blob: 64f34d3e21cc80a4e3977404e4602171441fb9c8 [file] [log] [blame]
use std::cell::RefCell;
use std::collections::VecDeque;
use std::collections::hash_map::Entry;
use std::default::Default;
use std::ops::Not;
use std::rc::Rc;
use std::time::Duration;
use rustc_abi::Size;
use rustc_data_structures::fx::FxHashMap;
use rustc_index::{Idx, IndexVec};
use super::init_once::InitOnce;
use super::vector_clock::VClock;
use crate::*;
/// We cannot use the `newtype_index!` macro because we have to use 0 as a
/// sentinel value meaning that the identifier is not assigned. This is because
/// the pthreads static initializers initialize memory with zeros (see the
/// `src/shims/sync.rs` file).
macro_rules! declare_id {
($name: ident) => {
/// 0 is used to indicate that the id was not yet assigned and,
/// therefore, is not a valid identifier.
#[derive(Clone, Copy, Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct $name(std::num::NonZero<u32>);
impl $crate::VisitProvenance for $name {
fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {}
}
impl Idx for $name {
fn new(idx: usize) -> Self {
// We use 0 as a sentinel value (see the comment above) and,
// therefore, need to shift by one when converting from an index
// into a vector.
let shifted_idx = u32::try_from(idx).unwrap().strict_add(1);
$name(std::num::NonZero::new(shifted_idx).unwrap())
}
fn index(self) -> usize {
// See the comment in `Self::new`.
// (This cannot underflow because `self.0` is `NonZero<u32>`.)
usize::try_from(self.0.get() - 1).unwrap()
}
}
};
}
pub(super) use declare_id;
/// The mutex state.
#[derive(Default, Debug)]
struct Mutex {
/// The thread that currently owns the lock.
owner: Option<ThreadId>,
/// How many times the mutex was locked by the owner.
lock_count: usize,
/// The queue of threads waiting for this mutex.
queue: VecDeque<ThreadId>,
/// Mutex clock. This tracks the moment of the last unlock.
clock: VClock,
}
#[derive(Default, Clone, Debug)]
pub struct MutexRef(Rc<RefCell<Mutex>>);
impl MutexRef {
fn new() -> Self {
MutexRef(Rc::new(RefCell::new(Mutex::default())))
}
}
impl VisitProvenance for MutexRef {
fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {
// Mutex contains no provenance.
}
}
declare_id!(RwLockId);
/// The read-write lock state.
#[derive(Default, Debug)]
struct RwLock {
/// The writer thread that currently owns the lock.
writer: Option<ThreadId>,
/// The readers that currently own the lock and how many times they acquired
/// the lock.
readers: FxHashMap<ThreadId, usize>,
/// The queue of writer threads waiting for this lock.
writer_queue: VecDeque<ThreadId>,
/// The queue of reader threads waiting for this lock.
reader_queue: VecDeque<ThreadId>,
/// Data race clock for writers. Tracks the happens-before
/// ordering between each write access to a rwlock and is updated
/// after a sequence of concurrent readers to track the happens-
/// before ordering between the set of previous readers and
/// the current writer.
/// Contains the clock of the last thread to release a writer
/// lock or the joined clock of the set of last threads to release
/// shared reader locks.
clock_unlocked: VClock,
/// Data race clock for readers. This is temporary storage
/// for the combined happens-before ordering for between all
/// concurrent readers and the next writer, and the value
/// is stored to the main data_race variable once all
/// readers are finished.
/// Has to be stored separately since reader lock acquires
/// must load the clock of the last write and must not
/// add happens-before orderings between shared reader
/// locks.
/// This is only relevant when there is an active reader.
clock_current_readers: VClock,
}
declare_id!(CondvarId);
/// The conditional variable state.
#[derive(Default, Debug)]
struct Condvar {
waiters: VecDeque<ThreadId>,
/// Tracks the happens-before relationship
/// between a cond-var signal and a cond-var
/// wait during a non-spurious signal event.
/// Contains the clock of the last thread to
/// perform a condvar-signal.
clock: VClock,
}
/// The futex state.
#[derive(Default, Debug)]
struct Futex {
waiters: Vec<FutexWaiter>,
/// Tracks the happens-before relationship
/// between a futex-wake and a futex-wait
/// during a non-spurious wake event.
/// Contains the clock of the last thread to
/// perform a futex-wake.
clock: VClock,
}
#[derive(Default, Clone)]
pub struct FutexRef(Rc<RefCell<Futex>>);
impl FutexRef {
pub fn waiters(&self) -> usize {
self.0.borrow().waiters.len()
}
}
impl VisitProvenance for FutexRef {
fn visit_provenance(&self, _visit: &mut VisitWith<'_>) {
// No provenance in `Futex`.
}
}
/// A thread waiting on a futex.
#[derive(Debug)]
struct FutexWaiter {
/// The thread that is waiting on this futex.
thread: ThreadId,
/// The bitset used by FUTEX_*_BITSET, or u32::MAX for other operations.
bitset: u32,
}
/// The state of all synchronization objects.
#[derive(Default, Debug)]
pub struct SynchronizationObjects {
rwlocks: IndexVec<RwLockId, RwLock>,
condvars: IndexVec<CondvarId, Condvar>,
pub(super) init_onces: IndexVec<InitOnceId, InitOnce>,
}
// Private extension trait for local helper methods
impl<'tcx> EvalContextExtPriv<'tcx> for crate::MiriInterpCx<'tcx> {}
pub(super) trait EvalContextExtPriv<'tcx>: crate::MiriInterpCxExt<'tcx> {
fn condvar_reacquire_mutex(
&mut self,
mutex_ref: &MutexRef,
retval: Scalar,
dest: MPlaceTy<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
if this.mutex_is_locked(mutex_ref) {
assert_ne!(this.mutex_get_owner(mutex_ref), this.active_thread());
this.mutex_enqueue_and_block(mutex_ref, Some((retval, dest)));
} else {
// We can have it right now!
this.mutex_lock(mutex_ref);
// Don't forget to write the return value.
this.write_scalar(retval, &dest)?;
}
interp_ok(())
}
}
impl SynchronizationObjects {
pub fn mutex_create(&mut self) -> MutexRef {
MutexRef::new()
}
pub fn rwlock_create(&mut self) -> RwLockId {
self.rwlocks.push(Default::default())
}
pub fn condvar_create(&mut self) -> CondvarId {
self.condvars.push(Default::default())
}
pub fn init_once_create(&mut self) -> InitOnceId {
self.init_onces.push(Default::default())
}
}
impl<'tcx> AllocExtra<'tcx> {
fn get_sync<T: 'static>(&self, offset: Size) -> Option<&T> {
self.sync.get(&offset).and_then(|s| s.downcast_ref::<T>())
}
}
/// We designate an `init`` field in all primitives.
/// If `init` is set to this, we consider the primitive initialized.
pub const LAZY_INIT_COOKIE: u32 = 0xcafe_affe;
// Public interface to synchronization primitives. Please note that in most
// cases, the function calls are infallible and it is the client's (shim
// implementation's) responsibility to detect and deal with erroneous
// situations.
impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
/// Helper for lazily initialized `alloc_extra.sync` data:
/// this forces an immediate init.
/// Return a reference to the data in the machine state.
fn lazy_sync_init<'a, T: 'static>(
&'a mut self,
primitive: &MPlaceTy<'tcx>,
init_offset: Size,
data: T,
) -> InterpResult<'tcx, &'a T>
where
'tcx: 'a,
{
let this = self.eval_context_mut();
let (alloc, offset, _) = this.ptr_get_alloc_id(primitive.ptr(), 0)?;
let (alloc_extra, _machine) = this.get_alloc_extra_mut(alloc)?;
alloc_extra.sync.insert(offset, Box::new(data));
// Mark this as "initialized".
let init_field = primitive.offset(init_offset, this.machine.layouts.u32, this)?;
this.write_scalar_atomic(
Scalar::from_u32(LAZY_INIT_COOKIE),
&init_field,
AtomicWriteOrd::Relaxed,
)?;
interp_ok(this.get_alloc_extra(alloc)?.get_sync::<T>(offset).unwrap())
}
/// Helper for lazily initialized `alloc_extra.sync` data:
/// Checks if the primitive is initialized:
/// - If yes, fetches the data from `alloc_extra.sync`, or calls `missing_data` if that fails
/// and stores that in `alloc_extra.sync`.
/// - Otherwise, calls `new_data` to initialize the primitive.
///
/// Return a reference to the data in the machine state.
fn lazy_sync_get_data<'a, T: 'static>(
&'a mut self,
primitive: &MPlaceTy<'tcx>,
init_offset: Size,
missing_data: impl FnOnce() -> InterpResult<'tcx, T>,
new_data: impl FnOnce(&mut MiriInterpCx<'tcx>) -> InterpResult<'tcx, T>,
) -> InterpResult<'tcx, &'a T>
where
'tcx: 'a,
{
let this = self.eval_context_mut();
// Check if this is already initialized. Needs to be atomic because we can race with another
// thread initializing. Needs to be an RMW operation to ensure we read the *latest* value.
// So we just try to replace MUTEX_INIT_COOKIE with itself.
let init_cookie = Scalar::from_u32(LAZY_INIT_COOKIE);
let init_field = primitive.offset(init_offset, this.machine.layouts.u32, this)?;
let (_init, success) = this
.atomic_compare_exchange_scalar(
&init_field,
&ImmTy::from_scalar(init_cookie, this.machine.layouts.u32),
init_cookie,
AtomicRwOrd::Relaxed,
AtomicReadOrd::Relaxed,
/* can_fail_spuriously */ false,
)?
.to_scalar_pair();
if success.to_bool()? {
// If it is initialized, it must be found in the "sync primitive" table,
// or else it has been moved illegally.
let (alloc, offset, _) = this.ptr_get_alloc_id(primitive.ptr(), 0)?;
let (alloc_extra, _machine) = this.get_alloc_extra_mut(alloc)?;
// Due to borrow checker reasons, we have to do the lookup twice.
if alloc_extra.get_sync::<T>(offset).is_none() {
let data = missing_data()?;
alloc_extra.sync.insert(offset, Box::new(data));
}
interp_ok(alloc_extra.get_sync::<T>(offset).unwrap())
} else {
let data = new_data(this)?;
this.lazy_sync_init(primitive, init_offset, data)
}
}
/// Get the synchronization primitive associated with the given pointer,
/// or initialize a new one.
///
/// Return `None` if this pointer does not point to at least 1 byte of mutable memory.
fn get_sync_or_init<'a, T: 'static>(
&'a mut self,
ptr: Pointer,
new: impl FnOnce(&'a mut MiriMachine<'tcx>) -> T,
) -> Option<&'a T>
where
'tcx: 'a,
{
let this = self.eval_context_mut();
if !this.ptr_try_get_alloc_id(ptr, 0).ok().is_some_and(|(alloc_id, offset, ..)| {
let info = this.get_alloc_info(alloc_id);
info.kind == AllocKind::LiveData && info.mutbl.is_mut() && offset < info.size
}) {
return None;
}
// This cannot fail now.
let (alloc, offset, _) = this.ptr_get_alloc_id(ptr, 0).unwrap();
let (alloc_extra, machine) = this.get_alloc_extra_mut(alloc).unwrap();
// Due to borrow checker reasons, we have to do the lookup twice.
if alloc_extra.get_sync::<T>(offset).is_none() {
let new = new(machine);
alloc_extra.sync.insert(offset, Box::new(new));
}
Some(alloc_extra.get_sync::<T>(offset).unwrap())
}
#[inline]
/// Get the id of the thread that currently owns this lock.
fn mutex_get_owner(&self, mutex_ref: &MutexRef) -> ThreadId {
mutex_ref.0.borrow().owner.unwrap()
}
#[inline]
/// Check if locked.
fn mutex_is_locked(&self, mutex_ref: &MutexRef) -> bool {
mutex_ref.0.borrow().owner.is_some()
}
/// Lock by setting the mutex owner and increasing the lock count.
fn mutex_lock(&mut self, mutex_ref: &MutexRef) {
let this = self.eval_context_mut();
let thread = this.active_thread();
let mut mutex = mutex_ref.0.borrow_mut();
if let Some(current_owner) = mutex.owner {
assert_eq!(thread, current_owner, "mutex already locked by another thread");
assert!(
mutex.lock_count > 0,
"invariant violation: lock_count == 0 iff the thread is unlocked"
);
} else {
mutex.owner = Some(thread);
}
mutex.lock_count = mutex.lock_count.strict_add(1);
if let Some(data_race) = this.machine.data_race.as_vclocks_ref() {
data_race.acquire_clock(&mutex.clock, &this.machine.threads);
}
}
/// Try unlocking by decreasing the lock count and returning the old lock
/// count. If the lock count reaches 0, release the lock and potentially
/// give to a new owner. If the lock was not locked by the current thread,
/// return `None`.
fn mutex_unlock(&mut self, mutex_ref: &MutexRef) -> InterpResult<'tcx, Option<usize>> {
let this = self.eval_context_mut();
let mut mutex = mutex_ref.0.borrow_mut();
interp_ok(if let Some(current_owner) = mutex.owner {
// Mutex is locked.
if current_owner != this.machine.threads.active_thread() {
// Only the owner can unlock the mutex.
return interp_ok(None);
}
let old_lock_count = mutex.lock_count;
mutex.lock_count = old_lock_count.strict_sub(1);
if mutex.lock_count == 0 {
mutex.owner = None;
// The mutex is completely unlocked. Try transferring ownership
// to another thread.
if let Some(data_race) = this.machine.data_race.as_vclocks_ref() {
data_race.release_clock(&this.machine.threads, |clock| {
mutex.clock.clone_from(clock)
});
}
let thread_id = mutex.queue.pop_front();
// We need to drop our mutex borrow before unblock_thread
// because it will be borrowed again in the unblock callback.
drop(mutex);
if thread_id.is_some() {
this.unblock_thread(thread_id.unwrap(), BlockReason::Mutex)?;
}
}
Some(old_lock_count)
} else {
// Mutex is not locked.
None
})
}
/// Put the thread into the queue waiting for the mutex.
///
/// Once the Mutex becomes available and if it exists, `retval_dest.0` will
/// be written to `retval_dest.1`.
#[inline]
fn mutex_enqueue_and_block(
&mut self,
mutex_ref: &MutexRef,
retval_dest: Option<(Scalar, MPlaceTy<'tcx>)>,
) {
let this = self.eval_context_mut();
assert!(this.mutex_is_locked(mutex_ref), "queuing on unlocked mutex");
let thread = this.active_thread();
mutex_ref.0.borrow_mut().queue.push_back(thread);
let mutex_ref = mutex_ref.clone();
this.block_thread(
BlockReason::Mutex,
None,
callback!(
@capture<'tcx> {
mutex_ref: MutexRef,
retval_dest: Option<(Scalar, MPlaceTy<'tcx>)>,
}
|this, unblock: UnblockKind| {
assert_eq!(unblock, UnblockKind::Ready);
assert!(!this.mutex_is_locked(&mutex_ref));
this.mutex_lock(&mutex_ref);
if let Some((retval, dest)) = retval_dest {
this.write_scalar(retval, &dest)?;
}
interp_ok(())
}
),
);
}
#[inline]
/// Check if locked.
fn rwlock_is_locked(&self, id: RwLockId) -> bool {
let this = self.eval_context_ref();
let rwlock = &this.machine.sync.rwlocks[id];
trace!(
"rwlock_is_locked: {:?} writer is {:?} and there are {} reader threads (some of which could hold multiple read locks)",
id,
rwlock.writer,
rwlock.readers.len(),
);
rwlock.writer.is_some() || rwlock.readers.is_empty().not()
}
/// Check if write locked.
#[inline]
fn rwlock_is_write_locked(&self, id: RwLockId) -> bool {
let this = self.eval_context_ref();
let rwlock = &this.machine.sync.rwlocks[id];
trace!("rwlock_is_write_locked: {:?} writer is {:?}", id, rwlock.writer);
rwlock.writer.is_some()
}
/// Read-lock the lock by adding the `reader` the list of threads that own
/// this lock.
fn rwlock_reader_lock(&mut self, id: RwLockId) {
let this = self.eval_context_mut();
let thread = this.active_thread();
assert!(!this.rwlock_is_write_locked(id), "the lock is write locked");
trace!("rwlock_reader_lock: {:?} now also held (one more time) by {:?}", id, thread);
let rwlock = &mut this.machine.sync.rwlocks[id];
let count = rwlock.readers.entry(thread).or_insert(0);
*count = count.strict_add(1);
if let Some(data_race) = this.machine.data_race.as_vclocks_ref() {
data_race.acquire_clock(&rwlock.clock_unlocked, &this.machine.threads);
}
}
/// Try read-unlock the lock for the current threads and potentially give the lock to a new owner.
/// Returns `true` if succeeded, `false` if this `reader` did not hold the lock.
fn rwlock_reader_unlock(&mut self, id: RwLockId) -> InterpResult<'tcx, bool> {
let this = self.eval_context_mut();
let thread = this.active_thread();
let rwlock = &mut this.machine.sync.rwlocks[id];
match rwlock.readers.entry(thread) {
Entry::Occupied(mut entry) => {
let count = entry.get_mut();
assert!(*count > 0, "rwlock locked with count == 0");
*count -= 1;
if *count == 0 {
trace!("rwlock_reader_unlock: {:?} no longer held by {:?}", id, thread);
entry.remove();
} else {
trace!("rwlock_reader_unlock: {:?} held one less time by {:?}", id, thread);
}
}
Entry::Vacant(_) => return interp_ok(false), // we did not even own this lock
}
if let Some(data_race) = this.machine.data_race.as_vclocks_ref() {
// Add this to the shared-release clock of all concurrent readers.
data_race.release_clock(&this.machine.threads, |clock| {
rwlock.clock_current_readers.join(clock)
});
}
// The thread was a reader. If the lock is not held any more, give it to a writer.
if this.rwlock_is_locked(id).not() {
// All the readers are finished, so set the writer data-race handle to the value
// of the union of all reader data race handles, since the set of readers
// happen-before the writers
let rwlock = &mut this.machine.sync.rwlocks[id];
rwlock.clock_unlocked.clone_from(&rwlock.clock_current_readers);
// See if there is a thread to unblock.
if let Some(writer) = rwlock.writer_queue.pop_front() {
this.unblock_thread(writer, BlockReason::RwLock(id))?;
}
}
interp_ok(true)
}
/// Put the reader in the queue waiting for the lock and block it.
/// Once the lock becomes available, `retval` will be written to `dest`.
#[inline]
fn rwlock_enqueue_and_block_reader(
&mut self,
id: RwLockId,
retval: Scalar,
dest: MPlaceTy<'tcx>,
) {
let this = self.eval_context_mut();
let thread = this.active_thread();
assert!(this.rwlock_is_write_locked(id), "read-queueing on not write locked rwlock");
this.machine.sync.rwlocks[id].reader_queue.push_back(thread);
this.block_thread(
BlockReason::RwLock(id),
None,
callback!(
@capture<'tcx> {
id: RwLockId,
retval: Scalar,
dest: MPlaceTy<'tcx>,
}
|this, unblock: UnblockKind| {
assert_eq!(unblock, UnblockKind::Ready);
this.rwlock_reader_lock(id);
this.write_scalar(retval, &dest)?;
interp_ok(())
}
),
);
}
/// Lock by setting the writer that owns the lock.
#[inline]
fn rwlock_writer_lock(&mut self, id: RwLockId) {
let this = self.eval_context_mut();
let thread = this.active_thread();
assert!(!this.rwlock_is_locked(id), "the rwlock is already locked");
trace!("rwlock_writer_lock: {:?} now held by {:?}", id, thread);
let rwlock = &mut this.machine.sync.rwlocks[id];
rwlock.writer = Some(thread);
if let Some(data_race) = this.machine.data_race.as_vclocks_ref() {
data_race.acquire_clock(&rwlock.clock_unlocked, &this.machine.threads);
}
}
/// Try to unlock an rwlock held by the current thread.
/// Return `false` if it is held by another thread.
#[inline]
fn rwlock_writer_unlock(&mut self, id: RwLockId) -> InterpResult<'tcx, bool> {
let this = self.eval_context_mut();
let thread = this.active_thread();
let rwlock = &mut this.machine.sync.rwlocks[id];
interp_ok(if let Some(current_writer) = rwlock.writer {
if current_writer != thread {
// Only the owner can unlock the rwlock.
return interp_ok(false);
}
rwlock.writer = None;
trace!("rwlock_writer_unlock: {:?} unlocked by {:?}", id, thread);
// Record release clock for next lock holder.
if let Some(data_race) = this.machine.data_race.as_vclocks_ref() {
data_race.release_clock(&this.machine.threads, |clock| {
rwlock.clock_unlocked.clone_from(clock)
});
}
// The thread was a writer.
//
// We are prioritizing writers here against the readers. As a
// result, not only readers can starve writers, but also writers can
// starve readers.
if let Some(writer) = rwlock.writer_queue.pop_front() {
this.unblock_thread(writer, BlockReason::RwLock(id))?;
} else {
// Take the entire read queue and wake them all up.
let readers = std::mem::take(&mut rwlock.reader_queue);
for reader in readers {
this.unblock_thread(reader, BlockReason::RwLock(id))?;
}
}
true
} else {
false
})
}
/// Put the writer in the queue waiting for the lock.
/// Once the lock becomes available, `retval` will be written to `dest`.
#[inline]
fn rwlock_enqueue_and_block_writer(
&mut self,
id: RwLockId,
retval: Scalar,
dest: MPlaceTy<'tcx>,
) {
let this = self.eval_context_mut();
assert!(this.rwlock_is_locked(id), "write-queueing on unlocked rwlock");
let thread = this.active_thread();
this.machine.sync.rwlocks[id].writer_queue.push_back(thread);
this.block_thread(
BlockReason::RwLock(id),
None,
callback!(
@capture<'tcx> {
id: RwLockId,
retval: Scalar,
dest: MPlaceTy<'tcx>,
}
|this, unblock: UnblockKind| {
assert_eq!(unblock, UnblockKind::Ready);
this.rwlock_writer_lock(id);
this.write_scalar(retval, &dest)?;
interp_ok(())
}
),
);
}
/// Is the conditional variable awaited?
#[inline]
fn condvar_is_awaited(&mut self, id: CondvarId) -> bool {
let this = self.eval_context_mut();
!this.machine.sync.condvars[id].waiters.is_empty()
}
/// Release the mutex and let the current thread wait on the given condition variable.
/// Once it is signaled, the mutex will be acquired and `retval_succ` will be written to `dest`.
/// If the timeout happens first, `retval_timeout` will be written to `dest`.
fn condvar_wait(
&mut self,
condvar: CondvarId,
mutex_ref: MutexRef,
timeout: Option<(TimeoutClock, TimeoutAnchor, Duration)>,
retval_succ: Scalar,
retval_timeout: Scalar,
dest: MPlaceTy<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
if let Some(old_locked_count) = this.mutex_unlock(&mutex_ref)? {
if old_locked_count != 1 {
throw_unsup_format!(
"awaiting a condvar on a mutex acquired multiple times is not supported"
);
}
} else {
throw_ub_format!(
"awaiting a condvar on a mutex that is unlocked or owned by a different thread"
);
}
let thread = this.active_thread();
let waiters = &mut this.machine.sync.condvars[condvar].waiters;
waiters.push_back(thread);
this.block_thread(
BlockReason::Condvar(condvar),
timeout,
callback!(
@capture<'tcx> {
condvar: CondvarId,
mutex_ref: MutexRef,
retval_succ: Scalar,
retval_timeout: Scalar,
dest: MPlaceTy<'tcx>,
}
|this, unblock: UnblockKind| {
match unblock {
UnblockKind::Ready => {
// The condvar was signaled. Make sure we get the clock for that.
if let Some(data_race) = this.machine.data_race.as_vclocks_ref() {
data_race.acquire_clock(
&this.machine.sync.condvars[condvar].clock,
&this.machine.threads,
);
}
// Try to acquire the mutex.
// The timeout only applies to the first wait (until the signal), not for mutex acquisition.
this.condvar_reacquire_mutex(&mutex_ref, retval_succ, dest)
}
UnblockKind::TimedOut => {
// We have to remove the waiter from the queue again.
let thread = this.active_thread();
let waiters = &mut this.machine.sync.condvars[condvar].waiters;
waiters.retain(|waiter| *waiter != thread);
// Now get back the lock.
this.condvar_reacquire_mutex(&mutex_ref, retval_timeout, dest)
}
}
}
),
);
interp_ok(())
}
/// Wake up some thread (if there is any) sleeping on the conditional
/// variable. Returns `true` iff any thread was woken up.
fn condvar_signal(&mut self, id: CondvarId) -> InterpResult<'tcx, bool> {
let this = self.eval_context_mut();
let condvar = &mut this.machine.sync.condvars[id];
// Each condvar signal happens-before the end of the condvar wake
if let Some(data_race) = this.machine.data_race.as_vclocks_ref() {
data_race.release_clock(&this.machine.threads, |clock| condvar.clock.clone_from(clock));
}
let Some(waiter) = condvar.waiters.pop_front() else {
return interp_ok(false);
};
this.unblock_thread(waiter, BlockReason::Condvar(id))?;
interp_ok(true)
}
/// Wait for the futex to be signaled, or a timeout. Once the thread is
/// unblocked, `callback` is called with the unblock reason.
fn futex_wait(
&mut self,
futex_ref: FutexRef,
bitset: u32,
timeout: Option<(TimeoutClock, TimeoutAnchor, Duration)>,
callback: DynUnblockCallback<'tcx>,
) {
let this = self.eval_context_mut();
let thread = this.active_thread();
let mut futex = futex_ref.0.borrow_mut();
let waiters = &mut futex.waiters;
assert!(waiters.iter().all(|waiter| waiter.thread != thread), "thread is already waiting");
waiters.push(FutexWaiter { thread, bitset });
drop(futex);
this.block_thread(
BlockReason::Futex,
timeout,
callback!(
@capture<'tcx> {
futex_ref: FutexRef,
callback: DynUnblockCallback<'tcx>,
}
|this, unblock: UnblockKind| {
match unblock {
UnblockKind::Ready => {
let futex = futex_ref.0.borrow();
// Acquire the clock of the futex.
if let Some(data_race) = this.machine.data_race.as_vclocks_ref() {
data_race.acquire_clock(&futex.clock, &this.machine.threads);
}
},
UnblockKind::TimedOut => {
// Remove the waiter from the futex.
let thread = this.active_thread();
let mut futex = futex_ref.0.borrow_mut();
futex.waiters.retain(|waiter| waiter.thread != thread);
},
}
callback.call(this, unblock)
}
),
);
}
/// Wake up `count` of the threads in the queue that match any of the bits
/// in the bitset. Returns how many threads were woken.
fn futex_wake(
&mut self,
futex_ref: &FutexRef,
bitset: u32,
count: usize,
) -> InterpResult<'tcx, usize> {
let this = self.eval_context_mut();
let mut futex = futex_ref.0.borrow_mut();
// Each futex-wake happens-before the end of the futex wait
if let Some(data_race) = this.machine.data_race.as_vclocks_ref() {
data_race.release_clock(&this.machine.threads, |clock| futex.clock.clone_from(clock));
}
// Remove `count` of the threads in the queue that match any of the bits in the bitset.
// We collect all of them before unblocking because the unblock callback may access the
// futex state to retrieve the remaining number of waiters on macOS.
let waiters: Vec<_> =
futex.waiters.extract_if(.., |w| w.bitset & bitset != 0).take(count).collect();
drop(futex);
let woken = waiters.len();
for waiter in waiters {
this.unblock_thread(waiter.thread, BlockReason::Futex)?;
}
interp_ok(woken)
}
}