {
let cast_dst = bx.pointercast(dst.llval, cast.llvm_type(cx).ptr_to());
bx.store(val, cast_dst, self.layout.align);
} else {
// The actual return type is a struct, but the ABI
// adaptation code has cast it into some scalar type. The
// code that follows is the only reliable way I have
// found to do a transform like i64 -> {i32,i32}.
// Basically we dump the data onto the stack then memcpy it.
//
// Other approaches I tried:
// - Casting rust ret pointer to the foreign type and using Store
// is (a) unsafe if size of foreign type > size of rust type and
// (b) runs afoul of strict aliasing rules, yielding invalid
// assembly under -O (specifically, the store gets removed).
// - Truncating foreign type to correct integral type and then
// bitcasting to the struct type yields invalid cast errors.
// We instead thus allocate some scratch space...
let scratch_size = cast.size(cx);
let scratch_align = cast.align(cx);
let llscratch = bx.alloca(cast.llvm_type(cx), "abi_cast", scratch_align);
bx.lifetime_start(llscratch, scratch_size);
// ...where we first store the value...
bx.store(val, llscratch, scratch_align);
// ...and then memcpy it to the intended destination.
base::call_memcpy(bx,
bx.pointercast(dst.llval, Type::i8p(cx)),
bx.pointercast(llscratch, Type::i8p(cx)),
C_usize(cx, self.layout.size.bytes()),
self.layout.align.min(scratch_align));
bx.lifetime_end(llscratch, scratch_size);
}
} else {
OperandValue::Immediate(val).store(bx, dst);
}
}
pub fn store_fn_arg(&self, bx: &Builder<'a, 'tcx>, idx: &mut usize, dst: PlaceRef<'tcx>) {
if self.pad.is_some() {
*idx += 1;
}
let mut next = || {
let val = llvm::get_param(bx.llfn(), *idx as c_uint);
*idx += 1;
val
};
match self.mode {
PassMode::Ignore => {},
PassMode::Pair(..) => {
OperandValue::Pair(next(), next()).store(bx, dst);
}
PassMode::Direct(_) | PassMode::Indirect(_) | PassMode::Cast(_) => {
self.store(bx, next(), dst);
}
}
}
}
/// Metadata describing how the arguments to a native function
/// should be passed in order to respect the native ABI.
///
/// I will do my best to describe this structure, but these
/// comments are reverse-engineered and may be inaccurate. -NDM
#[derive(Debug)]
pub struct FnType<'tcx> {
/// The LLVM types of each argument.
pub args: Vec<ArgType<'tcx>>,
/// LLVM return type.
pub ret: ArgType<'tcx>,
pub variadic: bool,
pub cconv: llvm::CallConv
}
impl<'a, 'tcx> FnType<'tcx> {
pub fn of_instance(cx: &CodegenCx<'a, 'tcx>, instance: &ty::Instance<'tcx>)
-> Self {
let fn_ty = instance.ty(cx.tcx);
let sig = ty_fn_sig(cx, fn_ty);
let sig = cx.tcx.erase_late_bound_regions_and_normalize(&sig);
FnType::new(cx, sig, &[])
}
pub fn new(cx: &CodegenCx<'a, 'tcx>,
sig: ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType<'tcx> {
let mut fn_ty = FnType::unadjusted(cx, sig, extra_args);
fn_ty.adjust_for_abi(cx, sig.abi);
fn_ty
}
pub fn new_vtable(cx: &CodegenCx<'a, 'tcx>,
sig: ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType<'tcx> {
let mut fn_ty = FnType::unadjusted(cx, sig, extra_args);
// Don't pass the vtable, it's not an argument of the virtual fn.
{
let self_arg = &mut fn_ty.args[0];
match self_arg.mode {
PassMode::Pair(data_ptr, _) => {
self_arg.mode = PassMode::Direct(data_ptr);
}
_ => bug!("FnType::new_vtable: non-pair self {:?}", self_arg)
}
let pointee = self_arg.layout.ty.builtin_deref(true, ty::NoPreference)
.unwrap_or_else(|| {
bug!("FnType::new_vtable: non-pointer self {:?}", self_arg)
}).ty;
let fat_ptr_ty = cx.tcx.mk_mut_ptr(pointee);
self_arg.layout = cx.layout_of(fat_ptr_ty).field(cx, 0);
}
fn_ty.adjust_for_abi(cx, sig.abi);
fn_ty
}
pub fn unadjusted(cx: &CodegenCx<'a, 'tcx>,
sig: ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType<'tcx> {
debug!("FnType::unadjusted({:?}, {:?})", sig, extra_args);
use self::Abi::*;
let cconv = match cx.sess().target.target.adjust_abi(sig.abi) {
RustIntrinsic | PlatformIntrinsic |
Rust | RustCall => llvm::CCallConv,
// It's the ABI's job to select this, not us.
System => bug!("system abi should be selected elsewhere"),
Stdcall => llvm::X86StdcallCallConv,
Fastcall => llvm::X86FastcallCallConv,
Vectorcall => llvm::X86_VectorCall,
Thiscall => llvm::X86_ThisCall,
C => llvm::CCallConv,
Unadjusted => llvm::CCallConv,
Win64 => llvm::X86_64_Win64,
SysV64 => llvm::X86_64_SysV,
Aapcs => llvm::ArmAapcsCallConv,
PtxKernel => llvm::PtxKernel,
Msp430Interrupt => llvm::Msp430Intr,
X86Interrupt => llvm::X86_Intr,
// These API constants ought to be more specific...
Cdecl => llvm::CCallConv,
};
let mut inputs = sig.inputs();
let extra_args = if sig.abi == RustCall {
assert!(!sig.variadic && extra_args.is_empty());
match sig.inputs().last().unwrap().sty {
ty::TyTuple(ref tupled_arguments, _) => {
inputs = &sig.inputs()[0..sig.inputs().len() - 1];
tupled_arguments
}
_ => {
bug!("argument to function with \"rust-call\" ABI \
is not a tuple");
}
}
} else {
assert!(sig.variadic || extra_args.is_empty());
extra_args
};
let target = &cx.sess().target.target;
let win_x64_gnu = target.target_os == "windows"
&& target.arch == "x86_64"
&& target.target_env == "gnu";
let linux_s390x = target.target_os == "linux"
&& target.arch == "s390x"
&& target.target_env == "gnu";
let rust_abi = match sig.abi {
RustIntrinsic | PlatformIntrinsic | Rust | RustCall => true,
_ => false
};
// Handle safe Rust thin and fat pointers.
let adjust_for_rust_scalar = |attrs: &mut ArgAttributes,
scalar: &layout::Scalar,
layout: TyLayout<'tcx>,
offset: Size,
is_return: bool| {
// Booleans are always an i1 that needs to be zero-extended.
if scalar.is_bool() {
attrs.set(ArgAttribute::ZExt);
return;
}
// Only pointer types handled below.
if scalar.value != layout::Pointer {
return;
}
if scalar.valid_range.start < scalar.valid_range.end {
if scalar.valid_range.start > 0 {
attrs.set(ArgAttribute::NonNull);
}
}
if let Some(pointee) = layout.pointee_info_at(cx, offset) {
if let Some(kind) = pointee.safe {
attrs.pointee_size = pointee.size;
attrs.pointee_align = Some(pointee.align);
// HACK(eddyb) LLVM inserts `llvm.assume` calls when inlining functions
// with align attributes, and those calls later block optimizations.
if !is_return {
attrs.pointee_align = None;
}
// `Box` pointer parameters never alias because ownership is transferred
// `&mut` pointer parameters never alias other parameters,
// or mutable global data
//
// `&T` where `T` contains no `UnsafeCell<U>` is immutable,
// and can be marked as both `readonly` and `noalias`, as
// LLVM's definition of `noalias` is based solely on memory
// dependencies rather than pointer equality
let no_alias = match kind {
PointerKind::Shared => false,
PointerKind::UniqueOwned => true,
PointerKind::Frozen |
PointerKind::UniqueBorrowed => !is_return
};
if no_alias {
attrs.set(ArgAttribute::NoAlias);
}
if kind == PointerKind::Frozen && !is_return {
attrs.set(ArgAttribute::ReadOnly);
}
}
}
};
let arg_of = |ty: Ty<'tcx>, is_return: bool| {
let mut arg = ArgType::new(cx.layout_of(ty));
if arg.layout.is_zst() {
// For some forsaken reason, x86_64-pc-windows-gnu
// doesn't ignore zero-sized struct arguments.
// The same is true for s390x-unknown-linux-gnu.
if is_return || rust_abi || (!win_x64_gnu && !linux_s390x) {
arg.mode = PassMode::Ignore;
}
}
// FIXME(eddyb) other ABIs don't have logic for scalar pairs.
if !is_return && rust_abi {
if let layout::Abi::ScalarPair(ref a, ref b) = arg.layout.abi {
let mut a_attrs = ArgAttributes::new();
let mut b_attrs = ArgAttributes::new();
adjust_for_rust_scalar(&mut a_attrs,
a,
arg.layout,
Size::from_bytes(0),
false);
adjust_for_rust_scalar(&mut b_attrs,
b,
arg.layout,
a.value.size(cx).abi_align(b.value.align(cx)),
false);
arg.mode = PassMode::Pair(a_attrs, b_attrs);
return arg;
}
}
if let layout::Abi::Scalar(ref scalar) = arg.layout.abi {
if let PassMode::Direct(ref mut attrs) = arg.mode {
adjust_for_rust_scalar(attrs,
scalar,
arg.layout,
Size::from_bytes(0),
is_return);
}
}
arg
};
FnType {
ret: arg_of(sig.output(), true),
args: inputs.iter().chain(extra_args.iter()).map(|ty| {
arg_of(ty, false)
}).collect(),
variadic: sig.variadic,
cconv,
}
}
fn adjust_for_abi(&mut self,
cx: &CodegenCx<'a, 'tcx>,
abi: Abi) {
if abi == Abi::Unadjusted { return }
if abi == Abi::Rust || abi == Abi::RustCall ||
abi == Abi::RustIntrinsic || abi == Abi::PlatformIntrinsic {
let fixup = |arg: &mut ArgType<'tcx>| {
if arg.is_ignore() { return; }
match arg.layout.abi {
layout::Abi::Aggregate { .. } => {}
_ => return
}
let size = arg.layout.size;
if size > layout::Pointer.size(cx) {
arg.make_indirect();
} else {
// We want to pass small aggregates as immediates, but using
// a LLVM aggregate type for this leads to bad optimizations,
// so we pick an appropriately sized integer type instead.
arg.cast_to(Reg {
kind: RegKind::Integer,
size
});
}
};
fixup(&mut self.ret);
for arg in &mut self.args {
fixup(arg);
}
if let PassMode::Indirect(ref mut attrs) = self.ret.mode {
attrs.set(ArgAttribute::StructRet);
}
return;
}
match &cx.sess().target.target.arch[..] {
"x86" => {
let flavor = if abi == Abi::Fastcall {
cabi_x86::Flavor::Fastcall
} else {
cabi_x86::Flavor::General
};
cabi_x86::compute_abi_info(cx, self, flavor);
},
"x86_64" => if abi == Abi::SysV64 {
cabi_x86_64::compute_abi_info(cx, self);
} else if abi == Abi::Win64 || cx.sess().target.target.options.is_like_windows {
cabi_x86_win64::compute_abi_info(self);
} else {
cabi_x86_64::compute_abi_info(cx, self);
},
"aarch64" => cabi_aarch64::compute_abi_info(cx, self),
"arm" => cabi_arm::compute_abi_info(cx, self),
"mips" => cabi_mips::compute_abi_info(cx, self),
"mips64" => cabi_mips64::compute_abi_info(cx, self),
"powerpc" => cabi_powerpc::compute_abi_info(cx, self),
"powerpc64" => cabi_powerpc64::compute_abi_info(cx, self),
"s390x" => cabi_s390x::compute_abi_info(cx, self),
"asmjs" => cabi_asmjs::compute_abi_info(cx, self),
"wasm32" => cabi_asmjs::compute_abi_info(cx, self),
"msp430" => cabi_msp430::compute_abi_info(self),
"sparc" => cabi_sparc::compute_abi_info(cx, self),
"sparc64" => cabi_sparc64::compute_abi_info(cx, self),
"nvptx" => cabi_nvptx::compute_abi_info(self),
"nvptx64" => cabi_nvptx64::compute_abi_info(self),
"hexagon" => cabi_hexagon::compute_abi_info(self),
a => cx.sess().fatal(&format!("unrecognized arch \"{}\" in target specification", a))
}
if let PassMode::Indirect(ref mut attrs) = self.ret.mode {
attrs.set(ArgAttribute::StructRet);
}
}
pub fn llvm_type(&self, cx: &CodegenCx<'a, 'tcx>) -> Type {
let mut llargument_tys = Vec::new();
let llreturn_ty = match self.ret.mode {
PassMode::Ignore => Type::void(cx),
PassMode::Direct(_) | PassMode::Pair(..) => {
self.ret.layout.immediate_llvm_type(cx)
}
PassMode::Cast(cast) => cast.llvm_type(cx),
PassMode::Indirect(_) => {
llargument_tys.push(self.ret.memory_ty(cx).ptr_to());
Type::void(cx)
}
};
for arg in &self.args {
// add padding
if let Some(ty) = arg.pad {
llargument_tys.push(ty.llvm_type(cx));
}
let llarg_ty = match arg.mode {
PassMode::Ignore => continue,
PassMode::Direct(_) => arg.layout.immediate_llvm_type(cx),
PassMode::Pair(..) => {
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 0));
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 1));
continue;
}
PassMode::Cast(cast) => cast.llvm_type(cx),
PassMode::Indirect(_) => arg.memory_ty(cx).ptr_to(),
};
llargument_tys.push(llarg_ty);
}
if self.variadic {
Type::variadic_func(&llargument_tys, &llreturn_ty)
} else {
Type::func(&llargument_tys, &llreturn_ty)
}
}
pub fn apply_attrs_llfn(&self, llfn: ValueRef) {
let mut i = 0;
let mut apply = |attrs: &ArgAttributes| {
attrs.apply_llfn(llvm::AttributePlace::Argument(i), llfn);
i += 1;
};
match self.ret.mode {
PassMode::Direct(ref attrs) => {
attrs.apply_llfn(llvm::AttributePlace::ReturnValue, llfn);
}
PassMode::Indirect(ref attrs) => apply(attrs),
_ => {}
}
for arg in &self.args {
if arg.pad.is_some() {
apply(&ArgAttributes::new());
}
match arg.mode {
PassMode::Ignore => {}
PassMode::Direct(ref attrs) |
PassMode::Indirect(ref attrs) => apply(attrs),
PassMode::Pair(ref a, ref b) => {
apply(a);
apply(b);
}
PassMode::Cast(_) => apply(&ArgAttributes::new()),
}
}
}
pub fn apply_attrs_callsite(&self, callsite: ValueRef) {
let mut i = 0;
let mut apply = |attrs: &ArgAttributes| {
attrs.apply_callsite(llvm::AttributePlace::Argument(i), callsite);
i += 1;
};
match self.ret.mode {
PassMode::Direct(ref attrs) => {
attrs.apply_callsite(llvm::AttributePlace::ReturnValue, callsite);
}
PassMode::Indirect(ref attrs) => apply(attrs),
_ => {}
}
for arg in &self.args {
if arg.pad.is_some() {
apply(&ArgAttributes::new());
}
match arg.mode {
PassMode::Ignore => {}
PassMode::Direct(ref attrs) |
PassMode::Indirect(ref attrs) => apply(attrs),
PassMode::Pair(ref a, ref b) => {
apply(a);
apply(b);
}
PassMode::Cast(_) => apply(&ArgAttributes::new()),
}
}
if self.cconv != llvm::CCallConv {
llvm::SetInstructionCallConv(callsite, self.cconv);
}
}
}