blob: 445ce0637662d4918faf168e0ac9ca9d9ac869a1 [file] [log] [blame]
//! Rustdoc's HTML rendering module.
//!
//! This modules contains the bulk of the logic necessary for rendering a
//! rustdoc `clean::Crate` instance to a set of static HTML pages. This
//! rendering process is largely driven by the `format!` syntax extension to
//! perform all I/O into files and streams.
//!
//! The rendering process is largely driven by the `Context` and `Cache`
//! structures. The cache is pre-populated by crawling the crate in question,
//! and then it is shared among the various rendering threads. The cache is meant
//! to be a fairly large structure not implementing `Clone` (because it's shared
//! among threads). The context, however, should be a lightweight structure. This
//! is cloned per-thread and contains information about what is currently being
//! rendered.
//!
//! In order to speed up rendering (mostly because of markdown rendering), the
//! rendering process has been parallelized. This parallelization is only
//! exposed through the `crate` method on the context, and then also from the
//! fact that the shared cache is stored in TLS (and must be accessed as such).
//!
//! In addition to rendering the crate itself, this module is also responsible
//! for creating the corresponding search index and source file renderings.
//! These threads are not parallelized (they haven't been a bottleneck yet), and
//! both occur before the crate is rendered.
pub use self::ExternalLocation::*;
use std::borrow::Cow;
use std::cell::RefCell;
use std::cmp::Ordering;
use std::collections::{BTreeMap, VecDeque};
use std::default::Default;
use std::error;
use std::fmt::{self, Display, Formatter, Write as FmtWrite};
use std::ffi::OsStr;
use std::fs::{self, File, OpenOptions};
use std::io::prelude::*;
use std::io::{self, BufWriter, BufReader};
use std::mem;
use std::path::{PathBuf, Path, Component};
use std::str;
use std::sync::Arc;
use std::rc::Rc;
use errors;
use serialize::json::{ToJson, Json, as_json};
use syntax::ast;
use syntax::ext::base::MacroKind;
use syntax::source_map::FileName;
use syntax::feature_gate::UnstableFeatures;
use rustc::hir::def_id::{CrateNum, CRATE_DEF_INDEX, DefId};
use rustc::middle::privacy::AccessLevels;
use rustc::middle::stability;
use rustc::hir;
use rustc::util::nodemap::{FxHashMap, FxHashSet};
use rustc_data_structures::flock;
use crate::clean::{self, AttributesExt, Deprecation, GetDefId, SelfTy, Mutability};
use crate::config::RenderOptions;
use crate::doctree;
use crate::fold::DocFolder;
use crate::html::escape::Escape;
use crate::html::format::{AsyncSpace, ConstnessSpace};
use crate::html::format::{GenericBounds, WhereClause, href, AbiSpace, DefaultSpace};
use crate::html::format::{VisSpace, Function, UnsafetySpace, MutableSpace};
use crate::html::format::fmt_impl_for_trait_page;
use crate::html::item_type::ItemType;
use crate::html::markdown::{self, Markdown, MarkdownHtml, MarkdownSummaryLine, ErrorCodes, IdMap};
use crate::html::{highlight, layout, static_files};
use minifier;
/// A pair of name and its optional document.
pub type NameDoc = (String, Option<String>);
pub struct SlashChecker<'a>(pub &'a str);
impl<'a> Display for SlashChecker<'a> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
if !self.0.ends_with("/") && !self.0.is_empty() {
write!(f, "{}/", self.0)
} else {
write!(f, "{}", self.0)
}
}
}
/// Major driving force in all rustdoc rendering. This contains information
/// about where in the tree-like hierarchy rendering is occurring and controls
/// how the current page is being rendered.
///
/// It is intended that this context is a lightweight object which can be fairly
/// easily cloned because it is cloned per work-job (about once per item in the
/// rustdoc tree).
#[derive(Clone)]
struct Context {
/// Current hierarchy of components leading down to what's currently being
/// rendered
pub current: Vec<String>,
/// The current destination folder of where HTML artifacts should be placed.
/// This changes as the context descends into the module hierarchy.
pub dst: PathBuf,
/// A flag, which when `true`, will render pages which redirect to the
/// real location of an item. This is used to allow external links to
/// publicly reused items to redirect to the right location.
pub render_redirect_pages: bool,
pub codes: ErrorCodes,
/// The map used to ensure all generated 'id=' attributes are unique.
id_map: Rc<RefCell<IdMap>>,
pub shared: Arc<SharedContext>,
}
struct SharedContext {
/// The path to the crate root source minus the file name.
/// Used for simplifying paths to the highlighted source code files.
pub src_root: PathBuf,
/// This describes the layout of each page, and is not modified after
/// creation of the context (contains info like the favicon and added html).
pub layout: layout::Layout,
/// This flag indicates whether `[src]` links should be generated or not. If
/// the source files are present in the html rendering, then this will be
/// `true`.
pub include_sources: bool,
/// The local file sources we've emitted and their respective url-paths.
pub local_sources: FxHashMap<PathBuf, String>,
/// All the passes that were run on this crate.
pub passes: FxHashSet<String>,
/// The base-URL of the issue tracker for when an item has been tagged with
/// an issue number.
pub issue_tracker_base_url: Option<String>,
/// The given user css file which allow to customize the generated
/// documentation theme.
pub css_file_extension: Option<PathBuf>,
/// The directories that have already been created in this doc run. Used to reduce the number
/// of spurious `create_dir_all` calls.
pub created_dirs: RefCell<FxHashSet<PathBuf>>,
/// This flag indicates whether listings of modules (in the side bar and documentation itself)
/// should be ordered alphabetically or in order of appearance (in the source code).
pub sort_modules_alphabetically: bool,
/// Additional themes to be added to the generated docs.
pub themes: Vec<PathBuf>,
/// Suffix to be added on resource files (if suffix is "-v2" then "light.css" becomes
/// "light-v2.css").
pub resource_suffix: String,
/// Optional path string to be used to load static files on output pages. If not set, uses
/// combinations of `../` to reach the documentation root.
pub static_root_path: Option<String>,
/// If false, the `select` element to have search filtering by crates on rendered docs
/// won't be generated.
pub generate_search_filter: bool,
/// Option disabled by default to generate files used by RLS and some other tools.
pub generate_redirect_pages: bool,
}
impl SharedContext {
fn ensure_dir(&self, dst: &Path) -> io::Result<()> {
let mut dirs = self.created_dirs.borrow_mut();
if !dirs.contains(dst) {
fs::create_dir_all(dst)?;
dirs.insert(dst.to_path_buf());
}
Ok(())
}
}
impl SharedContext {
/// Returns `true` if the `collapse-docs` pass was run on this crate.
pub fn was_collapsed(&self) -> bool {
self.passes.contains("collapse-docs")
}
/// Based on whether the `collapse-docs` pass was run, return either the `doc_value` or the
/// `collapsed_doc_value` of the given item.
pub fn maybe_collapsed_doc_value<'a>(&self, item: &'a clean::Item) -> Option<Cow<'a, str>> {
if self.was_collapsed() {
item.collapsed_doc_value().map(|s| s.into())
} else {
item.doc_value().map(|s| s.into())
}
}
}
/// Indicates where an external crate can be found.
pub enum ExternalLocation {
/// Remote URL root of the external crate
Remote(String),
/// This external crate can be found in the local doc/ folder
Local,
/// The external crate could not be found.
Unknown,
}
/// Metadata about implementations for a type or trait.
#[derive(Clone, Debug)]
pub struct Impl {
pub impl_item: clean::Item,
}
impl Impl {
fn inner_impl(&self) -> &clean::Impl {
match self.impl_item.inner {
clean::ImplItem(ref impl_) => impl_,
_ => panic!("non-impl item found in impl")
}
}
fn trait_did(&self) -> Option<DefId> {
self.inner_impl().trait_.def_id()
}
}
#[derive(Debug)]
pub struct Error {
pub file: PathBuf,
pub error: io::Error,
}
impl error::Error for Error {
fn description(&self) -> &str {
self.error.description()
}
}
impl Display for Error {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "\"{}\": {}", self.file.display(), self.error)
}
}
impl Error {
pub fn new(e: io::Error, file: &Path) -> Error {
Error {
file: file.to_path_buf(),
error: e,
}
}
}
macro_rules! try_none {
($e:expr, $file:expr) => ({
use std::io;
match $e {
Some(e) => e,
None => return Err(Error::new(io::Error::new(io::ErrorKind::Other, "not found"),
$file))
}
})
}
macro_rules! try_err {
($e:expr, $file:expr) => ({
match $e {
Ok(e) => e,
Err(e) => return Err(Error::new(e, $file)),
}
})
}
/// This cache is used to store information about the `clean::Crate` being
/// rendered in order to provide more useful documentation. This contains
/// information like all implementors of a trait, all traits a type implements,
/// documentation for all known traits, etc.
///
/// This structure purposefully does not implement `Clone` because it's intended
/// to be a fairly large and expensive structure to clone. Instead this adheres
/// to `Send` so it may be stored in a `Arc` instance and shared among the various
/// rendering threads.
#[derive(Default)]
pub struct Cache {
/// Mapping of typaram ids to the name of the type parameter. This is used
/// when pretty-printing a type (so pretty-printing doesn't have to
/// painfully maintain a context like this)
pub param_names: FxHashMap<DefId, String>,
/// Maps a type ID to all known implementations for that type. This is only
/// recognized for intra-crate `ResolvedPath` types, and is used to print
/// out extra documentation on the page of an enum/struct.
///
/// The values of the map are a list of implementations and documentation
/// found on that implementation.
pub impls: FxHashMap<DefId, Vec<Impl>>,
/// Maintains a mapping of local crate `NodeId`s to the fully qualified name
/// and "short type description" of that node. This is used when generating
/// URLs when a type is being linked to. External paths are not located in
/// this map because the `External` type itself has all the information
/// necessary.
pub paths: FxHashMap<DefId, (Vec<String>, ItemType)>,
/// Similar to `paths`, but only holds external paths. This is only used for
/// generating explicit hyperlinks to other crates.
pub external_paths: FxHashMap<DefId, (Vec<String>, ItemType)>,
/// Maps local `DefId`s of exported types to fully qualified paths.
/// Unlike 'paths', this mapping ignores any renames that occur
/// due to 'use' statements.
///
/// This map is used when writing out the special 'implementors'
/// javascript file. By using the exact path that the type
/// is declared with, we ensure that each path will be identical
/// to the path used if the corresponding type is inlined. By
/// doing this, we can detect duplicate impls on a trait page, and only display
/// the impl for the inlined type.
pub exact_paths: FxHashMap<DefId, Vec<String>>,
/// This map contains information about all known traits of this crate.
/// Implementations of a crate should inherit the documentation of the
/// parent trait if no extra documentation is specified, and default methods
/// should show up in documentation about trait implementations.
pub traits: FxHashMap<DefId, clean::Trait>,
/// When rendering traits, it's often useful to be able to list all
/// implementors of the trait, and this mapping is exactly, that: a mapping
/// of trait ids to the list of known implementors of the trait
pub implementors: FxHashMap<DefId, Vec<Impl>>,
/// Cache of where external crate documentation can be found.
pub extern_locations: FxHashMap<CrateNum, (String, PathBuf, ExternalLocation)>,
/// Cache of where documentation for primitives can be found.
pub primitive_locations: FxHashMap<clean::PrimitiveType, DefId>,
// Note that external items for which `doc(hidden)` applies to are shown as
// non-reachable while local items aren't. This is because we're reusing
// the access levels from the privacy check pass.
pub access_levels: AccessLevels<DefId>,
/// The version of the crate being documented, if given from the `--crate-version` flag.
pub crate_version: Option<String>,
// Private fields only used when initially crawling a crate to build a cache
stack: Vec<String>,
parent_stack: Vec<DefId>,
parent_is_trait_impl: bool,
search_index: Vec<IndexItem>,
stripped_mod: bool,
deref_trait_did: Option<DefId>,
deref_mut_trait_did: Option<DefId>,
owned_box_did: Option<DefId>,
masked_crates: FxHashSet<CrateNum>,
// In rare case where a structure is defined in one module but implemented
// in another, if the implementing module is parsed before defining module,
// then the fully qualified name of the structure isn't presented in `paths`
// yet when its implementation methods are being indexed. Caches such methods
// and their parent id here and indexes them at the end of crate parsing.
orphan_impl_items: Vec<(DefId, clean::Item)>,
// Similarly to `orphan_impl_items`, sometimes trait impls are picked up
// even though the trait itself is not exported. This can happen if a trait
// was defined in function/expression scope, since the impl will be picked
// up by `collect-trait-impls` but the trait won't be scraped out in the HIR
// crawl. In order to prevent crashes when looking for spotlight traits or
// when gathering trait documentation on a type, hold impls here while
// folding and add them to the cache later on if we find the trait.
orphan_trait_impls: Vec<(DefId, FxHashSet<DefId>, Impl)>,
/// Aliases added through `#[doc(alias = "...")]`. Since a few items can have the same alias,
/// we need the alias element to have an array of items.
aliases: FxHashMap<String, Vec<IndexItem>>,
}
/// Temporary storage for data obtained during `RustdocVisitor::clean()`.
/// Later on moved into `CACHE_KEY`.
#[derive(Default)]
pub struct RenderInfo {
pub inlined: FxHashSet<DefId>,
pub external_paths: crate::core::ExternalPaths,
pub external_param_names: FxHashMap<DefId, String>,
pub exact_paths: FxHashMap<DefId, Vec<String>>,
pub access_levels: AccessLevels<DefId>,
pub deref_trait_did: Option<DefId>,
pub deref_mut_trait_did: Option<DefId>,
pub owned_box_did: Option<DefId>,
}
/// Helper struct to render all source code to HTML pages
struct SourceCollector<'a> {
scx: &'a mut SharedContext,
/// Root destination to place all HTML output into
dst: PathBuf,
}
/// Wrapper struct to render the source code of a file. This will do things like
/// adding line numbers to the left-hand side.
struct Source<'a>(&'a str);
// Helper structs for rendering items/sidebars and carrying along contextual
// information
#[derive(Copy, Clone)]
struct Item<'a> {
cx: &'a Context,
item: &'a clean::Item,
}
struct Sidebar<'a> { cx: &'a Context, item: &'a clean::Item, }
/// Struct representing one entry in the JS search index. These are all emitted
/// by hand to a large JS file at the end of cache-creation.
#[derive(Debug)]
struct IndexItem {
ty: ItemType,
name: String,
path: String,
desc: String,
parent: Option<DefId>,
parent_idx: Option<usize>,
search_type: Option<IndexItemFunctionType>,
}
impl ToJson for IndexItem {
fn to_json(&self) -> Json {
assert_eq!(self.parent.is_some(), self.parent_idx.is_some());
let mut data = Vec::with_capacity(6);
data.push((self.ty as usize).to_json());
data.push(self.name.to_json());
data.push(self.path.to_json());
data.push(self.desc.to_json());
data.push(self.parent_idx.to_json());
data.push(self.search_type.to_json());
Json::Array(data)
}
}
/// A type used for the search index.
#[derive(Debug)]
struct Type {
name: Option<String>,
generics: Option<Vec<String>>,
}
impl ToJson for Type {
fn to_json(&self) -> Json {
match self.name {
Some(ref name) => {
let mut data = Vec::with_capacity(2);
data.push(name.to_json());
if let Some(ref generics) = self.generics {
data.push(generics.to_json());
}
Json::Array(data)
}
None => Json::Null
}
}
}
/// Full type of functions/methods in the search index.
#[derive(Debug)]
struct IndexItemFunctionType {
inputs: Vec<Type>,
output: Option<Type>,
}
impl ToJson for IndexItemFunctionType {
fn to_json(&self) -> Json {
// If we couldn't figure out a type, just write `null`.
if self.inputs.iter().chain(self.output.iter()).any(|ref i| i.name.is_none()) {
Json::Null
} else {
let mut data = Vec::with_capacity(2);
data.push(self.inputs.to_json());
if let Some(ref output) = self.output {
data.push(output.to_json());
}
Json::Array(data)
}
}
}
thread_local!(static CACHE_KEY: RefCell<Arc<Cache>> = Default::default());
thread_local!(pub static CURRENT_LOCATION_KEY: RefCell<Vec<String>> = RefCell::new(Vec::new()));
pub fn initial_ids() -> Vec<String> {
[
"main",
"search",
"help",
"TOC",
"render-detail",
"associated-types",
"associated-const",
"required-methods",
"provided-methods",
"implementors",
"synthetic-implementors",
"implementors-list",
"synthetic-implementors-list",
"methods",
"deref-methods",
"implementations",
].into_iter().map(|id| (String::from(*id))).collect()
}
/// Generates the documentation for `crate` into the directory `dst`
pub fn run(mut krate: clean::Crate,
options: RenderOptions,
passes: FxHashSet<String>,
renderinfo: RenderInfo,
diag: &errors::Handler) -> Result<(), Error> {
// need to save a copy of the options for rendering the index page
let md_opts = options.clone();
let RenderOptions {
output,
external_html,
id_map,
playground_url,
sort_modules_alphabetically,
themes,
extension_css,
extern_html_root_urls,
resource_suffix,
static_root_path,
generate_search_filter,
generate_redirect_pages,
..
} = options;
let src_root = match krate.src {
FileName::Real(ref p) => match p.parent() {
Some(p) => p.to_path_buf(),
None => PathBuf::new(),
},
_ => PathBuf::new(),
};
let mut scx = SharedContext {
src_root,
passes,
include_sources: true,
local_sources: Default::default(),
issue_tracker_base_url: None,
layout: layout::Layout {
logo: String::new(),
favicon: String::new(),
external_html,
krate: krate.name.clone(),
},
css_file_extension: extension_css,
created_dirs: Default::default(),
sort_modules_alphabetically,
themes,
resource_suffix,
static_root_path,
generate_search_filter,
generate_redirect_pages,
};
// If user passed in `--playground-url` arg, we fill in crate name here
if let Some(url) = playground_url {
markdown::PLAYGROUND.with(|slot| {
*slot.borrow_mut() = Some((Some(krate.name.clone()), url));
});
}
// Crawl the crate attributes looking for attributes which control how we're
// going to emit HTML
if let Some(attrs) = krate.module.as_ref().map(|m| &m.attrs) {
for attr in attrs.lists("doc") {
match (attr.ident_str(), attr.value_str()) {
(Some("html_favicon_url"), Some(s)) => {
scx.layout.favicon = s.to_string();
}
(Some("html_logo_url"), Some(s)) => {
scx.layout.logo = s.to_string();
}
(Some("html_playground_url"), Some(s)) => {
markdown::PLAYGROUND.with(|slot| {
let name = krate.name.clone();
*slot.borrow_mut() = Some((Some(name), s.to_string()));
});
}
(Some("issue_tracker_base_url"), Some(s)) => {
scx.issue_tracker_base_url = Some(s.to_string());
}
(Some("html_no_source"), None) if attr.is_word() => {
scx.include_sources = false;
}
_ => {}
}
}
}
let dst = output;
try_err!(fs::create_dir_all(&dst), &dst);
krate = render_sources(&dst, &mut scx, krate)?;
let cx = Context {
current: Vec::new(),
dst,
render_redirect_pages: false,
codes: ErrorCodes::from(UnstableFeatures::from_environment().is_nightly_build()),
id_map: Rc::new(RefCell::new(id_map)),
shared: Arc::new(scx),
};
// Crawl the crate to build various caches used for the output
let RenderInfo {
inlined: _,
external_paths,
external_param_names,
exact_paths,
access_levels,
deref_trait_did,
deref_mut_trait_did,
owned_box_did,
} = renderinfo;
let external_paths = external_paths.into_iter()
.map(|(k, (v, t))| (k, (v, ItemType::from(t))))
.collect();
let mut cache = Cache {
impls: Default::default(),
external_paths,
exact_paths,
paths: Default::default(),
implementors: Default::default(),
stack: Vec::new(),
parent_stack: Vec::new(),
search_index: Vec::new(),
parent_is_trait_impl: false,
extern_locations: Default::default(),
primitive_locations: Default::default(),
stripped_mod: false,
access_levels,
crate_version: krate.version.take(),
orphan_impl_items: Vec::new(),
orphan_trait_impls: Vec::new(),
traits: krate.external_traits.lock().replace(Default::default()),
deref_trait_did,
deref_mut_trait_did,
owned_box_did,
masked_crates: mem::replace(&mut krate.masked_crates, Default::default()),
param_names: external_param_names,
aliases: Default::default(),
};
// Cache where all our extern crates are located
for &(n, ref e) in &krate.externs {
let src_root = match e.src {
FileName::Real(ref p) => match p.parent() {
Some(p) => p.to_path_buf(),
None => PathBuf::new(),
},
_ => PathBuf::new(),
};
let extern_url = extern_html_root_urls.get(&e.name).map(|u| &**u);
cache.extern_locations.insert(n, (e.name.clone(), src_root,
extern_location(e, extern_url, &cx.dst)));
let did = DefId { krate: n, index: CRATE_DEF_INDEX };
cache.external_paths.insert(did, (vec![e.name.to_string()], ItemType::Module));
}
// Cache where all known primitives have their documentation located.
//
// Favor linking to as local extern as possible, so iterate all crates in
// reverse topological order.
for &(_, ref e) in krate.externs.iter().rev() {
for &(def_id, prim, _) in &e.primitives {
cache.primitive_locations.insert(prim, def_id);
}
}
for &(def_id, prim, _) in &krate.primitives {
cache.primitive_locations.insert(prim, def_id);
}
cache.stack.push(krate.name.clone());
krate = cache.fold_crate(krate);
for (trait_did, dids, impl_) in cache.orphan_trait_impls.drain(..) {
if cache.traits.contains_key(&trait_did) {
for did in dids {
cache.impls.entry(did).or_insert(vec![]).push(impl_.clone());
}
}
}
// Build our search index
let index = build_index(&krate, &mut cache);
// Freeze the cache now that the index has been built. Put an Arc into TLS
// for future parallelization opportunities
let cache = Arc::new(cache);
CACHE_KEY.with(|v| *v.borrow_mut() = cache.clone());
CURRENT_LOCATION_KEY.with(|s| s.borrow_mut().clear());
write_shared(&cx, &krate, &*cache, index, &md_opts, diag)?;
// And finally render the whole crate's documentation
cx.krate(krate)
}
/// Builds the search index from the collected metadata
fn build_index(krate: &clean::Crate, cache: &mut Cache) -> String {
let mut nodeid_to_pathid = FxHashMap::default();
let mut crate_items = Vec::with_capacity(cache.search_index.len());
let mut crate_paths = Vec::<Json>::new();
let Cache { ref mut search_index,
ref orphan_impl_items,
ref mut paths, .. } = *cache;
// Attach all orphan items to the type's definition if the type
// has since been learned.
for &(did, ref item) in orphan_impl_items {
if let Some(&(ref fqp, _)) = paths.get(&did) {
search_index.push(IndexItem {
ty: item.type_(),
name: item.name.clone().unwrap(),
path: fqp[..fqp.len() - 1].join("::"),
desc: plain_summary_line_short(item.doc_value()),
parent: Some(did),
parent_idx: None,
search_type: get_index_search_type(&item),
});
}
}
// Reduce `NodeId` in paths into smaller sequential numbers,
// and prune the paths that do not appear in the index.
let mut lastpath = String::new();
let mut lastpathid = 0usize;
for item in search_index {
item.parent_idx = item.parent.map(|nodeid| {
if nodeid_to_pathid.contains_key(&nodeid) {
*nodeid_to_pathid.get(&nodeid).unwrap()
} else {
let pathid = lastpathid;
nodeid_to_pathid.insert(nodeid, pathid);
lastpathid += 1;
let &(ref fqp, short) = paths.get(&nodeid).unwrap();
crate_paths.push(((short as usize), fqp.last().unwrap().clone()).to_json());
pathid
}
});
// Omit the parent path if it is same to that of the prior item.
if lastpath == item.path {
item.path.clear();
} else {
lastpath = item.path.clone();
}
crate_items.push(item.to_json());
}
let crate_doc = krate.module.as_ref().map(|module| {
plain_summary_line_short(module.doc_value())
}).unwrap_or(String::new());
let mut crate_data = BTreeMap::new();
crate_data.insert("doc".to_owned(), Json::String(crate_doc));
crate_data.insert("i".to_owned(), Json::Array(crate_items));
crate_data.insert("p".to_owned(), Json::Array(crate_paths));
// Collect the index into a string
format!("searchIndex[{}] = {};",
as_json(&krate.name),
Json::Object(crate_data))
}
fn write_shared(
cx: &Context,
krate: &clean::Crate,
cache: &Cache,
search_index: String,
options: &RenderOptions,
diag: &errors::Handler,
) -> Result<(), Error> {
// Write out the shared files. Note that these are shared among all rustdoc
// docs placed in the output directory, so this needs to be a synchronized
// operation with respect to all other rustdocs running around.
let _lock = flock::Lock::panicking_new(&cx.dst.join(".lock"), true, true, true);
// Add all the static files. These may already exist, but we just
// overwrite them anyway to make sure that they're fresh and up-to-date.
write_minify(cx.dst.join(&format!("rustdoc{}.css", cx.shared.resource_suffix)),
static_files::RUSTDOC_CSS,
options.enable_minification)?;
write_minify(cx.dst.join(&format!("settings{}.css", cx.shared.resource_suffix)),
static_files::SETTINGS_CSS,
options.enable_minification)?;
write_minify(cx.dst.join(&format!("noscript{}.css", cx.shared.resource_suffix)),
static_files::NOSCRIPT_CSS,
options.enable_minification)?;
// To avoid "light.css" to be overwritten, we'll first run over the received themes and only
// then we'll run over the "official" styles.
let mut themes: FxHashSet<String> = FxHashSet::default();
for entry in &cx.shared.themes {
let content = try_err!(fs::read(&entry), &entry);
let theme = try_none!(try_none!(entry.file_stem(), &entry).to_str(), &entry);
let extension = try_none!(try_none!(entry.extension(), &entry).to_str(), &entry);
write(cx.dst.join(format!("{}{}.{}", theme, cx.shared.resource_suffix, extension)),
content.as_slice())?;
themes.insert(theme.to_owned());
}
if (*cx.shared).layout.logo.is_empty() {
write(cx.dst.join(&format!("rust-logo{}.png", cx.shared.resource_suffix)),
static_files::RUST_LOGO)?;
}
if (*cx.shared).layout.favicon.is_empty() {
write(cx.dst.join(&format!("favicon{}.ico", cx.shared.resource_suffix)),
static_files::RUST_FAVICON)?;
}
write(cx.dst.join(&format!("brush{}.svg", cx.shared.resource_suffix)),
static_files::BRUSH_SVG)?;
write(cx.dst.join(&format!("wheel{}.svg", cx.shared.resource_suffix)),
static_files::WHEEL_SVG)?;
write(cx.dst.join(&format!("down-arrow{}.svg", cx.shared.resource_suffix)),
static_files::DOWN_ARROW_SVG)?;
write_minify(cx.dst.join(&format!("light{}.css", cx.shared.resource_suffix)),
static_files::themes::LIGHT,
options.enable_minification)?;
themes.insert("light".to_owned());
write_minify(cx.dst.join(&format!("dark{}.css", cx.shared.resource_suffix)),
static_files::themes::DARK,
options.enable_minification)?;
themes.insert("dark".to_owned());
let mut themes: Vec<&String> = themes.iter().collect();
themes.sort();
// To avoid theme switch latencies as much as possible, we put everything theme related
// at the beginning of the html files into another js file.
write(cx.dst.join(&format!("theme{}.js", cx.shared.resource_suffix)),
format!(
r#"var themes = document.getElementById("theme-choices");
var themePicker = document.getElementById("theme-picker");
function switchThemeButtonState() {{
if (themes.style.display === "block") {{
themes.style.display = "none";
themePicker.style.borderBottomRightRadius = "3px";
themePicker.style.borderBottomLeftRadius = "3px";
}} else {{
themes.style.display = "block";
themePicker.style.borderBottomRightRadius = "0";
themePicker.style.borderBottomLeftRadius = "0";
}}
}};
function handleThemeButtonsBlur(e) {{
var active = document.activeElement;
var related = e.relatedTarget;
if (active.id !== "themePicker" &&
(!active.parentNode || active.parentNode.id !== "theme-choices") &&
(!related ||
(related.id !== "themePicker" &&
(!related.parentNode || related.parentNode.id !== "theme-choices")))) {{
switchThemeButtonState();
}}
}}
themePicker.onclick = switchThemeButtonState;
themePicker.onblur = handleThemeButtonsBlur;
[{}].forEach(function(item) {{
var but = document.createElement('button');
but.innerHTML = item;
but.onclick = function(el) {{
switchTheme(currentTheme, mainTheme, item);
}};
but.onblur = handleThemeButtonsBlur;
themes.appendChild(but);
}});"#,
themes.iter()
.map(|s| format!("\"{}\"", s))
.collect::<Vec<String>>()
.join(",")).as_bytes(),
)?;
write_minify(cx.dst.join(&format!("main{}.js", cx.shared.resource_suffix)),
static_files::MAIN_JS,
options.enable_minification)?;
write_minify(cx.dst.join(&format!("settings{}.js", cx.shared.resource_suffix)),
static_files::SETTINGS_JS,
options.enable_minification)?;
if cx.shared.include_sources {
write_minify(cx.dst.join(&format!("source-script{}.js", cx.shared.resource_suffix)),
static_files::sidebar::SOURCE_SCRIPT,
options.enable_minification)?;
}
{
write_minify(cx.dst.join(&format!("storage{}.js", cx.shared.resource_suffix)),
&format!("var resourcesSuffix = \"{}\";{}",
cx.shared.resource_suffix,
static_files::STORAGE_JS),
options.enable_minification)?;
}
if let Some(ref css) = cx.shared.css_file_extension {
let out = cx.dst.join(&format!("theme{}.css", cx.shared.resource_suffix));
if !options.enable_minification {
try_err!(fs::copy(css, out), css);
} else {
let buffer = try_err!(fs::read_to_string(css), css);
write_minify(out, &buffer, options.enable_minification)?;
}
}
write_minify(cx.dst.join(&format!("normalize{}.css", cx.shared.resource_suffix)),
static_files::NORMALIZE_CSS,
options.enable_minification)?;
write(cx.dst.join("FiraSans-Regular.woff"),
static_files::fira_sans::REGULAR)?;
write(cx.dst.join("FiraSans-Medium.woff"),
static_files::fira_sans::MEDIUM)?;
write(cx.dst.join("FiraSans-LICENSE.txt"),
static_files::fira_sans::LICENSE)?;
write(cx.dst.join("SourceSerifPro-Regular.ttf.woff"),
static_files::source_serif_pro::REGULAR)?;
write(cx.dst.join("SourceSerifPro-Bold.ttf.woff"),
static_files::source_serif_pro::BOLD)?;
write(cx.dst.join("SourceSerifPro-It.ttf.woff"),
static_files::source_serif_pro::ITALIC)?;
write(cx.dst.join("SourceSerifPro-LICENSE.txt"),
static_files::source_serif_pro::LICENSE)?;
write(cx.dst.join("SourceCodePro-Regular.woff"),
static_files::source_code_pro::REGULAR)?;
write(cx.dst.join("SourceCodePro-Semibold.woff"),
static_files::source_code_pro::SEMIBOLD)?;
write(cx.dst.join("SourceCodePro-LICENSE.txt"),
static_files::source_code_pro::LICENSE)?;
write(cx.dst.join("LICENSE-MIT.txt"),
static_files::LICENSE_MIT)?;
write(cx.dst.join("LICENSE-APACHE.txt"),
static_files::LICENSE_APACHE)?;
write(cx.dst.join("COPYRIGHT.txt"),
static_files::COPYRIGHT)?;
fn collect(
path: &Path,
krate: &str,
key: &str,
for_search_index: bool,
) -> io::Result<(Vec<String>, Vec<String>, Vec<String>)> {
use minifier::js;
let mut ret = Vec::new();
let mut krates = Vec::new();
let mut variables = Vec::new();
let mut krate = krate.to_owned();
if path.exists() {
for line in BufReader::new(File::open(path)?).lines() {
let line = line?;
if for_search_index && line.starts_with("var R") {
variables.push(line.clone());
// We need to check if the crate name has been put into a variable as well.
let tokens = js::simple_minify(&line).apply(js::clean_tokens);
let mut pos = 0;
while pos < tokens.len() {
if let Some((var_pos, Some(value_pos))) =
js::get_variable_name_and_value_positions(&tokens, pos) {
if let Some(s) = tokens.0[value_pos].get_string() {
if &s[1..s.len() - 1] == krate {
if let Some(var) = tokens[var_pos].get_other() {
krate = var.to_owned();
break
}
}
}
}
pos += 1;
}
continue;
}
if !line.starts_with(key) {
continue;
}
if line.starts_with(&format!(r#"{}["{}"]"#, key, krate)) {
continue;
}
ret.push(line.to_string());
krates.push(line[key.len() + 2..].split('"')
.next()
.map(|s| s.to_owned())
.unwrap_or_else(|| String::new()));
}
}
Ok((ret, krates, variables))
}
fn show_item(item: &IndexItem, krate: &str) -> String {
format!("{{'crate':'{}','ty':{},'name':'{}','desc':'{}','p':'{}'{}}}",
krate, item.ty as usize, item.name, item.desc.replace("'", "\\'"), item.path,
if let Some(p) = item.parent_idx {
format!(",'parent':{}", p)
} else {
String::new()
})
}
let dst = cx.dst.join("aliases.js");
{
let (mut all_aliases, _, _) = try_err!(collect(&dst, &krate.name, "ALIASES", false), &dst);
let mut w = try_err!(File::create(&dst), &dst);
let mut output = String::with_capacity(100);
for (alias, items) in &cache.aliases {
if items.is_empty() {
continue
}
output.push_str(&format!("\"{}\":[{}],",
alias,
items.iter()
.map(|v| show_item(v, &krate.name))
.collect::<Vec<_>>()
.join(",")));
}
all_aliases.push(format!("ALIASES[\"{}\"] = {{{}}};", krate.name, output));
all_aliases.sort();
try_err!(writeln!(&mut w, "var ALIASES = {{}};"), &dst);
for aliases in &all_aliases {
try_err!(writeln!(&mut w, "{}", aliases), &dst);
}
}
use std::ffi::OsString;
#[derive(Debug)]
struct Hierarchy {
elem: OsString,
children: FxHashMap<OsString, Hierarchy>,
elems: FxHashSet<OsString>,
}
impl Hierarchy {
fn new(elem: OsString) -> Hierarchy {
Hierarchy {
elem,
children: FxHashMap::default(),
elems: FxHashSet::default(),
}
}
fn to_json_string(&self) -> String {
let mut subs: Vec<&Hierarchy> = self.children.values().collect();
subs.sort_unstable_by(|a, b| a.elem.cmp(&b.elem));
let mut files = self.elems.iter()
.map(|s| format!("\"{}\"",
s.to_str()
.expect("invalid osstring conversion")))
.collect::<Vec<_>>();
files.sort_unstable_by(|a, b| a.cmp(b));
// FIXME(imperio): we could avoid to generate "dirs" and "files" if they're empty.
format!("{{\"name\":\"{name}\",\"dirs\":[{subs}],\"files\":[{files}]}}",
name=self.elem.to_str().expect("invalid osstring conversion"),
subs=subs.iter().map(|s| s.to_json_string()).collect::<Vec<_>>().join(","),
files=files.join(","))
}
}
if cx.shared.include_sources {
use std::path::Component;
let mut hierarchy = Hierarchy::new(OsString::new());
for source in cx.shared.local_sources.iter()
.filter_map(|p| p.0.strip_prefix(&cx.shared.src_root)
.ok()) {
let mut h = &mut hierarchy;
let mut elems = source.components()
.filter_map(|s| {
match s {
Component::Normal(s) => Some(s.to_owned()),
_ => None,
}
})
.peekable();
loop {
let cur_elem = elems.next().expect("empty file path");
if elems.peek().is_none() {
h.elems.insert(cur_elem);
break;
} else {
let e = cur_elem.clone();
h.children.entry(cur_elem.clone()).or_insert_with(|| Hierarchy::new(e));
h = h.children.get_mut(&cur_elem).expect("not found child");
}
}
}
let dst = cx.dst.join("source-files.js");
let (mut all_sources, _krates, _) = try_err!(collect(&dst, &krate.name, "sourcesIndex",
false),
&dst);
all_sources.push(format!("sourcesIndex[\"{}\"] = {};",
&krate.name,
hierarchy.to_json_string()));
all_sources.sort();
let mut w = try_err!(File::create(&dst), &dst);
try_err!(writeln!(&mut w,
"var N = null;var sourcesIndex = {{}};\n{}\ncreateSourceSidebar();",
all_sources.join("\n")),
&dst);
}
// Update the search index
let dst = cx.dst.join("search-index.js");
let (mut all_indexes, mut krates, variables) = try_err!(collect(&dst,
&krate.name,
"searchIndex",
true), &dst);
all_indexes.push(search_index);
// Sort the indexes by crate so the file will be generated identically even
// with rustdoc running in parallel.
all_indexes.sort();
let mut w = try_err!(File::create(&dst), &dst);
try_err!(writeln!(&mut w, "var N=null,E=\"\",T=\"t\",U=\"u\",searchIndex={{}};"), &dst);
try_err!(write_minify_replacer(&mut w,
&format!("{}\n{}", variables.join(""), all_indexes.join("\n")),
options.enable_minification),
&dst);
try_err!(write!(&mut w, "initSearch(searchIndex);addSearchOptions(searchIndex);"), &dst);
if options.enable_index_page {
if let Some(index_page) = options.index_page.clone() {
let mut md_opts = options.clone();
md_opts.output = cx.dst.clone();
md_opts.external_html = (*cx.shared).layout.external_html.clone();
crate::markdown::render(index_page, md_opts, diag);
} else {
let dst = cx.dst.join("index.html");
let mut w = BufWriter::new(try_err!(File::create(&dst), &dst));
let page = layout::Page {
title: "Index of crates",
css_class: "mod",
root_path: "./",
static_root_path: cx.shared.static_root_path.deref(),
description: "List of crates",
keywords: BASIC_KEYWORDS,
resource_suffix: &cx.shared.resource_suffix,
extra_scripts: &[],
static_extra_scripts: &[],
};
krates.push(krate.name.clone());
krates.sort();
krates.dedup();
let content = format!(
"<h1 class='fqn'>\
<span class='in-band'>List of all crates</span>\
</h1><ul class='mod'>{}</ul>",
krates
.iter()
.map(|s| {
format!("<li><a href=\"{}index.html\">{}</li>",
SlashChecker(s), s)
})
.collect::<String>());
try_err!(layout::render(&mut w, &cx.shared.layout,
&page, &(""), &content,
cx.shared.css_file_extension.is_some(),
&cx.shared.themes,
cx.shared.generate_search_filter), &dst);
try_err!(w.flush(), &dst);
}
}
// Update the list of all implementors for traits
let dst = cx.dst.join("implementors");
for (&did, imps) in &cache.implementors {
// Private modules can leak through to this phase of rustdoc, which
// could contain implementations for otherwise private types. In some
// rare cases we could find an implementation for an item which wasn't
// indexed, so we just skip this step in that case.
//
// FIXME: this is a vague explanation for why this can't be a `get`, in
// theory it should be...
let &(ref remote_path, remote_item_type) = match cache.paths.get(&did) {
Some(p) => p,
None => match cache.external_paths.get(&did) {
Some(p) => p,
None => continue,
}
};
let mut have_impls = false;
let mut implementors = format!(r#"implementors["{}"] = ["#, krate.name);
for imp in imps {
// If the trait and implementation are in the same crate, then
// there's no need to emit information about it (there's inlining
// going on). If they're in different crates then the crate defining
// the trait will be interested in our implementation.
if imp.impl_item.def_id.krate == did.krate { continue }
// If the implementation is from another crate then that crate
// should add it.
if !imp.impl_item.def_id.is_local() { continue }
have_impls = true;
write!(implementors, "{{text:{},synthetic:{},types:{}}},",
as_json(&imp.inner_impl().to_string()),
imp.inner_impl().synthetic,
as_json(&collect_paths_for_type(imp.inner_impl().for_.clone()))).unwrap();
}
implementors.push_str("];");
// Only create a js file if we have impls to add to it. If the trait is
// documented locally though we always create the file to avoid dead
// links.
if !have_impls && !cache.paths.contains_key(&did) {
continue;
}
let mut mydst = dst.clone();
for part in &remote_path[..remote_path.len() - 1] {
mydst.push(part);
}
try_err!(fs::create_dir_all(&mydst), &mydst);
mydst.push(&format!("{}.{}.js",
remote_item_type.css_class(),
remote_path[remote_path.len() - 1]));
let (mut all_implementors, _, _) = try_err!(collect(&mydst, &krate.name, "implementors",
false),
&mydst);
all_implementors.push(implementors);
// Sort the implementors by crate so the file will be generated
// identically even with rustdoc running in parallel.
all_implementors.sort();
let mut f = try_err!(File::create(&mydst), &mydst);
try_err!(writeln!(&mut f, "(function() {{var implementors = {{}};"), &mydst);
for implementor in &all_implementors {
try_err!(writeln!(&mut f, "{}", *implementor), &mydst);
}
try_err!(writeln!(&mut f, "{}", r"
if (window.register_implementors) {
window.register_implementors(implementors);
} else {
window.pending_implementors = implementors;
}
"), &mydst);
try_err!(writeln!(&mut f, r"}})()"), &mydst);
}
Ok(())
}
fn render_sources(dst: &Path, scx: &mut SharedContext,
krate: clean::Crate) -> Result<clean::Crate, Error> {
info!("emitting source files");
let dst = dst.join("src").join(&krate.name);
try_err!(fs::create_dir_all(&dst), &dst);
let mut folder = SourceCollector {
dst,
scx,
};
Ok(folder.fold_crate(krate))
}
/// Writes the entire contents of a string to a destination, not attempting to
/// catch any errors.
fn write(dst: PathBuf, contents: &[u8]) -> Result<(), Error> {
Ok(try_err!(fs::write(&dst, contents), &dst))
}
fn write_minify(dst: PathBuf, contents: &str, enable_minification: bool) -> Result<(), Error> {
if enable_minification {
if dst.extension() == Some(&OsStr::new("css")) {
let res = try_none!(minifier::css::minify(contents).ok(), &dst);
write(dst, res.as_bytes())
} else {
write(dst, minifier::js::minify(contents).as_bytes())
}
} else {
write(dst, contents.as_bytes())
}
}
fn write_minify_replacer<W: Write>(
dst: &mut W,
contents: &str,
enable_minification: bool,
) -> io::Result<()> {
use minifier::js::{Keyword, ReservedChar, Token};
if enable_minification {
writeln!(dst, "{}",
minifier::js::simple_minify(contents)
.apply(|f| {
// We keep backlines.
minifier::js::clean_tokens_except(f, |c| {
c.get_char() != Some(ReservedChar::Backline)
})
})
.apply(|f| {
minifier::js::replace_token_with(f, |t| {
match *t {
Token::Keyword(Keyword::Null) => Some(Token::Other("N")),
Token::String(s) => {
let s = &s[1..s.len() -1]; // The quotes are included
if s.is_empty() {
Some(Token::Other("E"))
} else if s == "t" {
Some(Token::Other("T"))
} else if s == "u" {
Some(Token::Other("U"))
} else {
None
}
}
_ => None,
}
})
})
.apply(|f| {
// We add a backline after the newly created variables.
minifier::js::aggregate_strings_into_array_with_separation(
f,
"R",
Token::Char(ReservedChar::Backline),
)
})
.to_string())
} else {
writeln!(dst, "{}", contents)
}
}
/// Takes a path to a source file and cleans the path to it. This canonicalizes
/// things like ".." to components which preserve the "top down" hierarchy of a
/// static HTML tree. Each component in the cleaned path will be passed as an
/// argument to `f`. The very last component of the path (ie the file name) will
/// be passed to `f` if `keep_filename` is true, and ignored otherwise.
fn clean_srcpath<F>(src_root: &Path, p: &Path, keep_filename: bool, mut f: F) where
F: FnMut(&OsStr),
{
// make it relative, if possible
let p = p.strip_prefix(src_root).unwrap_or(p);
let mut iter = p.components().peekable();
while let Some(c) = iter.next() {
if !keep_filename && iter.peek().is_none() {
break;
}
match c {
Component::ParentDir => f("up".as_ref()),
Component::Normal(c) => f(c),
_ => continue,
}
}
}
/// Attempts to find where an external crate is located, given that we're
/// rendering in to the specified source destination.
fn extern_location(e: &clean::ExternalCrate, extern_url: Option<&str>, dst: &Path)
-> ExternalLocation
{
// See if there's documentation generated into the local directory
let local_location = dst.join(&e.name);
if local_location.is_dir() {
return Local;
}
if let Some(url) = extern_url {
let mut url = url.to_string();
if !url.ends_with("/") {
url.push('/');
}
return Remote(url);
}
// Failing that, see if there's an attribute specifying where to find this
// external crate
e.attrs.lists("doc")
.filter(|a| a.check_name("html_root_url"))
.filter_map(|a| a.value_str())
.map(|url| {
let mut url = url.to_string();
if !url.ends_with("/") {
url.push('/')
}
Remote(url)
}).next().unwrap_or(Unknown) // Well, at least we tried.
}
impl<'a> DocFolder for SourceCollector<'a> {
fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
// If we're including source files, and we haven't seen this file yet,
// then we need to render it out to the filesystem.
if self.scx.include_sources
// skip all invalid or macro spans
&& item.source.filename.is_real()
// skip non-local items
&& item.def_id.is_local() {
// If it turns out that we couldn't read this file, then we probably
// can't read any of the files (generating html output from json or
// something like that), so just don't include sources for the
// entire crate. The other option is maintaining this mapping on a
// per-file basis, but that's probably not worth it...
self.scx
.include_sources = match self.emit_source(&item.source.filename) {
Ok(()) => true,
Err(e) => {
println!("warning: source code was requested to be rendered, \
but processing `{}` had an error: {}",
item.source.filename, e);
println!(" skipping rendering of source code");
false
}
};
}
self.fold_item_recur(item)
}
}
impl<'a> SourceCollector<'a> {
/// Renders the given filename into its corresponding HTML source file.
fn emit_source(&mut self, filename: &FileName) -> io::Result<()> {
let p = match *filename {
FileName::Real(ref file) => file,
_ => return Ok(()),
};
if self.scx.local_sources.contains_key(&**p) {
// We've already emitted this source
return Ok(());
}
let contents = fs::read_to_string(&p)?;
// Remove the utf-8 BOM if any
let contents = if contents.starts_with("\u{feff}") {
&contents[3..]
} else {
&contents[..]
};
// Create the intermediate directories
let mut cur = self.dst.clone();
let mut root_path = String::from("../../");
let mut href = String::new();
clean_srcpath(&self.scx.src_root, &p, false, |component| {
cur.push(component);
fs::create_dir_all(&cur).unwrap();
root_path.push_str("../");
href.push_str(&component.to_string_lossy());
href.push('/');
});
let mut fname = p.file_name()
.expect("source has no filename")
.to_os_string();
fname.push(".html");
cur.push(&fname);
href.push_str(&fname.to_string_lossy());
let mut w = BufWriter::new(File::create(&cur)?);
let title = format!("{} -- source", cur.file_name().unwrap()
.to_string_lossy());
let desc = format!("Source to the Rust file `{}`.", filename);
let page = layout::Page {
title: &title,
css_class: "source",
root_path: &root_path,
static_root_path: self.scx.static_root_path.deref(),
description: &desc,
keywords: BASIC_KEYWORDS,
resource_suffix: &self.scx.resource_suffix,
extra_scripts: &["source-files"],
static_extra_scripts: &[&format!("source-script{}", self.scx.resource_suffix)],
};
layout::render(&mut w, &self.scx.layout,
&page, &(""), &Source(contents),
self.scx.css_file_extension.is_some(),
&self.scx.themes,
self.scx.generate_search_filter)?;
w.flush()?;
self.scx.local_sources.insert(p.clone(), href);
Ok(())
}
}
impl DocFolder for Cache {
fn fold_item(&mut self, item: clean::Item) -> Option<clean::Item> {
if item.def_id.is_local() {
debug!("folding {} \"{:?}\", id {:?}", item.type_(), item.name, item.def_id);
}
// If this is a stripped module,
// we don't want it or its children in the search index.
let orig_stripped_mod = match item.inner {
clean::StrippedItem(box clean::ModuleItem(..)) => {
mem::replace(&mut self.stripped_mod, true)
}
_ => self.stripped_mod,
};
// If the impl is from a masked crate or references something from a
// masked crate then remove it completely.
if let clean::ImplItem(ref i) = item.inner {
if self.masked_crates.contains(&item.def_id.krate) ||
i.trait_.def_id().map_or(false, |d| self.masked_crates.contains(&d.krate)) ||
i.for_.def_id().map_or(false, |d| self.masked_crates.contains(&d.krate)) {
return None;
}
}
// Register any generics to their corresponding string. This is used
// when pretty-printing types.
if let Some(generics) = item.inner.generics() {
self.generics(generics);
}
// Propagate a trait method's documentation to all implementors of the
// trait.
if let clean::TraitItem(ref t) = item.inner {
self.traits.entry(item.def_id).or_insert_with(|| t.clone());
}
// Collect all the implementors of traits.
if let clean::ImplItem(ref i) = item.inner {
if let Some(did) = i.trait_.def_id() {
if i.blanket_impl.is_none() {
self.implementors.entry(did).or_default().push(Impl {
impl_item: item.clone(),
});
}
}
}
// Index this method for searching later on.
if let Some(ref s) = item.name {
let (parent, is_inherent_impl_item) = match item.inner {
clean::StrippedItem(..) => ((None, None), false),
clean::AssociatedConstItem(..) |
clean::TypedefItem(_, true) if self.parent_is_trait_impl => {
// skip associated items in trait impls
((None, None), false)
}
clean::AssociatedTypeItem(..) |
clean::TyMethodItem(..) |
clean::StructFieldItem(..) |
clean::VariantItem(..) => {
((Some(*self.parent_stack.last().unwrap()),
Some(&self.stack[..self.stack.len() - 1])),
false)
}
clean::MethodItem(..) | clean::AssociatedConstItem(..) => {
if self.parent_stack.is_empty() {
((None, None), false)
} else {
let last = self.parent_stack.last().unwrap();
let did = *last;
let path = match self.paths.get(&did) {
// The current stack not necessarily has correlation
// for where the type was defined. On the other
// hand, `paths` always has the right
// information if present.
Some(&(ref fqp, ItemType::Trait)) |
Some(&(ref fqp, ItemType::Struct)) |
Some(&(ref fqp, ItemType::Union)) |
Some(&(ref fqp, ItemType::Enum)) =>
Some(&fqp[..fqp.len() - 1]),
Some(..) => Some(&*self.stack),
None => None
};
((Some(*last), path), true)
}
}
_ => ((None, Some(&*self.stack)), false)
};
match parent {
(parent, Some(path)) if is_inherent_impl_item || (!self.stripped_mod) => {
debug_assert!(!item.is_stripped());
// A crate has a module at its root, containing all items,
// which should not be indexed. The crate-item itself is
// inserted later on when serializing the search-index.
if item.def_id.index != CRATE_DEF_INDEX {
self.search_index.push(IndexItem {
ty: item.type_(),
name: s.to_string(),
path: path.join("::"),
desc: plain_summary_line_short(item.doc_value()),
parent,
parent_idx: None,
search_type: get_index_search_type(&item),
});
}
}
(Some(parent), None) if is_inherent_impl_item => {
// We have a parent, but we don't know where they're
// defined yet. Wait for later to index this item.
self.orphan_impl_items.push((parent, item.clone()));
}
_ => {}
}
}
// Keep track of the fully qualified path for this item.
let pushed = match item.name {
Some(ref n) if !n.is_empty() => {
self.stack.push(n.to_string());
true
}
_ => false,
};
match item.inner {
clean::StructItem(..) | clean::EnumItem(..) |
clean::TypedefItem(..) | clean::TraitItem(..) |
clean::FunctionItem(..) | clean::ModuleItem(..) |
clean::ForeignFunctionItem(..) | clean::ForeignStaticItem(..) |
clean::ConstantItem(..) | clean::StaticItem(..) |
clean::UnionItem(..) | clean::ForeignTypeItem |
clean::MacroItem(..) | clean::ProcMacroItem(..)
if !self.stripped_mod => {
// Re-exported items mean that the same id can show up twice
// in the rustdoc ast that we're looking at. We know,
// however, that a re-exported item doesn't show up in the
// `public_items` map, so we can skip inserting into the
// paths map if there was already an entry present and we're
// not a public item.
if !self.paths.contains_key(&item.def_id) ||
self.access_levels.is_public(item.def_id)
{
self.paths.insert(item.def_id,
(self.stack.clone(), item.type_()));
}
self.add_aliases(&item);
}
// Link variants to their parent enum because pages aren't emitted
// for each variant.
clean::VariantItem(..) if !self.stripped_mod => {
let mut stack = self.stack.clone();
stack.pop();
self.paths.insert(item.def_id, (stack, ItemType::Enum));
}
clean::PrimitiveItem(..) if item.visibility.is_some() => {
self.add_aliases(&item);
self.paths.insert(item.def_id, (self.stack.clone(),
item.type_()));
}
_ => {}
}
// Maintain the parent stack
let orig_parent_is_trait_impl = self.parent_is_trait_impl;
let parent_pushed = match item.inner {
clean::TraitItem(..) | clean::EnumItem(..) | clean::ForeignTypeItem |
clean::StructItem(..) | clean::UnionItem(..) => {
self.parent_stack.push(item.def_id);
self.parent_is_trait_impl = false;
true
}
clean::ImplItem(ref i) => {
self.parent_is_trait_impl = i.trait_.is_some();
match i.for_ {
clean::ResolvedPath{ did, .. } => {
self.parent_stack.push(did);
true
}
ref t => {
let prim_did = t.primitive_type().and_then(|t| {
self.primitive_locations.get(&t).cloned()
});
match prim_did {
Some(did) => {
self.parent_stack.push(did);
true
}
None => false,
}
}
}
}
_ => false
};
// Once we've recursively found all the generics, hoard off all the
// implementations elsewhere.
let ret = self.fold_item_recur(item).and_then(|item| {
if let clean::Item { inner: clean::ImplItem(_), .. } = item {
// Figure out the id of this impl. This may map to a
// primitive rather than always to a struct/enum.
// Note: matching twice to restrict the lifetime of the `i` borrow.
let mut dids = FxHashSet::default();
if let clean::Item { inner: clean::ImplItem(ref i), .. } = item {
match i.for_ {
clean::ResolvedPath { did, .. } |
clean::BorrowedRef {
type_: box clean::ResolvedPath { did, .. }, ..
} => {
dids.insert(did);
}
ref t => {
let did = t.primitive_type().and_then(|t| {
self.primitive_locations.get(&t).cloned()
});
if let Some(did) = did {
dids.insert(did);
}
}
}
if let Some(generics) = i.trait_.as_ref().and_then(|t| t.generics()) {
for bound in generics {
if let Some(did) = bound.def_id() {
dids.insert(did);
}
}
}
} else {
unreachable!()
};
let impl_item = Impl {
impl_item: item,
};
if impl_item.trait_did().map_or(true, |d| self.traits.contains_key(&d)) {
for did in dids {
self.impls.entry(did).or_insert(vec![]).push(impl_item.clone());
}
} else {
let trait_did = impl_item.trait_did().unwrap();
self.orphan_trait_impls.push((trait_did, dids, impl_item));
}
None
} else {
Some(item)
}
});
if pushed { self.stack.pop().unwrap(); }
if parent_pushed { self.parent_stack.pop().unwrap(); }
self.stripped_mod = orig_stripped_mod;
self.parent_is_trait_impl = orig_parent_is_trait_impl;
ret
}
}
impl<'a> Cache {
fn generics(&mut self, generics: &clean::Generics) {
for param in &generics.params {
match param.kind {
clean::GenericParamDefKind::Lifetime => {}
clean::GenericParamDefKind::Type { did, .. } |
clean::GenericParamDefKind::Const { did, .. } => {
self.param_names.insert(did, param.name.clone());
}
}
}
}
fn add_aliases(&mut self, item: &clean::Item) {
if item.def_id.index == CRATE_DEF_INDEX {
return
}
if let Some(ref item_name) = item.name {
let path = self.paths.get(&item.def_id)
.map(|p| p.0[..p.0.len() - 1].join("::"))
.unwrap_or("std".to_owned());
for alias in item.attrs.lists("doc")
.filter(|a| a.check_name("alias"))
.filter_map(|a| a.value_str()
.map(|s| s.to_string().replace("\"", "")))
.filter(|v| !v.is_empty())
.collect::<FxHashSet<_>>()
.into_iter() {
self.aliases.entry(alias)
.or_insert(Vec::with_capacity(1))
.push(IndexItem {
ty: item.type_(),
name: item_name.to_string(),
path: path.clone(),
desc: plain_summary_line_short(item.doc_value()),
parent: None,
parent_idx: None,
search_type: get_index_search_type(&item),
});
}
}
}
}
#[derive(Debug, Eq, PartialEq, Hash)]
struct ItemEntry {
url: String,
name: String,
}
impl ItemEntry {
fn new(mut url: String, name: String) -> ItemEntry {
while url.starts_with('/') {
url.remove(0);
}
ItemEntry {
url,
name,
}
}
}
impl fmt::Display for ItemEntry {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "<a href='{}'>{}</a>", self.url, Escape(&self.name))
}
}
impl PartialOrd for ItemEntry {
fn partial_cmp(&self, other: &ItemEntry) -> Option<::std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for ItemEntry {
fn cmp(&self, other: &ItemEntry) -> ::std::cmp::Ordering {
self.name.cmp(&other.name)
}
}
#[derive(Debug)]
struct AllTypes {
structs: FxHashSet<ItemEntry>,
enums: FxHashSet<ItemEntry>,
unions: FxHashSet<ItemEntry>,
primitives: FxHashSet<ItemEntry>,
traits: FxHashSet<ItemEntry>,
macros: FxHashSet<ItemEntry>,
functions: FxHashSet<ItemEntry>,
typedefs: FxHashSet<ItemEntry>,
existentials: FxHashSet<ItemEntry>,
statics: FxHashSet<ItemEntry>,
constants: FxHashSet<ItemEntry>,
keywords: FxHashSet<ItemEntry>,
attributes: FxHashSet<ItemEntry>,
derives: FxHashSet<ItemEntry>,
trait_aliases: FxHashSet<ItemEntry>,
}
impl AllTypes {
fn new() -> AllTypes {
let new_set = |cap| FxHashSet::with_capacity_and_hasher(cap, Default::default());
AllTypes {
structs: new_set(100),
enums: new_set(100),
unions: new_set(100),
primitives: new_set(26),
traits: new_set(100),
macros: new_set(100),
functions: new_set(100),
typedefs: new_set(100),
existentials: new_set(100),
statics: new_set(100),
constants: new_set(100),
keywords: new_set(100),
attributes: new_set(100),
derives: new_set(100),
trait_aliases: new_set(100),
}
}
fn append(&mut self, item_name: String, item_type: &ItemType) {
let mut url: Vec<_> = item_name.split("::").skip(1).collect();
if let Some(name) = url.pop() {
let new_url = format!("{}/{}.{}.html", url.join("/"), item_type, name);
url.push(name);
let name = url.join("::");
match *item_type {
ItemType::Struct => self.structs.insert(ItemEntry::new(new_url, name)),
ItemType::Enum => self.enums.insert(ItemEntry::new(new_url, name)),
ItemType::Union => self.unions.insert(ItemEntry::new(new_url, name)),
ItemType::Primitive => self.primitives.insert(ItemEntry::new(new_url, name)),
ItemType::Trait => self.traits.insert(ItemEntry::new(new_url, name)),
ItemType::Macro => self.macros.insert(ItemEntry::new(new_url, name)),
ItemType::Function => self.functions.insert(ItemEntry::new(new_url, name)),
ItemType::Typedef => self.typedefs.insert(ItemEntry::new(new_url, name)),
ItemType::Existential => self.existentials.insert(ItemEntry::new(new_url, name)),
ItemType::Static => self.statics.insert(ItemEntry::new(new_url, name)),
ItemType::Constant => self.constants.insert(ItemEntry::new(new_url, name)),
ItemType::ProcAttribute => self.attributes.insert(ItemEntry::new(new_url, name)),
ItemType::ProcDerive => self.derives.insert(ItemEntry::new(new_url, name)),
ItemType::TraitAlias => self.trait_aliases.insert(ItemEntry::new(new_url, name)),
_ => true,
};
}
}
}
fn print_entries(f: &mut fmt::Formatter<'_>, e: &FxHashSet<ItemEntry>, title: &str,
class: &str) -> fmt::Result {
if !e.is_empty() {
let mut e: Vec<&ItemEntry> = e.iter().collect();
e.sort();
write!(f, "<h3 id='{}'>{}</h3><ul class='{} docblock'>{}</ul>",
title,
Escape(title),
class,
e.iter().map(|s| format!("<li>{}</li>", s)).collect::<String>())?;
}
Ok(())
}
impl fmt::Display for AllTypes {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f,
"<h1 class='fqn'>\
<span class='out-of-band'>\
<span id='render-detail'>\
<a id=\"toggle-all-docs\" href=\"javascript:void(0)\" title=\"collapse all docs\">\
[<span class='inner'>&#x2212;</span>]\
</a>\
</span>
</span>
<span class='in-band'>List of all items</span>\
</h1>")?;
print_entries(f, &self.structs, "Structs", "structs")?;
print_entries(f, &self.enums, "Enums", "enums")?;
print_entries(f, &self.unions, "Unions", "unions")?;
print_entries(f, &self.primitives, "Primitives", "primitives")?;
print_entries(f, &self.traits, "Traits", "traits")?;
print_entries(f, &self.macros, "Macros", "macros")?;
print_entries(f, &self.attributes, "Attribute Macros", "attributes")?;
print_entries(f, &self.derives, "Derive Macros", "derives")?;
print_entries(f, &self.functions, "Functions", "functions")?;
print_entries(f, &self.typedefs, "Typedefs", "typedefs")?;
print_entries(f, &self.trait_aliases, "Trait Aliases", "trait-aliases")?;
print_entries(f, &self.existentials, "Existentials", "existentials")?;
print_entries(f, &self.statics, "Statics", "statics")?;
print_entries(f, &self.constants, "Constants", "constants")
}
}
#[derive(Debug)]
struct Settings<'a> {
// (id, explanation, default value)
settings: Vec<(&'static str, &'static str, bool)>,
root_path: &'a str,
suffix: &'a str,
}
impl<'a> Settings<'a> {
pub fn new(root_path: &'a str, suffix: &'a str) -> Settings<'a> {
Settings {
settings: vec![
("item-declarations", "Auto-hide item declarations.", true),
("item-attributes", "Auto-hide item attributes.", true),
("trait-implementations", "Auto-hide trait implementations documentation",
true),
("method-docs", "Auto-hide item methods' documentation", false),
("go-to-only-result", "Directly go to item in search if there is only one result",
false),
("line-numbers", "Show line numbers on code examples", false),
],
root_path,
suffix,
}
}
}
impl<'a> fmt::Display for Settings<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f,
"<h1 class='fqn'>\
<span class='in-band'>Rustdoc settings</span>\
</h1>\
<div class='settings'>{}</div>\
<script src='{}settings{}.js'></script>",
self.settings.iter()
.map(|(id, text, enabled)| {
format!("<div class='setting-line'>\
<label class='toggle'>\
<input type='checkbox' id='{}' {}>\
<span class='slider'></span>\
</label>\
<div>{}</div>\
</div>", id, if *enabled { " checked" } else { "" }, text)
})
.collect::<String>(),
self.root_path,
self.suffix)
}
}
impl Context {
fn derive_id(&self, id: String) -> String {
let mut map = self.id_map.borrow_mut();
map.derive(id)
}
/// String representation of how to get back to the root path of the 'doc/'
/// folder in terms of a relative URL.
fn root_path(&self) -> String {
"../".repeat(self.current.len())
}
/// Recurse in the directory structure and change the "root path" to make
/// sure it always points to the top (relatively).
fn recurse<T, F>(&mut self, s: String, f: F) -> T where
F: FnOnce(&mut Context) -> T,
{
if s.is_empty() {
panic!("Unexpected empty destination: {:?}", self.current);
}
let prev = self.dst.clone();
self.dst.push(&s);
self.current.push(s);
info!("Recursing into {}", self.dst.display());
let ret = f(self);
info!("Recursed; leaving {}", self.dst.display());
// Go back to where we were at
self.dst = prev;
self.current.pop().unwrap();
ret
}
/// Main method for rendering a crate.
///
/// This currently isn't parallelized, but it'd be pretty easy to add
/// parallelization to this function.
fn krate(self, mut krate: clean::Crate) -> Result<(), Error> {
let mut item = match krate.module.take() {
Some(i) => i,
None => return Ok(()),
};
let final_file = self.dst.join(&krate.name)
.join("all.html");
let settings_file = self.dst.join("settings.html");
let crate_name = krate.name.clone();
item.name = Some(krate.name);
let mut all = AllTypes::new();
{
// Render the crate documentation
let mut work = vec![(self.clone(), item)];
while let Some((mut cx, item)) = work.pop() {
cx.item(item, &mut all, |cx, item| {
work.push((cx.clone(), item))
})?
}
}
let mut w = BufWriter::new(try_err!(File::create(&final_file), &final_file));
let mut root_path = self.dst.to_str().expect("invalid path").to_owned();
if !root_path.ends_with('/') {
root_path.push('/');
}
let mut page = layout::Page {
title: "List of all items in this crate",
css_class: "mod",
root_path: "../",
static_root_path: self.shared.static_root_path.deref(),
description: "List of all items in this crate",
keywords: BASIC_KEYWORDS,
resource_suffix: &self.shared.resource_suffix,
extra_scripts: &[],
static_extra_scripts: &[],
};
let sidebar = if let Some(ref version) = cache().crate_version {
format!("<p class='location'>Crate {}</p>\
<div class='block version'>\
<p>Version {}</p>\
</div>\
<a id='all-types' href='index.html'><p>Back to index</p></a>",
crate_name, version)
} else {
String::new()
};
try_err!(layout::render(&mut w, &self.shared.layout,
&page, &sidebar, &all,
self.shared.css_file_extension.is_some(),
&self.shared.themes,
self.shared.generate_search_filter),
&final_file);
// Generating settings page.
let settings = Settings::new("./", &self.shared.resource_suffix);
page.title = "Rustdoc settings";
page.description = "Settings of Rustdoc";
page.root_path = "./";
let mut w = BufWriter::new(try_err!(File::create(&settings_file), &settings_file));
let mut themes = self.shared.themes.clone();
let sidebar = "<p class='location'>Settings</p><div class='sidebar-elems'></div>";
themes.push(PathBuf::from("settings.css"));
let layout = self.shared.layout.clone();
try_err!(layout::render(&mut w, &layout,
&page, &sidebar, &settings,
self.shared.css_file_extension.is_some(),
&themes,
self.shared.generate_search_filter),
&settings_file);
Ok(())
}
fn render_item(&self,
writer: &mut dyn io::Write,
it: &clean::Item,
pushname: bool)
-> io::Result<()> {
// A little unfortunate that this is done like this, but it sure
// does make formatting *a lot* nicer.
CURRENT_LOCATION_KEY.with(|slot| {
*slot.borrow_mut() = self.current.clone();
});
let mut title = if it.is_primitive() || it.is_keyword() {
// No need to include the namespace for primitive types and keywords
String::new()
} else {
self.current.join("::")
};
if pushname {
if !title.is_empty() {
title.push_str("::");
}
title.push_str(it.name.as_ref().unwrap());
}
title.push_str(" - Rust");
let tyname = it.type_().css_class();
let desc = if it.is_crate() {
format!("API documentation for the Rust `{}` crate.",
self.shared.layout.krate)
} else {
format!("API documentation for the Rust `{}` {} in crate `{}`.",
it.name.as_ref().unwrap(), tyname, self.shared.layout.krate)
};
let keywords = make_item_keywords(it);
let page = layout::Page {
css_class: tyname,
root_path: &self.root_path(),
static_root_path: self.shared.static_root_path.deref(),
title: &title,
description: &desc,
keywords: &keywords,
resource_suffix: &self.shared.resource_suffix,
extra_scripts: &[],
static_extra_scripts: &[],
};
{
self.id_map.borrow_mut().reset();
self.id_map.borrow_mut().populate(initial_ids());
}
if !self.render_redirect_pages {
layout::render(writer, &self.shared.layout, &page,
&Sidebar{ cx: self, item: it },
&Item{ cx: self, item: it },
self.shared.css_file_extension.is_some(),
&self.shared.themes,
self.shared.generate_search_filter)?;
} else {
let mut url = self.root_path();
if let Some(&(ref names, ty)) = cache().paths.get(&it.def_id) {
for name in &names[..names.len() - 1] {
url.push_str(name);
url.push_str("/");
}
url.push_str(&item_path(ty, names.last().unwrap()));
layout::redirect(writer, &url)?;
}
}
Ok(())
}
/// Non-parallelized version of rendering an item. This will take the input
/// item, render its contents, and then invoke the specified closure with
/// all sub-items which need to be rendered.
///
/// The rendering driver uses this closure to queue up more work.
fn item<F>(&mut self, item: clean::Item, all: &mut AllTypes, mut f: F) -> Result<(), Error>
where F: FnMut(&mut Context, clean::Item),
{
// Stripped modules survive the rustdoc passes (i.e., `strip-private`)
// if they contain impls for public types. These modules can also
// contain items such as publicly re-exported structures.
//
// External crates will provide links to these structures, so
// these modules are recursed into, but not rendered normally
// (a flag on the context).
if !self.render_redirect_pages {
self.render_redirect_pages = item.is_stripped();
}
if item.is_mod() {
// modules are special because they add a namespace. We also need to
// recurse into the items of the module as well.
let name = item.name.as_ref().unwrap().to_string();
let mut item = Some(item);
self.recurse(name, |this| {
let item = item.take().unwrap();
let mut buf = Vec::new();
this.render_item(&mut buf, &item, false).unwrap();
// buf will be empty if the module is stripped and there is no redirect for it
if !buf.is_empty() {
try_err!(this.shared.ensure_dir(&this.dst), &this.dst);
let joint_dst = this.dst.join("index.html");
try_err!(fs::write(&joint_dst, buf), &joint_dst);
}
let m = match item.inner {
clean::StrippedItem(box clean::ModuleItem(m)) |
clean::ModuleItem(m) => m,
_ => unreachable!()
};
// Render sidebar-items.js used throughout this module.
if !this.render_redirect_pages {
let items = this.build_sidebar_items(&m);
let js_dst = this.dst.join("sidebar-items.js");
let mut js_out = BufWriter::new(try_err!(File::create(&js_dst), &js_dst));
try_err!(write!(&mut js_out, "initSidebarItems({});",
as_json(&items)), &js_dst);
}
for item in m.items {
f(this, item);
}
Ok(())
})?;
} else if item.name.is_some() {
let mut buf = Vec::new();
self.render_item(&mut buf, &item, true).unwrap();
// buf will be empty if the item is stripped and there is no redirect for it
if !buf.is_empty() {
let name = item.name.as_ref().unwrap();
let item_type = item.type_();
let file_name = &item_path(item_type, name);
try_err!(self.shared.ensure_dir(&self.dst), &self.dst);
let joint_dst = self.dst.join(file_name);
try_err!(fs::write(&joint_dst, buf), &joint_dst);
if !self.render_redirect_pages {
all.append(full_path(self, &item), &item_type);
}
if self.shared.generate_redirect_pages {
// Redirect from a sane URL using the namespace to Rustdoc's
// URL for the page.
let redir_name = format!("{}.{}.html", name, item_type.name_space());
let redir_dst = self.dst.join(redir_name);
if let Ok(redirect_out) = OpenOptions::new().create_new(true)
.write(true)
.open(&redir_dst) {
let mut redirect_out = BufWriter::new(redirect_out);
try_err!(layout::redirect(&mut redirect_out, file_name), &redir_dst);
}
}
// If the item is a macro, redirect from the old macro URL (with !)
// to the new one (without).
if item_type == ItemType::Macro {
let redir_name = format!("{}.{}!.html", item_type, name);
let redir_dst = self.dst.join(redir_name);
let redirect_out = try_err!(File::create(&redir_dst), &redir_dst);
let mut redirect_out = BufWriter::new(redirect_out);
try_err!(layout::redirect(&mut redirect_out, file_name), &redir_dst);
}
}
}
Ok(())
}
fn build_sidebar_items(&self, m: &clean::Module) -> BTreeMap<String, Vec<NameDoc>> {
// BTreeMap instead of HashMap to get a sorted output
let mut map: BTreeMap<_, Vec<_>> = BTreeMap::new();
for item in &m.items {
if item.is_stripped() { continue }
let short = item.type_().css_class();
let myname = match item.name {
None => continue,
Some(ref s) => s.to_string(),
};
let short = short.to_string();
map.entry(short).or_default()
.push((myname, Some(plain_summary_line(item.doc_value()))));
}
if self.shared.sort_modules_alphabetically {
for (_, items) in &mut map {
items.sort();
}
}
map
}
}
impl<'a> Item<'a> {
/// Generates a url appropriate for an `href` attribute back to the source of
/// this item.
///
/// The url generated, when clicked, will redirect the browser back to the
/// original source code.
///
/// If `None` is returned, then a source link couldn't be generated. This
/// may happen, for example, with externally inlined items where the source
/// of their crate documentation isn't known.
fn src_href(&self) -> Option<String> {
let mut root = self.cx.root_path();
let cache = cache();
let mut path = String::new();
// We can safely ignore macros from other libraries
let file = match self.item.source.filename {
FileName::Real(ref path) => path,
_ => return None,
};
let (krate, path) = if self.item.def_id.is_local() {
if let Some(path) = self.cx.shared.local_sources.get(file) {
(&self.cx.shared.layout.krate, path)
} else {
return None;
}
} else {
let (krate, src_root) = match *cache.extern_locations.get(&self.item.def_id.krate)? {
(ref name, ref src, Local) => (name, src),
(ref name, ref src, Remote(ref s)) => {
root = s.to_string();
(name, src)
}
(_, _, Unknown) => return None,
};
clean_srcpath(&src_root, file, false, |component| {
path.push_str(&component.to_string_lossy());
path.push('/');
});
let mut fname = file.file_name().expect("source has no filename")
.to_os_string();
fname.push(".html");
path.push_str(&fname.to_string_lossy());
(krate, &path)
};
let lines = if self.item.source.loline == self.item.source.hiline {
self.item.source.loline.to_string()
} else {
format!("{}-{}", self.item.source.loline, self.item.source.hiline)
};
Some(format!("{root}src/{krate}/{path}#{lines}",
root = Escape(&root),
krate = krate,
path = path,
lines = lines))
}
}
fn wrap_into_docblock<F>(w: &mut fmt::Formatter<'_>,
f: F) -> fmt::Result
where F: Fn(&mut fmt::Formatter<'_>) -> fmt::Result {
write!(w, "<div class=\"docblock type-decl hidden-by-usual-hider\">")?;
f(w)?;
write!(w, "</div>")
}
impl<'a> fmt::Display for Item<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
debug_assert!(!self.item.is_stripped());
// Write the breadcrumb trail header for the top
write!(fmt, "<h1 class='fqn'><span class='out-of-band'>")?;
if let Some(version) = self.item.stable_since() {
write!(fmt, "<span class='since' title='Stable since Rust version {0}'>{0}</span>",
version)?;
}
write!(fmt,
"<span id='render-detail'>\
<a id=\"toggle-all-docs\" href=\"javascript:void(0)\" \
title=\"collapse all docs\">\
[<span class='inner'>&#x2212;</span>]\
</a>\
</span>")?;
// Write `src` tag
//
// When this item is part of a `pub use` in a downstream crate, the
// [src] link in the downstream documentation will actually come back to
// this page, and this link will be auto-clicked. The `id` attribute is
// used to find the link to auto-click.
if self.cx.shared.include_sources && !self.item.is_primitive() {
if let Some(l) = self.src_href() {
write!(fmt, "<a class='srclink' href='{}' title='{}'>[src]</a>",
l, "goto source code")?;
}
}
write!(fmt, "</span>")?; // out-of-band
write!(fmt, "<span class='in-band'>")?;
match self.item.inner {
clean::ModuleItem(ref m) => if m.is_crate {
write!(fmt, "Crate ")?;
} else {
write!(fmt, "Module ")?;
},
clean::FunctionItem(..) | clean::ForeignFunctionItem(..) => write!(fmt, "Function ")?,
clean::TraitItem(..) => write!(fmt, "Trait ")?,
clean::StructItem(..) => write!(fmt, "Struct ")?,
clean::UnionItem(..) => write!(fmt, "Union ")?,
clean::EnumItem(..) => write!(fmt, "Enum ")?,
clean::TypedefItem(..) => write!(fmt, "Type Definition ")?,
clean::MacroItem(..) => write!(fmt, "Macro ")?,
clean::ProcMacroItem(ref mac) => match mac.kind {
MacroKind::Bang => write!(fmt, "Macro ")?,
MacroKind::Attr => write!(fmt, "Attribute Macro ")?,
MacroKind::Derive => write!(fmt, "Derive Macro ")?,
MacroKind::ProcMacroStub => unreachable!(),
}
clean::PrimitiveItem(..) => write!(fmt, "Primitive Type ")?,
clean::StaticItem(..) | clean::ForeignStaticItem(..) => write!(fmt, "Static ")?,
clean::ConstantItem(..) => write!(fmt, "Constant ")?,
clean::ForeignTypeItem => write!(fmt, "Foreign Type ")?,
clean::KeywordItem(..) => write!(fmt, "Keyword ")?,
clean::ExistentialItem(..) => write!(fmt, "Existential Type ")?,
clean::TraitAliasItem(..) => write!(fmt, "Trait Alias ")?,
_ => {
// We don't generate pages for any other type.
unreachable!();
}
}
if !self.item.is_primitive() && !self.item.is_keyword() {
let cur = &self.cx.current;
let amt = if self.item.is_mod() { cur.len() - 1 } else { cur.len() };
for (i, component) in cur.iter().enumerate().take(amt) {
write!(fmt, "<a href='{}index.html'>{}</a>::<wbr>",
"../".repeat(cur.len() - i - 1),
component)?;
}
}
write!(fmt, "<a class=\"{}\" href=''>{}</a>",
self.item.type_(), self.item.name.as_ref().unwrap())?;
write!(fmt, "</span></h1>")?; // in-band
match self.item.inner {
clean::ModuleItem(ref m) =>
item_module(fmt, self.cx, self.item, &m.items),
clean::FunctionItem(ref f) | clean::ForeignFunctionItem(ref f) =>
item_function(fmt, self.cx, self.item, f),
clean::TraitItem(ref t) => item_trait(fmt, self.cx, self.item, t),
clean::StructItem(ref s) => item_struct(fmt, self.cx, self.item, s),
clean::UnionItem(ref s) => item_union(fmt, self.cx, self.item, s),
clean::EnumItem(ref e) => item_enum(fmt, self.cx, self.item, e),
clean::TypedefItem(ref t, _) => item_typedef(fmt, self.cx, self.item, t),
clean::MacroItem(ref m) => item_macro(fmt, self.cx, self.item, m),
clean::ProcMacroItem(ref m) => item_proc_macro(fmt, self.cx, self.item, m),
clean::PrimitiveItem(ref p) => item_primitive(fmt, self.cx, self.item, p),
clean::StaticItem(ref i) | clean::ForeignStaticItem(ref i) =>
item_static(fmt, self.cx, self.item, i),
clean::ConstantItem(ref c) => item_constant(fmt, self.cx, self.item, c),
clean::ForeignTypeItem => item_foreign_type(fmt, self.cx, self.item),
clean::KeywordItem(ref k) => item_keyword(fmt, self.cx, self.item, k),
clean::ExistentialItem(ref e, _) => item_existential(fmt, self.cx, self.item, e),
clean::TraitAliasItem(ref ta) => item_trait_alias(fmt, self.cx, self.item, ta),
_ => {
// We don't generate pages for any other type.
unreachable!();
}
}
}
}
fn item_path(ty: ItemType, name: &str) -> String {
match ty {
ItemType::Module => format!("{}index.html", SlashChecker(name)),
_ => format!("{}.{}.html", ty.css_class(), name),
}
}
fn full_path(cx: &Context, item: &clean::Item) -> String {
let mut s = cx.current.join("::");
s.push_str("::");
s.push_str(item.name.as_ref().unwrap());
s
}
fn shorter<'a>(s: Option<&'a str>) -> String {
match s {
Some(s) => s.lines()
.skip_while(|s| s.chars().all(|c| c.is_whitespace()))
.take_while(|line|{
(*line).chars().any(|chr|{
!chr.is_whitespace()
})
}).collect::<Vec<_>>().join("\n"),
None => String::new()
}
}
#[inline]
fn plain_summary_line(s: Option<&str>) -> String {
let line = shorter(s).replace("\n", " ");
markdown::plain_summary_line_full(&line[..], false)
}
#[inline]
fn plain_summary_line_short(s: Option<&str>) -> String {
let line = shorter(s).replace("\n", " ");
markdown::plain_summary_line_full(&line[..], true)
}
fn document(w: &mut fmt::Formatter<'_>, cx: &Context, item: &clean::Item) -> fmt::Result {
if let Some(ref name) = item.name {
info!("Documenting {}", name);
}
document_stability(w, cx, item, false)?;
document_full(w, item, cx, "", false)?;
Ok(())
}
/// Render md_text as markdown.
fn render_markdown(w: &mut fmt::Formatter<'_>,
cx: &Context,
md_text: &str,
links: Vec<(String, String)>,
prefix: &str,
is_hidden: bool)
-> fmt::Result {
let mut ids = cx.id_map.borrow_mut();
write!(w, "<div class='docblock{}'>{}{}</div>",
if is_hidden { " hidden" } else { "" },
prefix,
Markdown(md_text, &links, RefCell::new(&mut ids),
cx.codes))
}
fn document_short(
w: &mut fmt::Formatter<'_>,
cx: &Context,
item: &clean::Item,
link: AssocItemLink<'_>,
prefix: &str, is_hidden: bool
) -> fmt::Result {
if let Some(s) = item.doc_value() {
let markdown = if s.contains('\n') {
format!("{} [Read more]({})",
&plain_summary_line(Some(s)), naive_assoc_href(item, link))
} else {
plain_summary_line(Some(s))
};
render_markdown(w, cx, &markdown, item.links(), prefix, is_hidden)?;
} else if !prefix.is_empty() {
write!(w, "<div class='docblock{}'>{}</div>",
if is_hidden { " hidden" } else { "" },
prefix)?;
}
Ok(())
}
fn document_full(w: &mut fmt::Formatter<'_>, item: &clean::Item,
cx: &Context, prefix: &str, is_hidden: bool) -> fmt::Result {
if let Some(s) = cx.shared.maybe_collapsed_doc_value(item) {
debug!("Doc block: =====\n{}\n=====", s);
render_markdown(w, cx, &*s, item.links(), prefix, is_hidden)?;
} else if !prefix.is_empty() {
write!(w, "<div class='docblock{}'>{}</div>",
if is_hidden { " hidden" } else { "" },
prefix)?;
}
Ok(())
}
fn document_stability(w: &mut fmt::Formatter<'_>, cx: &Context, item: &clean::Item,
is_hidden: bool) -> fmt::Result {
let stabilities = short_stability(item, cx);
if !stabilities.is_empty() {
write!(w, "<div class='stability{}'>", if is_hidden { " hidden" } else { "" })?;
for stability in stabilities {
write!(w, "{}", stability)?;
}
write!(w, "</div>")?;
}
Ok(())
}
fn document_non_exhaustive_header(item: &clean::Item) -> &str {
if item.is_non_exhaustive() { " (Non-exhaustive)" } else { "" }
}
fn document_non_exhaustive(w: &mut fmt::Formatter<'_>, item: &clean::Item) -> fmt::Result {
if item.is_non_exhaustive() {
write!(w, "<div class='docblock non-exhaustive non-exhaustive-{}'>", {
if item.is_struct() { "struct" } else if item.is_enum() { "enum" } else { "type" }
})?;
if item.is_struct() {
write!(w, "Non-exhaustive structs could have additional fields added in future. \
Therefore, non-exhaustive structs cannot be constructed in external crates \
using the traditional <code>Struct {{ .. }}</code> syntax; cannot be \
matched against without a wildcard <code>..</code>; and \
struct update syntax will not work.")?;
} else if item.is_enum() {
write!(w, "Non-exhaustive enums could have additional variants added in future. \
Therefore, when matching against variants of non-exhaustive enums, an \
extra wildcard arm must be added to account for any future variants.")?;
} else {
write!(w, "This type will require a wildcard arm in any match statements or \
constructors.")?;
}
write!(w, "</div>")?;
}
Ok(())
}
fn name_key(name: &str) -> (&str, u64, usize) {
let end = name.bytes()
.rposition(|b| b.is_ascii_digit()).map_or(name.len(), |i| i + 1);
// find number at end
let split = name[0..end].bytes()
.rposition(|b| !b.is_ascii_digit()).map_or(0, |i| i + 1);
// count leading zeroes
let after_zeroes =
name[split..end].bytes().position(|b| b != b'0').map_or(name.len(), |extra| split + extra);
// sort leading zeroes last
let num_zeroes = after_zeroes - split;
match name[split..end].parse() {
Ok(n) => (&name[..split], n, num_zeroes),
Err(_) => (name, 0, num_zeroes),
}
}
fn item_module(w: &mut fmt::Formatter<'_>, cx: &Context,
item: &clean::Item, items: &[clean::Item]) -> fmt::Result {
document(w, cx, item)?;
let mut indices = (0..items.len()).filter(|i| !items[*i].is_stripped()).collect::<Vec<usize>>();
// the order of item types in the listing
fn reorder(ty: ItemType) -> u8 {
match ty {
ItemType::ExternCrate => 0,
ItemType::Import => 1,
ItemType::Primitive => 2,
ItemType::Module => 3,
ItemType::Macro => 4,
ItemType::Struct => 5,
ItemType::Enum => 6,
ItemType::Constant => 7,
ItemType::Static => 8,
ItemType::Trait => 9,
ItemType::Function => 10,
ItemType::Typedef => 12,
ItemType::Union => 13,
_ => 14 + ty as u8,
}
}
fn cmp(i1: &clean::Item, i2: &clean::Item, idx1: usize, idx2: usize) -> Ordering {
let ty1 = i1.type_();
let ty2 = i2.type_();
if ty1 != ty2 {
return (reorder(ty1), idx1).cmp(&(reorder(ty2), idx2))
}
let s1 = i1.stability.as_ref().map(|s| s.level);
let s2 = i2.stability.as_ref().map(|s| s.level);
match (s1, s2) {
(Some(stability::Unstable), Some(stability::Stable)) => return Ordering::Greater,
(Some(stability::Stable), Some(stability::Unstable)) => return Ordering::Less,
_ => {}
}
let lhs = i1.name.as_ref().map_or("", |s| &**s);
let rhs = i2.name.as_ref().map_or("", |s| &**s);
name_key(lhs).cmp(&name_key(rhs))
}
if cx.shared.sort_modules_alphabetically {
indices.sort_by(|&i1, &i2| cmp(&items[i1], &items[i2], i1, i2));
}
// This call is to remove re-export duplicates in cases such as:
//
// ```
// pub mod foo {
// pub mod bar {
// pub trait Double { fn foo(); }
// }
// }
//
// pub use foo::bar::*;
// pub use foo::*;
// ```
//
// `Double` will appear twice in the generated docs.
//
// FIXME: This code is quite ugly and could be improved. Small issue: DefId
// can be identical even if the elements are different (mostly in imports).
// So in case this is an import, we keep everything by adding a "unique id"
// (which is the position in the vector).
indices.dedup_by_key(|i| (items[*i].def_id,
if items[*i].name.as_ref().is_some() {
Some(full_path(cx, &items[*i]))
} else {
None
},
items[*i].type_(),
if items[*i].is_import() {
*i
} else {
0
}));
debug!("{:?}", indices);
let mut curty = None;
for &idx in &indices {
let myitem = &items[idx];
if myitem.is_stripped() {
continue;
}
let myty = Some(myitem.type_());
if curty == Some(ItemType::ExternCrate) && myty == Some(ItemType::Import) {
// Put `extern crate` and `use` re-exports in the same section.
curty = myty;
} else if myty != curty {
if curty.is_some() {
write!(w, "</table>")?;
}
curty = myty;
let (short, name) = item_ty_to_strs(&myty.unwrap());
write!(w, "<h2 id='{id}' class='section-header'>\
<a href=\"#{id}\">{name}</a></h2>\n<table>",
id = cx.derive_id(short.to_owned()), name = name)?;
}
match myitem.inner {
clean::ExternCrateItem(ref name, ref src) => {
use crate::html::format::HRef;
match *src {
Some(ref src) => {
write!(w, "<tr><td><code>{}extern crate {} as {};",
VisSpace(&myitem.visibility),
HRef::new(myitem.def_id, src),
name)?
}
None => {
write!(w, "<tr><td><code>{}extern crate {};",
VisSpace(&myitem.visibility),
HRef::new(myitem.def_id, name))?
}
}
write!(w, "</code></td></tr>")?;
}
clean::ImportItem(ref import) => {
write!(w, "<tr><td><code>{}{}</code></td></tr>",
VisSpace(&myitem.visibility), *import)?;
}
_ => {
if myitem.name.is_none() { continue }
let unsafety_flag = match myitem.inner {
clean::FunctionItem(ref func) | clean::ForeignFunctionItem(ref func)
if func.header.unsafety == hir::Unsafety::Unsafe => {
"<a title='unsafe function' href='#'><sup>⚠</sup></a>"
}
_ => "",
};
let stab = myitem.stability_class();
let add = if stab.is_some() {
" "
} else {
""
};
let doc_value = myitem.doc_value().unwrap_or("");
write!(w, "\
<tr class='{stab}{add}module-item'>\
<td><a class=\"{class}\" href=\"{href}\" \
title='{title}'>{name}</a>{unsafety_flag}</td>\
<td class='docblock-short'>{stab_tags}{docs}</td>\
</tr>",
name = *myitem.name.as_ref().unwrap(),
stab_tags = stability_tags(myitem),
docs = MarkdownSummaryLine(doc_value, &myitem.links()),
class = myitem.type_(),
add = add,
stab = stab.unwrap_or_else(|| String::new()),
unsafety_flag = unsafety_flag,
href = item_path(myitem.type_(), myitem.name.as_ref().unwrap()),
title = [full_path(cx, myitem), myitem.type_().to_string()]
.iter()
.filter_map(|s| if !s.is_empty() {
Some(s.as_str())
} else {
None
})
.collect::<Vec<_>>()
.join(" "),
)?;
}
}
}
if curty.is_some() {
write!(w, "</table>")?;
}
Ok(())
}
/// Render the stability and deprecation tags that are displayed in the item's summary at the
/// module level.
fn stability_tags(item: &clean::Item) -> String {
let mut tags = String::new();
fn tag_html(class: &str, contents: &str) -> String {
format!(r#"<span class="stab {}">{}</span>"#, class, contents)
}
// The trailing space after each tag is to space it properly against the rest of the docs.
if item.deprecation().is_some() {
let mut message = "Deprecated";
if let Some(ref stab) = item.stability {
if let Some(ref depr) = stab.deprecation {
if let Some(ref since) = depr.since {
if !stability::deprecation_in_effect(&since) {
message = "Deprecation planned";
}
}
}
}
tags += &tag_html("deprecated", message);
}
if let Some(stab) = item
.stability
.as_ref()
.filter(|s| s.level == stability::Unstable)
{
if stab.feature.as_ref().map(|s| &**s) == Some("rustc_private") {
tags += &tag_html("internal", "Internal");
} else {
tags += &tag_html("unstable", "Experimental");
}
}
if let Some(ref cfg) = item.attrs.cfg {
tags += &tag_html("portability", &cfg.render_short_html());
}
tags
}
/// Render the stability and/or deprecation warning that is displayed at the top of the item's
/// documentation.
fn short_stability(item: &clean::Item, cx: &Context) -> Vec<String> {
let mut stability = vec![];
let error_codes = ErrorCodes::from(UnstableFeatures::from_environment().is_nightly_build());
if let Some(Deprecation { note, since }) = &item.deprecation() {
// We display deprecation messages for #[deprecated] and #[rustc_deprecated]
// but only display the future-deprecation messages for #[rustc_deprecated].
let mut message = if let Some(since) = since {
format!("Deprecated since {}", Escape(since))
} else {
String::from("Deprecated")
};
if let Some(ref stab) = item.stability {
if let Some(ref depr) = stab.deprecation {
if let Some(ref since) = depr.since {
if !stability::deprecation_in_effect(&since) {
message = format!("Deprecating in {}", Escape(&since));
}
}
}
}
if let Some(note) = note {
let mut ids = cx.id_map.borrow_mut();
let html = MarkdownHtml(&note, RefCell::new(&mut ids), error_codes);
message.push_str(&format!(": {}", html));
}
stability.push(format!("<div class='stab deprecated'>{}</div>", message));
}
if let Some(stab) = item
.stability
.as_ref()
.filter(|stab| stab.level == stability::Unstable)
{
let is_rustc_private = stab.feature.as_ref().map(|s| &**s) == Some("rustc_private");
let mut message = if is_rustc_private {
"<span class='emoji'>⚙️</span> This is an internal compiler API."
} else {
"<span class='emoji'>🔬</span> This is a nightly-only experimental API."
}
.to_owned();
if let Some(feature) = stab.feature.as_ref() {
let mut feature = format!("<code>{}</code>", Escape(&feature));
if let (Some(url), Some(issue)) = (&cx.shared.issue_tracker_base_url, stab.issue) {
feature.push_str(&format!(
"&nbsp;<a href=\"{url}{issue}\">#{issue}</a>",
url = url,
issue = issue
));
}
message.push_str(&format!(" ({})", feature));
}
if let Some(unstable_reason) = &stab.unstable_reason {
// Provide a more informative message than the compiler help.
let unstable_reason = if is_rustc_private {
"This crate is being loaded from the sysroot, a permanently unstable location \
for private compiler dependencies. It is not intended for general use. Prefer \
using a public version of this crate from \
[crates.io](https://crates.io) via [`Cargo.toml`]\
(https://doc.rust-lang.org/cargo/reference/specifying-dependencies.html)."
} else {
unstable_reason
};
let mut ids = cx.id_map.borrow_mut();
message = format!(
"<details><summary>{}</summary>{}</details>",
message,
MarkdownHtml(&unstable_reason, RefCell::new(&mut ids), error_codes)
);
}
let class = if is_rustc_private {
"internal"
} else {
"unstable"
};
stability.push(format!("<div class='stab {}'>{}</div>", class, message));
}
if let Some(ref cfg) = item.attrs.cfg {
stability.push(format!(
"<div class='stab portability'>{}</div>",
cfg.render_long_html()
));
}
stability
}
fn item_constant(w: &mut fmt::Formatter<'_>, cx: &Context, it: &clean::Item,
c: &clean::Constant) -> fmt::Result {
write!(w, "<pre class='rust const'>")?;
render_attributes(w, it)?;
write!(w, "{vis}const \
{name}: {typ}</pre>",
vis = VisSpace(&it.visibility),
name = it.name.as_ref().unwrap(),
typ = c.type_)?;
document(w, cx, it)
}
fn item_static(w: &mut fmt::Formatter<'_>, cx: &Context, it: &clean::Item,
s: &clean::Static) -> fmt::Result {
write!(w, "<pre class='rust static'>")?;
render_attributes(w, it)?;
write!(w, "{vis}static {mutability}\
{name}: {typ}</pre>",
vis = VisSpace(&it.visibility),
mutability = MutableSpace(s.mutability),
name = it.name.as_ref().unwrap(),
typ = s.type_)?;
document(w, cx, it)
}
fn item_function(w: &mut fmt::Formatter<'_>, cx: &Context, it: &clean::Item,
f: &clean::Function) -> fmt::Result {
let header_len = format!(
"{}{}{}{}{:#}fn {}{:#}",
VisSpace(&it.visibility),
ConstnessSpace(f.header.constness),
UnsafetySpace(f.header.unsafety),
AsyncSpace(f.header.asyncness),
AbiSpace(f.header.abi),
it.name.as_ref().unwrap(),
f.generics
).len();
write!(w, "{}<pre class='rust fn'>", render_spotlight_traits(it)?)?;
render_attributes(w, it)?;
write!(w,
"{vis}{constness}{unsafety}{asyncness}{abi}fn \
{name}{generics}{decl}{where_clause}</pre>",
vis = VisSpace(&it.visibility),
constness = ConstnessSpace(f.header.constness),
unsafety = UnsafetySpace(f.header.unsafety),
asyncness = AsyncSpace(f.header.asyncness),
abi = AbiSpace(f.header.abi),
name = it.name.as_ref().unwrap(),
generics = f.generics,
where_clause = WhereClause { gens: &f.generics, indent: 0, end_newline: true },
decl = Function {
decl: &f.decl,
header_len,
indent: 0,
asyncness: f.header.asyncness,
})?;
document(w, cx, it)
}
fn render_implementor(cx: &Context, implementor: &Impl, w: &mut fmt::Formatter<'_>,
implementor_dups: &FxHashMap<&str, (DefId, bool)>) -> fmt::Result {
// If there's already another implementor that has the same abbridged name, use the
// full path, for example in `std::iter::ExactSizeIterator`
let use_absolute = match implementor.inner_impl().for_ {
clean::ResolvedPath { ref path, is_generic: false, .. } |
clean::BorrowedRef {
type_: box clean::ResolvedPath { ref path, is_generic: false, .. },
..
} => implementor_dups[path.last_name()].1,
_ => false,
};
render_impl(w, cx, implementor, AssocItemLink::Anchor(None), RenderMode::Normal,
implementor.impl_item.stable_since(), false, Some(use_absolute))?;
Ok(())
}
fn render_impls(cx: &Context, w: &mut fmt::Formatter<'_>,
traits: &[&&Impl],
containing_item: &clean::Item) -> fmt::Result {
for i in traits {
let did = i.trait_did().unwrap();
let assoc_link = AssocItemLink::GotoSource(did, &i.inner_impl().provided_trait_methods);
render_impl(w, cx, i, assoc_link,
RenderMode::Normal, containing_item.stable_since(), true, None)?;
}
Ok(())
}
fn bounds(t_bounds: &[clean::GenericBound], trait_alias: bool) -> String {
let mut bounds = String::new();
if !t_bounds.is_empty() {
if !trait_alias {
bounds.push_str(": ");
}
for (i, p) in t_bounds.iter().enumerate() {
if i > 0 {
bounds.push_str(" + ");
}
bounds.push_str(&(*p).to_string());
}
}
bounds
}
fn compare_impl<'a, 'b>(lhs: &'a &&Impl, rhs: &'b &&Impl) -> Ordering {
let lhs = format!("{}", lhs.inner_impl());
let rhs = format!("{}", rhs.inner_impl());
// lhs and rhs are formatted as HTML, which may be unnecessary
name_key(&lhs).cmp(&name_key(&rhs))
}
fn item_trait(
w: &mut fmt::Formatter<'_>,
cx: &Context,
it: &clean::Item,
t: &clean::Trait,
) -> fmt::Result {
let bounds = bounds(&t.bounds, false);
let types = t.items.iter().filter(|m| m.is_associated_type()).collect::<Vec<_>>();
let consts = t.items.iter().filter(|m| m.is_associated_const()).collect::<Vec<_>>();
let required = t.items.iter().filter(|m| m.is_ty_method()).collect::<Vec<_>>();
let provided = t.items.iter().filter(|m| m.is_method()).collect::<Vec<_>>();
// Output the trait definition
wrap_into_docblock(w, |w| {
write!(w, "<pre class='rust trait'>")?;
render_attributes(w, it)?;
write!(w, "{}{}{}trait {}{}{}",
VisSpace(&it.visibility),
UnsafetySpace(t.unsafety),
if t.is_auto { "auto " } else { "" },
it.name.as_ref().unwrap(),
t.generics,
bounds)?;
if !t.generics.where_predicates.is_empty() {
write!(w, "{}", WhereClause { gens: &t.generics, indent: 0, end_newline: true })?;
} else {
write!(w, " ")?;
}
if t.items.is_empty() {
write!(w, "{{ }}")?;
} else {
// FIXME: we should be using a derived_id for the Anchors here
write!(w, "{{\n")?;
for t in &types {
write!(w, " ")?;
render_assoc_item(w, t, AssocItemLink::Anchor(None), ItemType::Trait)?;
write!(w, ";\n")?;
}
if !types.is_empty() && !consts.is_empty() {
w.write_str("\n")?;
}
for t in &consts {
write!(w, " ")?;
render_assoc_item(w, t, AssocItemLink::Anchor(None), ItemType::Trait)?;
write!(w, ";\n")?;
}
if !consts.is_empty() && !required.is_empty() {
w.write_str("\n")?;
}
for (pos, m) in required.iter().enumerate() {
write!(w, " ")?;
render_assoc_item(w, m, AssocItemLink::Anchor(None), ItemType::Trait)?;
write!(w, ";\n")?;
if pos < required.len() - 1 {
write!(w, "<div class='item-spacer'></div>")?;
}
}
if !required.is_empty() && !provided.is_empty() {
w.write_str("\n")?;
}
for (pos, m) in provided.iter().enumerate() {
write!(w, " ")?;
render_assoc_item(w, m, AssocItemLink::Anchor(None), ItemType::Trait)?;
match m.inner {
clean::MethodItem(ref inner) if !inner.generics.where_predicates.is_empty() => {
write!(w, ",\n {{ ... }}\n")?;
},
_ => {
write!(w, " {{ ... }}\n")?;
},
}
if pos < provided.len() - 1 {
write!(w, "<div class='item-spacer'></div>")?;
}
}
write!(w, "}}")?;
}
write!(w, "</pre>")
})?;
// Trait documentation
document(w, cx, it)?;
fn write_small_section_header(
w: &mut fmt::Formatter<'_>,
id: &str,
title: &str,
extra_content: &str,
) -> fmt::Result {
write!(w, "
<h2 id='{0}' class='small-section-header'>\
{1}<a href='#{0}' class='anchor'></a>\
</h2>{2}", id, title, extra_content)
}
fn write_loading_content(w: &mut fmt::Formatter<'_>, extra_content: &str) -> fmt::Result {
write!(w, "{}<span class='loading-content'>Loading content...</span>", extra_content)
}
fn trait_item(w: &mut fmt::Formatter<'_>, cx: &Context, m: &clean::Item, t: &clean::Item)
-> fmt::Result {
let name = m.name.as_ref().unwrap();
let item_type = m.type_();
let id = cx.derive_id(format!("{}.{}", item_type, name));
let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space()));
write!(w, "<h3 id='{id}' class='method'>{extra}<code id='{ns_id}'>",
extra = render_spotlight_traits(m)?,
id = id,
ns_id = ns_id)?;
render_assoc_item(w, m, AssocItemLink::Anchor(Some(&id)), ItemType::Impl)?;
write!(w, "</code>")?;
render_stability_since(w, m, t)?;
write!(w, "</h3>")?;
document(w, cx, m)?;
Ok(())
}
if !types.is_empty() {
write_small_section_header(w, "associated-types", "Associated Types",
"<div class='methods'>")?;
for t in &types {
trait_item(w, cx, *t, it)?;
}
write_loading_content(w, "</div>")?;
}
if !consts.is_empty() {
write_small_section_header(w, "associated-const", "Associated Constants",
"<div class='methods'>")?;
for t in &consts {
trait_item(w, cx, *t, it)?;
}
write_loading_content(w, "</div>")?;
}
// Output the documentation for each function individually
if !required.is_empty() {
write_small_section_header(w, "required-methods", "Required methods",
"<div class='methods'>")?;
for m in &required {
trait_item(w, cx, *m, it)?;
}
write_loading_content(w, "</div>")?;
}
if !provided.is_empty() {
write_small_section_header(w, "provided-methods", "Provided methods",
"<div class='methods'>")?;
for m in &provided {
trait_item(w, cx, *m, it)?;
}
write_loading_content(w, "</div>")?;
}
// If there are methods directly on this trait object, render them here.
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)?;
let cache = cache();
let mut synthetic_types = Vec::new();
if let Some(implementors) = cache.implementors.get(&it.def_id) {
// The DefId is for the first Type found with that name. The bool is
// if any Types with the same name but different DefId have been found.
let mut implementor_dups: FxHashMap<&str, (DefId, bool)> = FxHashMap::default();
for implementor in implementors {
match implementor.inner_impl().for_ {
clean::ResolvedPath { ref path, did, is_generic: false, .. } |
clean::BorrowedRef {
type_: box clean::ResolvedPath { ref path, did, is_generic: false, .. },
..
} => {
let &mut (prev_did, ref mut has_duplicates) =
implementor_dups.entry(path.last_name()).or_insert((did, false));
if prev_did != did {
*has_duplicates = true;
}
}
_ => {}
}
}
let (local, foreign) = implementors.iter()
.partition::<Vec<_>, _>(|i| i.inner_impl().for_.def_id()
.map_or(true, |d| cache.paths.contains_key(&d)));
let (mut synthetic, mut concrete): (Vec<&&Impl>, Vec<&&Impl>) = local.iter()
.partition(|i| i.inner_impl().synthetic);
synthetic.sort_by(compare_impl);
concrete.sort_by(compare_impl);
if !foreign.is_empty() {
write_small_section_header(w, "foreign-impls", "Implementations on Foreign Types", "")?;
for implementor in foreign {
let assoc_link = AssocItemLink::GotoSource(
implementor.impl_item.def_id,
&implementor.inner_impl().provided_trait_methods
);
render_impl(w, cx, &implementor, assoc_link,
RenderMode::Normal, implementor.impl_item.stable_since(), false,
None)?;
}
write_loading_content(w, "")?;
}
write_small_section_header(w, "implementors", "Implementors",
"<div class='item-list' id='implementors-list'>")?;
for implementor in concrete {
render_implementor(cx, implementor, w, &implementor_dups)?;
}
write_loading_content(w, "</div>")?;
if t.auto {
write_small_section_header(w, "synthetic-implementors", "Auto implementors",
"<div class='item-list' id='synthetic-implementors-list'>")?;
for implementor in synthetic {
synthetic_types.extend(
collect_paths_for_type(implementor.inner_impl().for_.clone())
);
render_implementor(cx, implementor, w, &implementor_dups)?;
}
write_loading_content(w, "</div>")?;
}
} else {
// even without any implementations to write in, we still want the heading and list, so the
// implementors javascript file pulled in below has somewhere to write the impls into
write_small_section_header(w, "implementors", "Implementors",
"<div class='item-list' id='implementors-list'>")?;
write_loading_content(w, "</div>")?;
if t.auto {
write_small_section_header(w, "synthetic-implementors", "Auto implementors",
"<div class='item-list' id='synthetic-implementors-list'>")?;
write_loading_content(w, "</div>")?;
}
}
write!(w, r#"<script type="text/javascript">window.inlined_types=new Set({});</script>"#,
as_json(&synthetic_types))?;
write!(w, r#"<script type="text/javascript" async
src="{root_path}/implementors/{path}/{ty}.{name}.js">
</script>"#,
root_path = vec![".."; cx.current.len()].join("/"),
path = if it.def_id.is_local() {
cx.current.join("/")
} else {
let (ref path, _) = cache.external_paths[&it.def_id];
path[..path.len() - 1].join("/")
},
ty = it.type_().css_class(),
name = *it.name.as_ref().unwrap())?;
Ok(())
}
fn naive_assoc_href(it: &clean::Item, link: AssocItemLink<'_>) -> String {
use crate::html::item_type::ItemType::*;
let name = it.name.as_ref().unwrap();
let ty = match it.type_() {
Typedef | AssociatedType => AssociatedType,
s@_ => s,
};
let anchor = format!("#{}.{}", ty, name);
match link {
AssocItemLink::Anchor(Some(ref id)) => format!("#{}", id),
AssocItemLink::Anchor(None) => anchor,
AssocItemLink::GotoSource(did, _) => {
href(did).map(|p| format!("{}{}", p.0, anchor)).unwrap_or(anchor)
}
}
}
fn assoc_const(w: &mut fmt::Formatter<'_>,
it: &clean::Item,
ty: &clean::Type,
_default: Option<&String>,
link: AssocItemLink<'_>) -> fmt::Result {
write!(w, "{}const <a href='{}' class=\"constant\"><b>{}</b></a>: {}",
VisSpace(&it.visibility),
naive_assoc_href(it, link),
it.name.as_ref().unwrap(),
ty)?;
Ok(())
}
fn assoc_type<W: fmt::Write>(w: &mut W, it: &clean::Item,
bounds: &[clean::GenericBound],
default: Option<&clean::Type>,
link: AssocItemLink<'_>) -> fmt::Result {
write!(w, "type <a href='{}' class=\"type\">{}</a>",
naive_assoc_href(it, link),
it.name.as_ref().unwrap())?;
if !bounds.is_empty() {
write!(w, ": {}", GenericBounds(bounds))?
}
if let Some(default) = default {
write!(w, " = {}", default)?;
}
Ok(())
}
fn render_stability_since_raw<'a, T: fmt::Write>(
w: &mut T,
ver: Option<&'a str>,
containing_ver: Option<&'a str>,
) -> fmt::Result {
if let Some(v) = ver {
if containing_ver != ver && v.len() > 0 {
write!(w, "<div class='since' title='Stable since Rust version {0}'>{0}</div>", v)?
}
}
Ok(())
}
fn render_stability_since(w: &mut fmt::Formatter<'_>,
item: &clean::Item,
containing_item: &clean::Item) -> fmt::Result {
render_stability_since_raw(w, item.stable_since(), containing_item.stable_since())
}
fn render_assoc_item(w: &mut fmt::Formatter<'_>,
item: &clean::Item,
link: AssocItemLink<'_>,
parent: ItemType) -> fmt::Result {
fn method(w: &mut fmt::Formatter<'_>,
meth: &clean::Item,
header: hir::FnHeader,
g: &clean::Generics,
d: &clean::FnDecl,
link: AssocItemLink<'_>,
parent: ItemType)
-> fmt::Result {
let name = meth.name.as_ref().unwrap();
let anchor = format!("#{}.{}", meth.type_(), name);
let href = match link {
AssocItemLink::Anchor(Some(ref id)) => format!("#{}", id),
AssocItemLink::Anchor(None) => anchor,
AssocItemLink::GotoSource(did, provided_methods) => {
// We're creating a link from an impl-item to the corresponding
// trait-item and need to map the anchored type accordingly.
let ty = if provided_methods.contains(name) {
ItemType::Method
} else {
ItemType::TyMethod
};
href(did).map(|p| format!("{}#{}.{}", p.0, ty, name)).unwrap_or(anchor)
}
};
let mut header_len = format!(
"{}{}{}{}{}{:#}fn {}{:#}",
VisSpace(&meth.visibility),
ConstnessSpace(header.constness),
UnsafetySpace(header.unsafety),
AsyncSpace(header.asyncness),
DefaultSpace(meth.is_default()),
AbiSpace(header.abi),
name,
*g
).len();
let (indent, end_newline) = if parent == ItemType::Trait {
header_len += 4;
(4, false)
} else {
(0, true)
};
render_attributes(w, meth)?;
write!(w, "{}{}{}{}{}{}fn <a href='{href}' class='fnname'>{name}</a>\
{generics}{decl}{where_clause}",
VisSpace(&meth.visibility),
ConstnessSpace(header.constness),
UnsafetySpace(header.unsafety),
AsyncSpace(header.asyncness),
DefaultSpace(meth.is_default()),
AbiSpace(header.abi),
href = href,
name = name,
generics = *g,
decl = Function {
decl: d,
header_len,
indent,
asyncness: header.asyncness,
},
where_clause = WhereClause {
gens: g,
indent,
end_newline,
})
}
match item.inner {
clean::StrippedItem(..) => Ok(()),
clean::TyMethodItem(ref m) => {
method(w, item, m.header, &m.generics, &m.decl, link, parent)
}
clean::MethodItem(ref m) => {
method(w, item, m.header, &m.generics, &m.decl, link, parent)
}
clean::AssociatedConstItem(ref ty, ref default) => {
assoc_const(w, item, ty, default.as_ref(), link)
}
clean::AssociatedTypeItem(ref bounds, ref default) => {
assoc_type(w, item, bounds, default.as_ref(), link)
}
_ => panic!("render_assoc_item called on non-associated-item")
}
}
fn item_struct(w: &mut fmt::Formatter<'_>, cx: &Context, it: &clean::Item,
s: &clean::Struct) -> fmt::Result {
wrap_into_docblock(w, |w| {
write!(w, "<pre class='rust struct'>")?;
render_attributes(w, it)?;
render_struct(w,
it,
Some(&s.generics),
s.struct_type,
&s.fields,
"",
true)?;
write!(w, "</pre>")
})?;
document(w, cx, it)?;
let mut fields = s.fields.iter().filter_map(|f| {
match f.inner {
clean::StructFieldItem(ref ty) => Some((f, ty)),
_ => None,
}
}).peekable();
if let doctree::Plain = s.struct_type {
if fields.peek().is_some() {
write!(w, "<h2 id='fields' class='fields small-section-header'>
Fields{}<a href='#fields' class='anchor'></a></h2>",
document_non_exhaustive_header(it))?;
document_non_exhaustive(w, it)?;
for (field, ty) in fields {
let id = cx.derive_id(format!("{}.{}",
ItemType::StructField,
field.name.as_ref().unwrap()));
let ns_id = cx.derive_id(format!("{}.{}",
field.name.as_ref().unwrap(),
ItemType::StructField.name_space()));
write!(w, "<span id=\"{id}\" class=\"{item_type} small-section-header\">\
<a href=\"#{id}\" class=\"anchor field\"></a>\
<code id=\"{ns_id}\">{name}: {ty}</code>\
</span>",
item_type = ItemType::StructField,
id = id,
ns_id = ns_id,
name = field.name.as_ref().unwrap(),
ty = ty)?;
document(w, cx, field)?;
}
}
}
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
fn item_union(w: &mut fmt::Formatter<'_>, cx: &Context, it: &clean::Item,
s: &clean::Union) -> fmt::Result {
wrap_into_docblock(w, |w| {
write!(w, "<pre class='rust union'>")?;
render_attributes(w, it)?;
render_union(w,
it,
Some(&s.generics),
&s.fields,
"",
true)?;
write!(w, "</pre>")
})?;
document(w, cx, it)?;
let mut fields = s.fields.iter().filter_map(|f| {
match f.inner {
clean::StructFieldItem(ref ty) => Some((f, ty)),
_ => None,
}
}).peekable();
if fields.peek().is_some() {
write!(w, "<h2 id='fields' class='fields small-section-header'>
Fields<a href='#fields' class='anchor'></a></h2>")?;
for (field, ty) in fields {
let name = field.name.as_ref().expect("union field name");
let id = format!("{}.{}", ItemType::StructField, name);
write!(w, "<span id=\"{id}\" class=\"{shortty} small-section-header\">\
<a href=\"#{id}\" class=\"anchor field\"></a>\
<code>{name}: {ty}</code>\
</span>",
id = id,
name = name,
shortty = ItemType::StructField,
ty = ty)?;
if let Some(stability_class) = field.stability_class() {
write!(w, "<span class='stab {stab}'></span>",
stab = stability_class)?;
}
document(w, cx, field)?;
}
}
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
fn item_enum(w: &mut fmt::Formatter<'_>, cx: &Context, it: &clean::Item,
e: &clean::Enum) -> fmt::Result {
wrap_into_docblock(w, |w| {
write!(w, "<pre class='rust enum'>")?;
render_attributes(w, it)?;
write!(w, "{}enum {}{}{}",
VisSpace(&it.visibility),
it.name.as_ref().unwrap(),
e.generics,
WhereClause { gens: &e.generics, indent: 0, end_newline: true })?;
if e.variants.is_empty() && !e.variants_stripped {
write!(w, " {{}}")?;
} else {
write!(w, " {{\n")?;
for v in &e.variants {
write!(w, " ")?;
let name = v.name.as_ref().unwrap();
match v.inner {
clean::VariantItem(ref var) => {
match var.kind {
clean::VariantKind::CLike => write!(w, "{}", name)?,
clean::VariantKind::Tuple(ref tys) => {
write!(w, "{}(", name)?;
for (i, ty) in tys.iter().enumerate() {
if i > 0 {
write!(w, ",&nbsp;")?
}
write!(w, "{}", *ty)?;
}
write!(w, ")")?;
}
clean::VariantKind::Struct(ref s) => {
render_struct(w,
v,
None,
s.struct_type,
&s.fields,
" ",
false)?;
}
}
}
_ => unreachable!()
}
write!(w, ",\n")?;
}
if e.variants_stripped {
write!(w, " // some variants omitted\n")?;
}
write!(w, "}}")?;
}
write!(w, "</pre>")
})?;
document(w, cx, it)?;
if !e.variants.is_empty() {
write!(w, "<h2 id='variants' class='variants small-section-header'>
Variants{}<a href='#variants' class='anchor'></a></h2>\n",
document_non_exhaustive_header(it))?;
document_non_exhaustive(w, it)?;
for variant in &e.variants {
let id = cx.derive_id(format!("{}.{}",
ItemType::Variant,
variant.name.as_ref().unwrap()));
let ns_id = cx.derive_id(format!("{}.{}",
variant.name.as_ref().unwrap(),
ItemType::Variant.name_space()));
write!(w, "<span id=\"{id}\" class=\"variant small-section-header\">\
<a href=\"#{id}\" class=\"anchor field\"></a>\
<code id='{ns_id}'>{name}",
id = id,
ns_id = ns_id,
name = variant.name.as_ref().unwrap())?;
if let clean::VariantItem(ref var) = variant.inner {
if let clean::VariantKind::Tuple(ref tys) = var.kind {
write!(w, "(")?;
for (i, ty) in tys.iter().enumerate() {
if i > 0 {
write!(w, ",&nbsp;")?;
}
write!(w, "{}", *ty)?;
}
write!(w, ")")?;
}
}
write!(w, "</code></span>")?;
document(w, cx, variant)?;
use crate::clean::{Variant, VariantKind};
if let clean::VariantItem(Variant {
kind: VariantKind::Struct(ref s)
}) = variant.inner {
let variant_id = cx.derive_id(format!("{}.{}.fields",
ItemType::Variant,
variant.name.as_ref().unwrap()));
write!(w, "<span class='autohide sub-variant' id='{id}'>",
id = variant_id)?;
write!(w, "<h3>Fields of <b>{name}</b></h3><div>",
name = variant.name.as_ref().unwrap())?;
for field in &s.fields {
use crate::clean::StructFieldItem;
if let StructFieldItem(ref ty) = field.inner {
let id = cx.derive_id(format!("variant.{}.field.{}",
variant.name.as_ref().unwrap(),
field.name.as_ref().unwrap()));
let ns_id = cx.derive_id(format!("{}.{}.{}.{}",
variant.name.as_ref().unwrap(),
ItemType::Variant.name_space(),
field.name.as_ref().unwrap(),
ItemType::StructField.name_space()));
write!(w, "<span id=\"{id}\" class=\"variant small-section-header\">\
<a href=\"#{id}\" class=\"anchor field\"></a>\
<code id='{ns_id}'>{f}:&nbsp;{t}\
</code></span>",
id = id,
ns_id = ns_id,
f = field.name.as_ref().unwrap(),
t = *ty)?;
document(w, cx, field)?;
}
}
write!(w, "</div></span>")?;
}
render_stability_since(w, variant, it)?;
}
}
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)?;
Ok(())
}
fn render_attribute(attr: &ast::MetaItem) -> Option<String> {
let path = attr.path.to_string();
if attr.is_word() {
Some(path)
} else if let Some(v) = attr.value_str() {
Some(format!("{} = {:?}", path, v.as_str()))
} else if let Some(values) = attr.meta_item_list() {
let display: Vec<_> = values.iter().filter_map(|attr| {
attr.meta_item().and_then(|mi| render_attribute(mi))
}).collect();
if display.len() > 0 {
Some(format!("{}({})", path, display.join(", ")))
} else {
None
}
} else {
None
}
}
const ATTRIBUTE_WHITELIST: &'static [&'static str] = &[
"export_name",
"lang",
"link_section",
"must_use",
"no_mangle",
"repr",
"unsafe_destructor_blind_to_params",
"non_exhaustive"
];
fn render_attributes(w: &mut fmt::Formatter<'_>, it: &clean::Item) -> fmt::Result {
let mut attrs = String::new();
for attr in &it.attrs.other_attrs {
if !attr.ident_str().map_or(false, |name| ATTRIBUTE_WHITELIST.contains(&name)) {
continue;
}
if let Some(s) = render_attribute(&attr.meta().unwrap()) {
attrs.push_str(&format!("#[{}]\n", s));
}
}
if attrs.len() > 0 {
write!(w, "<div class=\"docblock attributes\">{}</div>", &attrs)?;
}
Ok(())
}
fn render_struct(w: &mut fmt::Formatter<'_>, it: &clean::Item,
g: Option<&clean::Generics>,
ty: doctree::StructType,
fields: &[clean::Item],
tab: &str,
structhead: bool) -> fmt::Result {
write!(w, "{}{}{}",
VisSpace(&it.visibility),
if structhead {"struct "} else {""},
it.name.as_ref().unwrap())?;
if let Some(g) = g {
write!(w, "{}", g)?
}
match ty {
doctree::Plain => {
if let Some(g) = g {
write!(w, "{}", WhereClause { gens: g, indent: 0, end_newline: true })?
}
let mut has_visible_fields = false;
write!(w, " {{")?;
for field in fields {
if let clean::StructFieldItem(ref ty) = field.inner {
write!(w, "\n{} {}{}: {},",
tab,
VisSpace(&field.visibility),
field.name.as_ref().unwrap(),
*ty)?;
has_visible_fields = true;
}
}
if has_visible_fields {
if it.has_stripped_fields().unwrap() {
write!(w, "\n{} // some fields omitted", tab)?;
}
write!(w, "\n{}", tab)?;
} else if it.has_stripped_fields().unwrap() {
// If there are no visible fields we can just display
// `{ /* fields omitted */ }` to save space.
write!(w, " /* fields omitted */ ")?;
}
write!(w, "}}")?;
}
doctree::Tuple => {
write!(w, "(")?;
for (i, field) in fields.iter().enumerate() {
if i > 0 {
write!(w, ", ")?;
}
match field.inner {
clean::StrippedItem(box clean::StructFieldItem(..)) => {
write!(w, "_")?
}
clean::StructFieldItem(ref ty) => {
write!(w, "{}{}", VisSpace(&field.visibility), *ty)?
}
_ => unreachable!()
}
}
write!(w, ")")?;
if let Some(g) = g {
write!(w, "{}", WhereClause { gens: g, indent: 0, end_newline: false })?
}
write!(w, ";")?;
}
doctree::Unit => {
// Needed for PhantomData.
if let Some(g) = g {
write!(w, "{}", WhereClause { gens: g, indent: 0, end_newline: false })?
}
write!(w, ";")?;
}
}
Ok(())
}
fn render_union(w: &mut fmt::Formatter<'_>, it: &clean::Item,
g: Option<&clean::Generics>,
fields: &[clean::Item],
tab: &str,
structhead: bool) -> fmt::Result {
write!(w, "{}{}{}",
VisSpace(&it.visibility),
if structhead {"union "} else {""},
it.name.as_ref().unwrap())?;
if let Some(g) = g {
write!(w, "{}", g)?;
write!(w, "{}", WhereClause { gens: g, indent: 0, end_newline: true })?;
}
write!(w, " {{\n{}", tab)?;
for field in fields {
if let clean::StructFieldItem(ref ty) = field.inner {
write!(w, " {}{}: {},\n{}",
VisSpace(&field.visibility),
field.name.as_ref().unwrap(),
*ty,
tab)?;
}
}
if it.has_stripped_fields().unwrap() {
write!(w, " // some fields omitted\n{}", tab)?;
}
write!(w, "}}")?;
Ok(())
}
#[derive(Copy, Clone)]
enum AssocItemLink<'a> {
Anchor(Option<&'a str>),
GotoSource(DefId, &'a FxHashSet<String>),
}
impl<'a> AssocItemLink<'a> {
fn anchor(&self, id: &'a String) -> Self {
match *self {
AssocItemLink::Anchor(_) => { AssocItemLink::Anchor(Some(&id)) },
ref other => *other,
}
}
}
enum AssocItemRender<'a> {
All,
DerefFor { trait_: &'a clean::Type, type_: &'a clean::Type, deref_mut_: bool }
}
#[derive(Copy, Clone, PartialEq)]
enum RenderMode {
Normal,
ForDeref { mut_: bool },
}
fn render_assoc_items(w: &mut fmt::Formatter<'_>,
cx: &Context,
containing_item: &clean::Item,
it: DefId,
what: AssocItemRender<'_>) -> fmt::Result {
let c = cache();
let v = match c.impls.get(&it) {
Some(v) => v,
None => return Ok(()),
};
let (non_trait, traits): (Vec<_>, _) = v.iter().partition(|i| {
i.inner_impl().trait_.is_none()
});
if !non_trait.is_empty() {
let render_mode = match what {
AssocItemRender::All => {
write!(w, "\
<h2 id='methods' class='small-section-header'>\
Methods<a href='#methods' class='anchor'></a>\
</h2>\
")?;
RenderMode::Normal
}
AssocItemRender::DerefFor { trait_, type_, deref_mut_ } => {
write!(w, "\
<h2 id='deref-methods' class='small-section-header'>\
Methods from {}&lt;Target = {}&gt;\
<a href='#deref-methods' class='anchor'></a>\
</h2>\
", trait_, type_)?;
RenderMode::ForDeref { mut_: deref_mut_ }
}
};
for i in &non_trait {
render_impl(w, cx, i, AssocItemLink::Anchor(None), render_mode,
containing_item.stable_since(), true, None)?;
}
}
if let AssocItemRender::DerefFor { .. } = what {
return Ok(());
}
if !traits.is_empty() {
let deref_impl = traits.iter().find(|t| {
t.inner_impl().trait_.def_id() == c.deref_trait_did
});
if let Some(impl_) = deref_impl {
let has_deref_mut = traits.iter().find(|t| {
t.inner_impl().trait_.def_id() == c.deref_mut_trait_did
}).is_some();
render_deref_methods(w, cx, impl_, containing_item, has_deref_mut)?;
}
let (synthetic, concrete): (Vec<&&Impl>, Vec<&&Impl>) = traits
.iter()
.partition(|t| t.inner_impl().synthetic);
let (blanket_impl, concrete) = concrete
.into_iter()
.partition(|t| t.inner_impl().blanket_impl.is_some());
struct RendererStruct<'a, 'b, 'c>(&'a Context, Vec<&'b &'b Impl>, &'c clean::Item);
impl<'a, 'b, 'c> fmt::Display for RendererStruct<'a, 'b, 'c> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
render_impls(self.0, fmt, &self.1, self.2)
}
}
let impls = RendererStruct(cx, concrete, containing_item).to_string();
if !impls.is_empty() {
write!(w, "\
<h2 id='implementations' class='small-section-header'>\
Trait Implementations<a href='#implementations' class='anchor'></a>\
</h2>\
<div id='implementations-list'>{}</div>", impls)?;
}
if !synthetic.is_empty() {
write!(w, "\
<h2 id='synthetic-implementations' class='small-section-header'>\
Auto Trait Implementations\
<a href='#synthetic-implementations' class='anchor'></a>\
</h2>\
<div id='synthetic-implementations-list'>\
")?;
render_impls(cx, w, &synthetic, containing_item)?;
write!(w, "</div>")?;
}
if !blanket_impl.is_empty() {
write!(w, "\
<h2 id='blanket-implementations' class='small-section-header'>\
Blanket Implementations\
<a href='#blanket-implementations' class='anchor'></a>\
</h2>\
<div id='blanket-implementations-list'>\
")?;
render_impls(cx, w, &blanket_impl, containing_item)?;
write!(w, "</div>")?;
}
}
Ok(())
}
fn render_deref_methods(w: &mut fmt::Formatter<'_>, cx: &Context, impl_: &Impl,
container_item: &clean::Item, deref_mut: bool) -> fmt::Result {
let deref_type = impl_.inner_impl().trait_.as_ref().unwrap();
let target = impl_.inner_impl().items.iter().filter_map(|item| {
match item.inner {
clean::TypedefItem(ref t, true) => Some(&t.type_),
_ => None,
}
}).next().expect("Expected associated type binding");
let what = AssocItemRender::DerefFor { trait_: deref_type, type_: target,
deref_mut_: deref_mut };
if let Some(did) = target.def_id() {
render_assoc_items(w, cx, container_item, did, what)
} else {
if let Some(prim) = target.primitive_type() {
if let Some(&did) = cache().primitive_locations.get(&prim) {
render_assoc_items(w, cx, container_item, did, what)?;
}
}
Ok(())
}
}
fn should_render_item(item: &clean::Item, deref_mut_: bool) -> bool {
let self_type_opt = match item.inner {
clean::MethodItem(ref method) => method.decl.self_type(),
clean::TyMethodItem(ref method) => method.decl.self_type(),
_ => None
};
if let Some(self_ty) = self_type_opt {
let (by_mut_ref, by_box, by_value) = match self_ty {
SelfTy::SelfBorrowed(_, mutability) |
SelfTy::SelfExplicit(clean::BorrowedRef { mutability, .. }) => {
(mutability == Mutability::Mutable, false, false)
},
SelfTy::SelfExplicit(clean::ResolvedPath { did, .. }) => {
(false, Some(did) == cache().owned_box_did, false)
},
SelfTy::SelfValue => (false, false, true),
_ => (false, false, false),
};
(deref_mut_ || !by_mut_ref) && !by_box && !by_value
} else {
false
}
}
fn render_spotlight_traits(item: &clean::Item) -> Result<String, fmt::Error> {
let mut out = String::new();
match item.inner {
clean::FunctionItem(clean::Function { ref decl, .. }) |
clean::TyMethodItem(clean::TyMethod { ref decl, .. }) |
clean::MethodItem(clean::Method { ref decl, .. }) |
clean::ForeignFunctionItem(clean::Function { ref decl, .. }) => {
out = spotlight_decl(decl)?;
}
_ => {}
}
Ok(out)
}
fn spotlight_decl(decl: &clean::FnDecl) -> Result<String, fmt::Error> {
let mut out = String::new();
let mut trait_ = String::new();
if let Some(did) = decl.output.def_id() {
let c = cache();
if let Some(impls) = c.impls.get(&did) {
for i in impls {
let impl_ = i.inner_impl();
if impl_.trait_.def_id().map_or(false, |d| c.traits[&d].is_spotlight) {
if out.is_empty() {
out.push_str(
&format!("<h3 class=\"important\">Important traits for {}</h3>\
<code class=\"content\">",
impl_.for_));
trait_.push_str(&impl_.for_.to_string());
}
//use the "where" class here to make it small
out.push_str(&format!("<span class=\"where fmt-newline\">{}</span>", impl_));
let t_did = impl_.trait_.def_id().unwrap();
for it in &impl_.items {
if let clean::TypedefItem(ref tydef, _) = it.inner {
out.push_str("<span class=\"where fmt-newline\"> ");
assoc_type(&mut out, it, &[],
Some(&tydef.type_),
AssocItemLink::GotoSource(t_did, &FxHashSet::default()))?;
out.push_str(";</span>");
}
}
}
}
}
}
if !out.is_empty() {
out.insert_str(0, &format!("<div class=\"important-traits\"><div class='tooltip'>ⓘ\
<span class='tooltiptext'>Important traits for {}</span></div>\
<div class=\"content hidden\">",
trait_));
out.push_str("</code></div></div>");
}
Ok(out)
}
fn render_impl(w: &mut fmt::Formatter<'_>, cx: &Context, i: &Impl, link: AssocItemLink<'_>,
render_mode: RenderMode, outer_version: Option<&str>,
show_def_docs: bool, use_absolute: Option<bool>) -> fmt::Result {
if render_mode == RenderMode::Normal {
let id = cx.derive_id(match i.inner_impl().trait_ {
Some(ref t) => format!("impl-{}", small_url_encode(&format!("{:#}", t))),
None => "impl".to_string(),
});
if let Some(use_absolute) = use_absolute {
write!(w, "<h3 id='{}' class='impl'><code class='in-band'>", id)?;
fmt_impl_for_trait_page(&i.inner_impl(), w, use_absolute)?;
if show_def_docs {
for it in &i.inner_impl().items {
if let clean::TypedefItem(ref tydef, _) = it.inner {
write!(w, "<span class=\"where fmt-newline\"> ")?;
assoc_type(w, it, &vec![], Some(&tydef.type_),
AssocItemLink::Anchor(None))?;
write!(w, ";</span>")?;
}
}
}
write!(w, "</code>")?;
} else {
write!(w, "<h3 id='{}' class='impl'><code class='in-band'>{}</code>",
id, i.inner_impl()
)?;
}
write!(w, "<a href='#{}' class='anchor'></a>", id)?;
let since = i.impl_item.stability.as_ref().map(|s| &s.since[..]);
render_stability_since_raw(w, since, outer_version)?;
if let Some(l) = (Item { item: &i.impl_item, cx: cx }).src_href() {
write!(w, "<a class='srclink' href='{}' title='{}'>[src]</a>",
l, "goto source code")?;
}
write!(w, "</h3>")?;
if let Some(ref dox) = cx.shared.maybe_collapsed_doc_value(&i.impl_item) {
let mut ids = cx.id_map.borrow_mut();
write!(w, "<div class='docblock'>{}</div>",
Markdown(&*dox, &i.impl_item.links(), RefCell::new(&mut ids), cx.codes))?;
}
}
fn doc_impl_item(w: &mut fmt::Formatter<'_>, cx: &Context, item: &clean::Item,
link: AssocItemLink<'_>, render_mode: RenderMode,
is_default_item: bool, outer_version: Option<&str>,
trait_: Option<&clean::Trait>, show_def_docs: bool) -> fmt::Result {
let item_type = item.type_();
let name = item.name.as_ref().unwrap();
let render_method_item: bool = match render_mode {
RenderMode::Normal => true,
RenderMode::ForDeref { mut_: deref_mut_ } => should_render_item(&item, deref_mut_),
};
let (is_hidden, extra_class) = if trait_.is_none() ||
item.doc_value().is_some() ||
item.inner.is_associated() {
(false, "")
} else {
(true, " hidden")
};
match item.inner {
clean::MethodItem(clean::Method { ref decl, .. }) |
clean::TyMethodItem(clean::TyMethod { ref decl, .. }) => {
// Only render when the method is not static or we allow static methods
if render_method_item {
let id = cx.derive_id(format!("{}.{}", item_type, name));
let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space()));
write!(w, "<h4 id='{}' class=\"{}{}\">", id, item_type, extra_class)?;
write!(w, "{}", spotlight_decl(decl)?)?;
write!(w, "<code id='{}'>", ns_id)?;
render_assoc_item(w, item, link.anchor(&id), ItemType::Impl)?;
write!(w, "</code>")?;
render_stability_since_raw(w, item.stable_since(), outer_version)?;
if let Some(l) = (Item { cx, item }).src_href() {
write!(w, "<a class='srclink' href='{}' title='{}'>[src]</a>",
l, "goto source code")?;
}
write!(w, "</h4>")?;
}
}
clean::TypedefItem(ref tydef, _) => {
let id = cx.derive_id(format!("{}.{}", ItemType::AssociatedType, name));
let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space()));
write!(w, "<h4 id='{}' class=\"{}{}\">", id, item_type, extra_class)?;
write!(w, "<code id='{}'>", ns_id)?;
assoc_type(w, item, &Vec::new(), Some(&tydef.type_), link.anchor(&id))?;
write!(w, "</code></h4>")?;
}
clean::AssociatedConstItem(ref ty, ref default) => {
let id = cx.derive_id(format!("{}.{}", item_type, name));
let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space()));
write!(w, "<h4 id='{}' class=\"{}{}\">", id, item_type, extra_class)?;
write!(w, "<code id='{}'>", ns_id)?;
assoc_const(w, item, ty, default.as_ref(), link.anchor(&id))?;
write!(w, "</code>")?;
render_stability_since_raw(w, item.stable_since(), outer_version)?;
if let Some(l) = (Item { cx, item }).src_href() {
write!(w, "<a class='srclink' href='{}' title='{}'>[src]</a>",
l, "goto source code")?;
}
write!(w, "</h4>")?;
}
clean::AssociatedTypeItem(ref bounds, ref default) => {
let id = cx.derive_id(format!("{}.{}", item_type, name));
let ns_id = cx.derive_id(format!("{}.{}", name, item_type.name_space()));
write!(w, "<h4 id='{}' class=\"{}{}\">", id, item_type, extra_class)?;
write!(w, "<code id='{}'>", ns_id)?;
assoc_type(w, item, bounds, default.as_ref(), link.anchor(&id))?;
write!(w, "</code></h4>")?;
}
clean::StrippedItem(..) => return Ok(()),
_ => panic!("can't make docs for trait item with name {:?}", item.name)
}
if render_method_item || render_mode == RenderMode::Normal {
if !is_default_item {
if let Some(t) = trait_ {
// The trait item may have been stripped so we might not
// find any documentation or stability for it.
if let Some(it) = t.items.iter().find(|i| i.name == item.name) {
// We need the stability of the item from the trait
// because impls can't have a stability.
document_stability(w, cx, it, is_hidden)?;
if item.doc_value().is_some() {
document_full(w, item, cx, "", is_hidden)?;
} else if show_def_docs {
// In case the item isn't documented,
// provide short documentation from the trait.
document_short(w, cx, it, link, "", is_hidden)?;
}
}
} else {
document_stability(w, cx, item, is_hidden)?;
if show_def_docs {
document_full(w, item, cx, "", is_hidden)?;
}
}
} else {
document_stability(w, cx, item, is_hidden)?;
if show_def_docs {
document_short(w, cx, item, link, "", is_hidden)?;
}
}
}
Ok(())
}
let traits = &cache().traits;
let trait_ = i.trait_did().map(|did| &traits[&did]);
write!(w, "<div class='impl-items'>")?;
for trait_item in &i.inner_impl().items {
doc_impl_item(w, cx, trait_item, link, render_mode,
false, outer_version, trait_, show_def_docs)?;
}
fn render_default_items(w: &mut fmt::Formatter<'_>,
cx: &Context,
t: &clean::Trait,
i: &clean::Impl,
render_mode: RenderMode,
outer_version: Option<&str>,
show_def_docs: bool) -> fmt::Result {
for trait_item in &t.items {
let n = trait_item.name.clone();
if i.items.iter().find(|m| m.name == n).is_some() {
continue;
}
let did = i.trait_.as_ref().unwrap().def_id().unwrap();
let assoc_link = AssocItemLink::GotoSource(did, &i.provided_trait_methods);
doc_impl_item(w, cx, trait_item, assoc_link, render_mode, true,
outer_version, None, show_def_docs)?;
}
Ok(())
}
// If we've implemented a trait, then also emit documentation for all
// default items which weren't overridden in the implementation block.
if let Some(t) = trait_ {
render_default_items(w, cx, t, &i.inner_impl(),
render_mode, outer_version, show_def_docs)?;
}
write!(w, "</div>")?;
Ok(())
}
fn item_existential(
w: &mut fmt::Formatter<'_>,
cx: &Context,
it: &clean::Item,
t: &clean::Existential,
) -> fmt::Result {
write!(w, "<pre class='rust existential'>")?;
render_attributes(w, it)?;
write!(w, "existential type {}{}{where_clause}: {bounds};</pre>",
it.name.as_ref().unwrap(),
t.generics,
where_clause = WhereClause { gens: &t.generics, indent: 0, end_newline: true },
bounds = bounds(&t.bounds, false))?;
document(w, cx, it)?;
// Render any items associated directly to this alias, as otherwise they
// won't be visible anywhere in the docs. It would be nice to also show
// associated items from the aliased type (see discussion in #32077), but
// we need #14072 to make sense of the generics.
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
fn item_trait_alias(w: &mut fmt::Formatter<'_>, cx: &Context, it: &clean::Item,
t: &clean::TraitAlias) -> fmt::Result {
write!(w, "<pre class='rust trait-alias'>")?;
render_attributes(w, it)?;
write!(w, "trait {}{}{} = {};</pre>",
it.name.as_ref().unwrap(),
t.generics,
WhereClause { gens: &t.generics, indent: 0, end_newline: true },
bounds(&t.bounds, true))?;
document(w, cx, it)?;
// Render any items associated directly to this alias, as otherwise they
// won't be visible anywhere in the docs. It would be nice to also show
// associated items from the aliased type (see discussion in #32077), but
// we need #14072 to make sense of the generics.
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
fn item_typedef(w: &mut fmt::Formatter<'_>, cx: &Context, it: &clean::Item,
t: &clean::Typedef) -> fmt::Result {
write!(w, "<pre class='rust typedef'>")?;
render_attributes(w, it)?;
write!(w, "type {}{}{where_clause} = {type_};</pre>",
it.name.as_ref().unwrap(),
t.generics,
where_clause = WhereClause { gens: &t.generics, indent: 0, end_newline: true },
type_ = t.type_)?;
document(w, cx, it)?;
// Render any items associated directly to this alias, as otherwise they
// won't be visible anywhere in the docs. It would be nice to also show
// associated items from the aliased type (see discussion in #32077), but
// we need #14072 to make sense of the generics.
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
fn item_foreign_type(w: &mut fmt::Formatter<'_>, cx: &Context, it: &clean::Item) -> fmt::Result {
writeln!(w, "<pre class='rust foreigntype'>extern {{")?;
render_attributes(w, it)?;
write!(
w,
" {}type {};\n}}</pre>",
VisSpace(&it.visibility),
it.name.as_ref().unwrap(),
)?;
document(w, cx, it)?;
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
impl<'a> fmt::Display for Sidebar<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let cx = self.cx;
let it = self.item;
let parentlen = cx.current.len() - if it.is_mod() {1} else {0};
if it.is_struct() || it.is_trait() || it.is_primitive() || it.is_union()
|| it.is_enum() || it.is_mod() || it.is_typedef() {
write!(fmt, "<p class='location'>{}{}</p>",
match it.inner {
clean::StructItem(..) => "Struct ",
clean::TraitItem(..) => "Trait ",
clean::PrimitiveItem(..) => "Primitive Type ",
clean::UnionItem(..) => "Union ",
clean::EnumItem(..) => "Enum ",
clean::TypedefItem(..) => "Type Definition ",
clean::ForeignTypeItem => "Foreign Type ",
clean::ModuleItem(..) => if it.is_crate() {
"Crate "
} else {
"Module "
},
_ => "",
},
it.name.as_ref().unwrap())?;
}
if it.is_crate() {
if let Some(ref version) = cache().crate_version {
write!(fmt,
"<div class='block version'>\
<p>Version {}</p>\
</div>",
version)?;
}
}
write!(fmt, "<div class=\"sidebar-elems\">")?;
if it.is_crate() {
write!(fmt, "<a id='all-types' href='all.html'><p>See all {}'s items</p></a>",
it.name.as_ref().expect("crates always have a name"))?;
}
match it.inner {
clean::StructItem(ref s) => sidebar_struct(fmt, it, s)?,
clean::TraitItem(ref t) => sidebar_trait(fmt, it, t)?,
clean::PrimitiveItem(ref p) => sidebar_primitive(fmt, it, p)?,
clean::UnionItem(ref u) => sidebar_union(fmt, it, u)?,
clean::EnumItem(ref e) => sidebar_enum(fmt, it, e)?,
clean::TypedefItem(ref t, _) => sidebar_typedef(fmt, it, t)?,
clean::ModuleItem(ref m) => sidebar_module(fmt, it, &m.items)?,
clean::ForeignTypeItem => sidebar_foreign_type(fmt, it)?,
_ => (),
}
// The sidebar is designed to display sibling functions, modules and
// other miscellaneous information. since there are lots of sibling
// items (and that causes quadratic growth in large modules),
// we refactor common parts into a shared JavaScript file per module.
// still, we don't move everything into JS because we want to preserve
// as much HTML as possible in order to allow non-JS-enabled browsers
// to navigate the documentation (though slightly inefficiently).
write!(fmt, "<p class='location'>")?;
for (i, name) in cx.current.iter().take(parentlen).enumerate() {
if i > 0 {
write!(fmt, "::<wbr>")?;
}
write!(fmt, "<a href='{}index.html'>{}</a>",
&cx.root_path()[..(cx.current.len() - i - 1) * 3],
*name)?;
}
write!(fmt, "</p>")?;
// Sidebar refers to the enclosing module, not this module.
let relpath = if it.is_mod() { "../" } else { "" };
write!(fmt,
"<script>window.sidebarCurrent = {{\
name: '{name}', \
ty: '{ty}', \
relpath: '{path}'\
}};</script>",
name = it.name.as_ref().map(|x| &x[..]).unwrap_or(""),
ty = it.type_().css_class(),
path = relpath)?;
if parentlen == 0 {
// There is no sidebar-items.js beyond the crate root path
// FIXME maybe dynamic crate loading can be merged here
} else {
write!(fmt, "<script defer src=\"{path}sidebar-items.js\"></script>",
path = relpath)?;
}
// Closes sidebar-elems div.
write!(fmt, "</div>")?;
Ok(())
}
}
fn get_next_url(used_links: &mut FxHashSet<String>, url: String) -> String {
if used_links.insert(url.clone()) {
return url;
}
let mut add = 1;
while used_links.insert(format!("{}-{}", url, add)) == false {
add += 1;
}
format!("{}-{}", url, add)
}
fn get_methods(
i: &clean::Impl,
for_deref: bool,
used_links: &mut FxHashSet<String>,
) -> Vec<String> {
i.items.iter().filter_map(|item| {
match item.name {
// Maybe check with clean::Visibility::Public as well?
Some(ref name) if !name.is_empty() && item.visibility.is_some() && item.is_method() => {
if !for_deref || should_render_item(item, false) {
Some(format!("<a href=\"#{}\">{}</a>",
get_next_url(used_links, format!("method.{}", name)),
name))
} else {
None
}
}
_ => None,
}
}).collect::<Vec<_>>()
}
// The point is to url encode any potential character from a type with genericity.
fn small_url_encode(s: &str) -> String {
s.replace("<", "%3C")
.replace(">", "%3E")
.replace(" ", "%20")
.replace("?", "%3F")
.replace("'", "%27")
.replace("&", "%26")
.replace(",", "%2C")
.replace(":", "%3A")
.replace(";", "%3B")
.replace("[", "%5B")
.replace("]", "%5D")
.replace("\"", "%22")
}
fn sidebar_assoc_items(it: &clean::Item) -> String {
let mut out = String::new();
let c = cache();
if let Some(v) = c.impls.get(&it.def_id) {
let mut used_links = FxHashSet::default();
{
let used_links_bor = Rc::new(RefCell::new(&mut used_links));
let mut ret = v.iter()
.filter(|i| i.inner_impl().trait_.is_none())
.flat_map(move |i| get_methods(i.inner_impl(),
false,
&mut used_links_bor.borrow_mut()))
.collect::<Vec<_>>();
// We want links' order to be reproducible so we don't use unstable sort.
ret.sort();
if !ret.is_empty() {
out.push_str(&format!("<a class=\"sidebar-title\" href=\"#methods\">Methods\
</a><div class=\"sidebar-links\">{}</div>", ret.join("")));
}
}
if v.iter().any(|i| i.inner_impl().trait_.is_some()) {
if let Some(impl_) = v.iter()
.filter(|i| i.inner_impl().trait_.is_some())
.find(|i| i.inner_impl().trait_.def_id() == c.deref_trait_did) {
if let Some(target) = impl_.inner_impl().items.iter().filter_map(|item| {
match item.inner {
clean::TypedefItem(ref t, true) => Some(&t.type_),
_ => None,
}
}).next() {
let inner_impl = target.def_id().or(target.primitive_type().and_then(|prim| {
c.primitive_locations.get(&prim).cloned()
})).and_then(|did| c.impls.get(&did));
if let Some(impls) = inner_impl {
out.push_str("<a class=\"sidebar-title\" href=\"#deref-methods\">");
out.push_str(&format!("Methods from {}&lt;Target={}&gt;",
Escape(&format!("{:#}",
impl_.inner_impl().trait_.as_ref().unwrap())),
Escape(&format!("{:#}", target))));
out.push_str("</a>");
let mut ret = impls.iter()
.filter(|i| i.inner_impl().trait_.is_none())
.flat_map(|i| get_methods(i.inner_impl(),
true,
&mut used_links))
.collect::<Vec<_>>();
// We want links' order to be reproducible so we don't use unstable sort.
ret.sort();
if !ret.is_empty() {
out.push_str(&format!("<div class=\"sidebar-links\">{}</div>",
ret.join("")));
}
}
}
}
let format_impls = |impls: Vec<&Impl>| {
let mut links = FxHashSet::default();
let mut ret = impls.iter()
.filter_map(|i| {
let is_negative_impl = is_negative_impl(i.inner_impl());
if let Some(ref i) = i.inner_impl().trait_ {
let i_display = format!("{:#}", i);
let out = Escape(&i_display);
let encoded = small_url_encode(&format!("{:#}", i));
let generated = format!("<a href=\"#impl-{}\">{}{}</a>",
encoded,
if is_negative_impl { "!" } else { "" },
out);
if links.insert(generated.clone()) {
Some(generated)
} else {
None
}
} else {
None
}
})
.collect::<Vec<String>>();
ret.sort();
ret.join("")
};
let (synthetic, concrete): (Vec<&Impl>, Vec<&Impl>) = v
.iter()
.partition::<Vec<_>, _>(|i| i.inner_impl().synthetic);
let (blanket_impl, concrete): (Vec<&Impl>, Vec<&Impl>) = concrete
.into_iter()
.partition::<Vec<_>, _>(|i| i.inner_impl().blanket_impl.is_some());
let concrete_format = format_impls(concrete);
let synthetic_format = format_impls(synthetic);
let blanket_format = format_impls(blanket_impl);
if !concrete_format.is_empty() {
out.push_str("<a class=\"sidebar-title\" href=\"#implementations\">\
Trait Implementations</a>");
out.push_str(&format!("<div class=\"sidebar-links\">{}</div>", concrete_format));
}
if !synthetic_format.is_empty() {
out.push_str("<a class=\"sidebar-title\" href=\"#synthetic-implementations\">\
Auto Trait Implementations</a>");
out.push_str(&format!("<div class=\"sidebar-links\">{}</div>", synthetic_format));
}
if !blanket_format.is_empty() {
out.push_str("<a class=\"sidebar-title\" href=\"#blanket-implementations\">\
Blanket Implementations</a>");
out.push_str(&format!("<div class=\"sidebar-links\">{}</div>", blanket_format));
}
}
}
out
}
fn sidebar_struct(fmt: &mut fmt::Formatter<'_>, it: &clean::Item,
s: &clean::Struct) -> fmt::Result {
let mut sidebar = String::new();
let fields = get_struct_fields_name(&s.fields);
if !fields.is_empty() {
if let doctree::Plain = s.struct_type {
sidebar.push_str(&format!("<a class=\"sidebar-title\" href=\"#fields\">Fields</a>\
<div class=\"sidebar-links\">{}</div>", fields));
}
}
sidebar.push_str(&sidebar_assoc_items(it));
if !sidebar.is_empty() {
write!(fmt, "<div class=\"block items\">{}</div>", sidebar)?;
}
Ok(())
}
fn extract_for_impl_name(item: &clean::Item) -> Option<(String, String)> {
match item.inner {
clean::ItemEnum::ImplItem(ref i) => {
if let Some(ref trait_) = i.trait_ {
Some((format!("{:#}", i.for_), format!("{:#}", trait_)))
} else {
None
}
},
_ => None,
}
}
fn is_negative_impl(i: &clean::Impl) -> bool {
i.polarity == Some(clean::ImplPolarity::Negative)
}
fn sidebar_trait(fmt: &mut fmt::Formatter<'_>, it: &clean::Item,
t: &clean::Trait) -> fmt::Result {
let mut sidebar = String::new();
let types = t.items
.iter()
.filter_map(|m| {
match m.name {
Some(ref name) if m.is_associated_type() => {
Some(format!("<a href=\"#associatedtype.{name}\">{name}</a>",
name=name))
}
_ => None,
}
})
.collect::<String>();
let consts = t.items
.iter()
.filter_map(|m| {
match m.name {
Some(ref name) if m.is_associated_const() => {
Some(format!("<a href=\"#associatedconstant.{name}\">{name}</a>",
name=name))
}
_ => None,
}
})
.collect::<String>();
let mut required = t.items
.iter()
.filter_map(|m| {
match m.name {
Some(ref name) if m.is_ty_method() => {
Some(format!("<a href=\"#tymethod.{name}\">{name}</a>",
name=name))
}
_ => None,
}
})
.collect::<Vec<String>>();
let mut provided = t.items
.iter()
.filter_map(|m| {
match m.name {
Some(ref name) if m.is_method() => {
Some(format!("<a href=\"#method.{0}\">{0}</a>", name))
}
_ => None,
}
})
.collect::<Vec<String>>();
if !types.is_empty() {
sidebar.push_str(&format!("<a class=\"sidebar-title\" href=\"#associated-types\">\
Associated Types</a><div class=\"sidebar-links\">{}</div>",
types));
}
if !consts.is_empty() {
sidebar.push_str(&format!("<a class=\"sidebar-title\" href=\"#associated-const\">\
Associated Constants</a><div class=\"sidebar-links\">{}</div>",
consts));
}
if !required.is_empty() {
required.sort();
sidebar.push_str(&format!("<a class=\"sidebar-title\" href=\"#required-methods\">\
Required Methods</a><div class=\"sidebar-links\">{}</div>",
required.join("")));
}
if !provided.is_empty() {
provided.sort();
sidebar.push_str(&format!("<a class=\"sidebar-title\" href=\"#provided-methods\">\
Provided Methods</a><div class=\"sidebar-links\">{}</div>",
provided.join("")));
}
let c = cache();
if let Some(implementors) = c.implementors.get(&it.def_id) {
let mut res = implementors.iter()
.filter(|i| i.inner_impl().for_.def_id()
.map_or(false, |d| !c.paths.contains_key(&d)))
.filter_map(|i| {
match extract_for_impl_name(&i.impl_item) {
Some((ref name, ref url)) => {
Some(format!("<a href=\"#impl-{}\">{}</a>",
small_url_encode(url),
Escape(name)))
}
_ => None,
}
})
.collect::<Vec<String>>();
if !res.is_empty() {
res.sort();
sidebar.push_str(&format!("<a class=\"sidebar-title\" href=\"#foreign-impls\">\
Implementations on Foreign Types</a><div \
class=\"sidebar-links\">{}</div>",
res.join("")));
}
}
sidebar.push_str("<a class=\"sidebar-title\" href=\"#implementors\">Implementors</a>");
if t.auto {
sidebar.push_str("<a class=\"sidebar-title\" \
href=\"#synthetic-implementors\">Auto Implementors</a>");
}
sidebar.push_str(&sidebar_assoc_items(it));
write!(fmt, "<div class=\"block items\">{}</div>", sidebar)
}
fn sidebar_primitive(fmt: &mut fmt::Formatter<'_>, it: &clean::Item,
_p: &clean::PrimitiveType) -> fmt::Result {
let sidebar = sidebar_assoc_items(it);
if !sidebar.is_empty() {
write!(fmt, "<div class=\"block items\">{}</div>", sidebar)?;
}
Ok(())
}
fn sidebar_typedef(fmt: &mut fmt::Formatter<'_>, it: &clean::Item,
_t: &clean::Typedef) -> fmt::Result {
let sidebar = sidebar_assoc_items(it);
if !sidebar.is_empty() {
write!(fmt, "<div class=\"block items\">{}</div>", sidebar)?;
}
Ok(())
}
fn get_struct_fields_name(fields: &[clean::Item]) -> String {
fields.iter()
.filter(|f| if let clean::StructFieldItem(..) = f.inner {
true
} else {
false
})
.filter_map(|f| match f.name {
Some(ref name) => Some(format!("<a href=\"#structfield.{name}\">\
{name}</a>", name=name)),
_ => None,
})
.collect()
}
fn sidebar_union(fmt: &mut fmt::Formatter<'_>, it: &clean::Item,
u: &clean::Union) -> fmt::Result {
let mut sidebar = String::new();
let fields = get_struct_fields_name(&u.fields);
if !fields.is_empty() {
sidebar.push_str(&format!("<a class=\"sidebar-title\" href=\"#fields\">Fields</a>\
<div class=\"sidebar-links\">{}</div>", fields));
}
sidebar.push_str(&sidebar_assoc_items(it));
if !sidebar.is_empty() {
write!(fmt, "<div class=\"block items\">{}</div>", sidebar)?;
}
Ok(())
}
fn sidebar_enum(fmt: &mut fmt::Formatter<'_>, it: &clean::Item,
e: &clean::Enum) -> fmt::Result {
let mut sidebar = String::new();
let variants = e.variants.iter()
.filter_map(|v| match v.name {
Some(ref name) => Some(format!("<a href=\"#variant.{name}\">{name}\
</a>", name = name)),
_ => None,
})
.collect::<String>();
if !variants.is_empty() {
sidebar.push_str(&format!("<a class=\"sidebar-title\" href=\"#variants\">Variants</a>\
<div class=\"sidebar-links\">{}</div>", variants));
}
sidebar.push_str(&sidebar_assoc_items(it));
if !sidebar.is_empty() {
write!(fmt, "<div class=\"block items\">{}</div>", sidebar)?;
}
Ok(())
}
fn item_ty_to_strs(ty: &ItemType) -> (&'static str, &'static str) {
match *ty {
ItemType::ExternCrate |
ItemType::Import => ("reexports", "Re-exports"),
ItemType::Module => ("modules", "Modules"),
ItemType::Struct => ("structs", "Structs"),
ItemType::Union => ("unions", "Unions"),
ItemType::Enum => ("enums", "Enums"),
ItemType::Function => ("functions", "Functions"),
ItemType::Typedef => ("types", "Type Definitions"),
ItemType::Static => ("statics", "Statics"),
ItemType::Constant => ("constants", "Constants"),
ItemType::Trait => ("traits", "Traits"),
ItemType::Impl => ("impls", "Implementations"),
ItemType::TyMethod => ("tymethods", "Type Methods"),
ItemType::Method => ("methods", "Methods"),
ItemType::StructField => ("fields", "Struct Fields"),
ItemType::Variant => ("variants", "Variants"),
ItemType::Macro => ("macros", "Macros"),
ItemType::Primitive => ("primitives", "Primitive Types"),
ItemType::AssociatedType => ("associated-types", "Associated Types"),
ItemType::AssociatedConst => ("associated-consts", "Associated Constants"),
ItemType::ForeignType => ("foreign-types", "Foreign Types"),
ItemType::Keyword => ("keywords", "Keywords"),
ItemType::Existential => ("existentials", "Existentials"),
ItemType::ProcAttribute => ("attributes", "Attribute Macros"),
ItemType::ProcDerive => ("derives", "Derive Macros"),
ItemType::TraitAlias => ("trait-aliases", "Trait aliases"),
}
}
fn sidebar_module(fmt: &mut fmt::Formatter<'_>, _it: &clean::Item,
items: &[clean::Item]) -> fmt::Result {
let mut sidebar = String::new();
if items.iter().any(|it| it.type_() == ItemType::ExternCrate ||
it.type_() == ItemType::Import) {
sidebar.push_str(&format!("<li><a href=\"#{id}\">{name}</a></li>",
id = "reexports",
name = "Re-exports"));
}
// ordering taken from item_module, reorder, where it prioritized elements in a certain order
// to print its headings
for &myty in &[ItemType::Primitive, ItemType::Module, ItemType::Macro, ItemType::Struct,
ItemType::Enum, ItemType::Constant, ItemType::Static, ItemType::Trait,
ItemType::Function, ItemType::Typedef, ItemType::Union, ItemType::Impl,
ItemType::TyMethod, ItemType::Method, ItemType::StructField, ItemType::Variant,
ItemType::AssociatedType, ItemType::AssociatedConst, ItemType::ForeignType] {
if items.iter().any(|it| !it.is_stripped() && it.type_() == myty) {
let (short, name) = item_ty_to_strs(&myty);
sidebar.push_str(&format!("<li><a href=\"#{id}\">{name}</a></li>",
id = short,
name = name));
}
}
if !sidebar.is_empty() {
write!(fmt, "<div class=\"block items\"><ul>{}</ul></div>", sidebar)?;
}
Ok(())
}
fn sidebar_foreign_type(fmt: &mut fmt::Formatter<'_>, it: &clean::Item) -> fmt::Result {
let sidebar = sidebar_assoc_items(it);
if !sidebar.is_empty() {
write!(fmt, "<div class=\"block items\">{}</div>", sidebar)?;
}
Ok(())
}
impl<'a> fmt::Display for Source<'a> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let Source(s) = *self;
let lines = s.lines().count();
let mut cols = 0;
let mut tmp = lines;
while tmp > 0 {
cols += 1;
tmp /= 10;
}
write!(fmt, "<pre class=\"line-numbers\">")?;
for i in 1..=lines {
write!(fmt, "<span id=\"{0}\">{0:1$}</span>\n", i, cols)?;
}
write!(fmt, "</pre>")?;
write!(fmt, "{}",
highlight::render_with_highlighting(s, None, None, None))?;
Ok(())
}
}
fn item_macro(w: &mut fmt::Formatter<'_>, cx: &Context, it: &clean::Item,
t: &clean::Macro) -> fmt::Result {
wrap_into_docblock(w, |w| {
w.write_str(&highlight::render_with_highlighting(&t.source,
Some("macro"),
None,
None))
})?;
document(w, cx, it)
}
fn item_proc_macro(w: &mut fmt::Formatter<'_>, cx: &Context, it: &clean::Item, m: &clean::ProcMacro)
-> fmt::Result
{
let name = it.name.as_ref().expect("proc-macros always have names");
match m.kind {
MacroKind::Bang => {
write!(w, "<pre class='rust macro'>")?;
write!(w, "{}!() {{ /* proc-macro */ }}", name)?;
write!(w, "</pre>")?;
}
MacroKind::Attr => {
write!(w, "<pre class='rust attr'>")?;
write!(w, "#[{}]", name)?;
write!(w, "</pre>")?;
}
MacroKind::Derive => {
write!(w, "<pre class='rust derive'>")?;
write!(w, "#[derive({})]", name)?;
if !m.helpers.is_empty() {
writeln!(w, "\n{{")?;
writeln!(w, " // Attributes available to this derive:")?;
for attr in &m.helpers {
writeln!(w, " #[{}]", attr)?;
}
write!(w, "}}")?;
}
write!(w, "</pre>")?;
}
_ => {}
}
document(w, cx, it)
}
fn item_primitive(w: &mut fmt::Formatter<'_>, cx: &Context,
it: &clean::Item,
_p: &clean::PrimitiveType) -> fmt::Result {
document(w, cx, it)?;
render_assoc_items(w, cx, it, it.def_id, AssocItemRender::All)
}
fn item_keyword(w: &mut fmt::Formatter<'_>, cx: &Context,
it: &clean::Item,
_p: &str) -> fmt::Result {
document(w, cx, it)
}
const BASIC_KEYWORDS: &'static str = "rust, rustlang, rust-lang";
fn make_item_keywords(it: &clean::Item) -> String {
format!("{}, {}", BASIC_KEYWORDS, it.name.as_ref().unwrap())
}
fn get_index_search_type(item: &clean::Item) -> Option<IndexItemFunctionType> {
let decl = match item.inner {
clean::FunctionItem(ref f) => &f.decl,
clean::MethodItem(ref m) => &m.decl,
clean::TyMethodItem(ref m) => &m.decl,
_ => return None
};
let inputs = decl.inputs.values.iter().map(|arg| get_index_type(&arg.type_)).collect();
let output = match decl.output {
clean::FunctionRetTy::Return(ref return_type) => Some(get_index_type(return_type)),
_ => None
};
Some(IndexItemFunctionType { inputs: inputs, output: output })
}
fn get_index_type(clean_type: &clean::Type) -> Type {
let t = Type {
name: get_index_type_name(clean_type, true).map(|s| s.to_ascii_lowercase()),
generics: get_generics(clean_type),
};
t
}
/// Returns a list of all paths used in the type.
/// This is used to help deduplicate imported impls
/// for reexported types. If any of the contained
/// types are re-exported, we don't use the corresponding
/// entry from the js file, as inlining will have already
/// picked up the impl
fn collect_paths_for_type(first_ty: clean::Type) -> Vec<String> {
let mut out = Vec::new();
let mut visited = FxHashSet::default();
let mut work = VecDeque::new();
let cache = cache();
work.push_back(first_ty);
while let Some(ty) = work.pop_front() {
if !visited.insert(ty.clone()) {
continue;
}
match ty {
clean::Type::ResolvedPath { did, .. } => {
let get_extern = || cache.external_paths.get(&did).map(|s| s.0.clone());
let fqp = cache.exact_paths.get(&did).cloned().or_else(get_extern);
match fqp {
Some(path) => {
out.push(path.join("::"));
},
_ => {}
};
},
clean::Type::Tuple(tys) => {
work.extend(tys.into_iter());
},
clean::Type::Slice(ty) => {
work.push_back(*ty);
}
clean::Type::Array(ty, _) => {
work.push_back(*ty);
},
clean::Type::Unique(ty) => {
work.push_back(*ty);
},
clean::Type::RawPointer(_, ty) => {
work.push_back(*ty);
},
clean::Type::BorrowedRef { type_, .. } => {
work.push_back(*type_);
},
clean::Type::QPath { self_type, trait_, .. } => {
work.push_back(*self_type);
work.push_back(*trait_);
},
_ => {}
}
};
out
}
fn get_index_type_name(clean_type: &clean::Type, accept_generic: bool) -> Option<String> {
match *clean_type {
clean::ResolvedPath { ref path, .. } => {
let segments = &path.segments;
let path_segment = segments.into_iter().last().unwrap_or_else(|| panic!(
"get_index_type_name(clean_type: {:?}, accept_generic: {:?}) had length zero path",
clean_type, accept_generic
));
Some(path_segment.name.clone())
}
clean::Generic(ref s) if accept_generic => Some(s.clone()),
clean::Primitive(ref p) => Some(format!("{:?}", p)),
clean::BorrowedRef { ref type_, .. } => get_index_type_name(type_, accept_generic),
// FIXME: add all from clean::Type.
_ => None
}
}
fn get_generics(clean_type: &clean::Type) -> Option<Vec<String>> {
clean_type.generics()
.and_then(|types| {
let r = types.iter()
.filter_map(|t| get_index_type_name(t, false))
.map(|s| s.to_ascii_lowercase())
.collect::<Vec<_>>();
if r.is_empty() {
None
} else {
Some(r)
}
})
}
pub fn cache() -> Arc<Cache> {
CACHE_KEY.with(|c| c.borrow().clone())
}
#[cfg(test)]
#[test]
fn test_name_key() {
assert_eq!(name_key("0"), ("", 0, 1));
assert_eq!(name_key("123"), ("", 123, 0));
assert_eq!(name_key("Fruit"), ("Fruit", 0, 0));
assert_eq!(name_key("Fruit0"), ("Fruit", 0, 1));
assert_eq!(name_key("Fruit0000"), ("Fruit", 0, 4));
assert_eq!(name_key("Fruit01"), ("Fruit", 1, 1));
assert_eq!(name_key("Fruit10"), ("Fruit", 10, 0));
assert_eq!(name_key("Fruit123"), ("Fruit", 123, 0));
}
#[cfg(test)]
#[test]
fn test_name_sorting() {
let names = ["Apple",
"Banana",
"Fruit", "Fruit0", "Fruit00",
"Fruit1", "Fruit01",
"Fruit2", "Fruit02",
"Fruit20",
"Fruit30x",
"Fruit100",
"Pear"];
let mut sorted = names.to_owned();
sorted.sort_by_key(|&s| name_key(s));
assert_eq!(names, sorted);
}