| //! Implements calling functions from a native library. |
| |
| use std::ops::Deref; |
| |
| use libffi::high::call as ffi; |
| use libffi::low::CodePtr; |
| use rustc_abi::{BackendRepr, HasDataLayout, Size}; |
| use rustc_middle::mir::interpret::Pointer; |
| use rustc_middle::ty::{self as ty, IntTy, UintTy}; |
| use rustc_span::Symbol; |
| use serde::{Deserialize, Serialize}; |
| |
| #[cfg_attr( |
| not(all( |
| target_os = "linux", |
| target_env = "gnu", |
| any(target_arch = "x86", target_arch = "x86_64") |
| )), |
| path = "trace/stub.rs" |
| )] |
| pub mod trace; |
| |
| use crate::*; |
| |
| /// The final results of an FFI trace, containing every relevant event detected |
| /// by the tracer. |
| #[derive(Serialize, Deserialize, Debug)] |
| pub struct MemEvents { |
| /// An list of memory accesses that occurred, in the order they occurred in. |
| pub acc_events: Vec<AccessEvent>, |
| } |
| |
| /// A single memory access. |
| #[derive(Serialize, Deserialize, Clone, Debug)] |
| pub enum AccessEvent { |
| /// A read occurred on this memory range. |
| Read(AccessRange), |
| /// A write may have occurred on this memory range. |
| /// Some instructions *may* write memory without *always* doing that, |
| /// so this can be an over-approximation. |
| /// The range info, however, is reliable if the access did happen. |
| /// If the second field is true, the access definitely happened. |
| Write(AccessRange, bool), |
| } |
| |
| impl AccessEvent { |
| fn get_range(&self) -> AccessRange { |
| match self { |
| AccessEvent::Read(access_range) => access_range.clone(), |
| AccessEvent::Write(access_range, _) => access_range.clone(), |
| } |
| } |
| } |
| |
| /// The memory touched by a given access. |
| #[derive(Serialize, Deserialize, Clone, Debug)] |
| pub struct AccessRange { |
| /// The base address in memory where an access occurred. |
| pub addr: usize, |
| /// The number of bytes affected from the base. |
| pub size: usize, |
| } |
| |
| impl AccessRange { |
| fn end(&self) -> usize { |
| self.addr.strict_add(self.size) |
| } |
| } |
| |
| impl<'tcx> EvalContextExtPriv<'tcx> for crate::MiriInterpCx<'tcx> {} |
| trait EvalContextExtPriv<'tcx>: crate::MiriInterpCxExt<'tcx> { |
| /// Call native host function and return the output as an immediate. |
| fn call_native_with_args<'a>( |
| &mut self, |
| link_name: Symbol, |
| dest: &MPlaceTy<'tcx>, |
| ptr: CodePtr, |
| libffi_args: Vec<libffi::high::Arg<'a>>, |
| ) -> InterpResult<'tcx, (crate::ImmTy<'tcx>, Option<MemEvents>)> { |
| let this = self.eval_context_mut(); |
| #[cfg(target_os = "linux")] |
| let alloc = this.machine.allocator.as_ref().unwrap(); |
| #[cfg(not(target_os = "linux"))] |
| // Placeholder value. |
| let alloc = (); |
| |
| trace::Supervisor::do_ffi(alloc, || { |
| // Call the function (`ptr`) with arguments `libffi_args`, and obtain the return value |
| // as the specified primitive integer type |
| let scalar = match dest.layout.ty.kind() { |
| // ints |
| ty::Int(IntTy::I8) => { |
| // Unsafe because of the call to native code. |
| // Because this is calling a C function it is not necessarily sound, |
| // but there is no way around this and we've checked as much as we can. |
| let x = unsafe { ffi::call::<i8>(ptr, libffi_args.as_slice()) }; |
| Scalar::from_i8(x) |
| } |
| ty::Int(IntTy::I16) => { |
| let x = unsafe { ffi::call::<i16>(ptr, libffi_args.as_slice()) }; |
| Scalar::from_i16(x) |
| } |
| ty::Int(IntTy::I32) => { |
| let x = unsafe { ffi::call::<i32>(ptr, libffi_args.as_slice()) }; |
| Scalar::from_i32(x) |
| } |
| ty::Int(IntTy::I64) => { |
| let x = unsafe { ffi::call::<i64>(ptr, libffi_args.as_slice()) }; |
| Scalar::from_i64(x) |
| } |
| ty::Int(IntTy::Isize) => { |
| let x = unsafe { ffi::call::<isize>(ptr, libffi_args.as_slice()) }; |
| Scalar::from_target_isize(x.try_into().unwrap(), this) |
| } |
| // uints |
| ty::Uint(UintTy::U8) => { |
| let x = unsafe { ffi::call::<u8>(ptr, libffi_args.as_slice()) }; |
| Scalar::from_u8(x) |
| } |
| ty::Uint(UintTy::U16) => { |
| let x = unsafe { ffi::call::<u16>(ptr, libffi_args.as_slice()) }; |
| Scalar::from_u16(x) |
| } |
| ty::Uint(UintTy::U32) => { |
| let x = unsafe { ffi::call::<u32>(ptr, libffi_args.as_slice()) }; |
| Scalar::from_u32(x) |
| } |
| ty::Uint(UintTy::U64) => { |
| let x = unsafe { ffi::call::<u64>(ptr, libffi_args.as_slice()) }; |
| Scalar::from_u64(x) |
| } |
| ty::Uint(UintTy::Usize) => { |
| let x = unsafe { ffi::call::<usize>(ptr, libffi_args.as_slice()) }; |
| Scalar::from_target_usize(x.try_into().unwrap(), this) |
| } |
| // Functions with no declared return type (i.e., the default return) |
| // have the output_type `Tuple([])`. |
| ty::Tuple(t_list) if (*t_list).deref().is_empty() => { |
| unsafe { ffi::call::<()>(ptr, libffi_args.as_slice()) }; |
| return interp_ok(ImmTy::uninit(dest.layout)); |
| } |
| ty::RawPtr(..) => { |
| let x = unsafe { ffi::call::<*const ()>(ptr, libffi_args.as_slice()) }; |
| let ptr = Pointer::new(Provenance::Wildcard, Size::from_bytes(x.addr())); |
| Scalar::from_pointer(ptr, this) |
| } |
| _ => |
| return Err(err_unsup_format!( |
| "unsupported return type for native call: {:?}", |
| link_name |
| )) |
| .into(), |
| }; |
| interp_ok(ImmTy::from_scalar(scalar, dest.layout)) |
| }) |
| } |
| |
| /// Get the pointer to the function of the specified name in the shared object file, |
| /// if it exists. The function must be in one of the shared object files specified: |
| /// we do *not* return pointers to functions in dependencies of libraries. |
| fn get_func_ptr_explicitly_from_lib(&mut self, link_name: Symbol) -> Option<CodePtr> { |
| let this = self.eval_context_mut(); |
| // Try getting the function from one of the shared libraries. |
| for (lib, lib_path) in &this.machine.native_lib { |
| let Ok(func): Result<libloading::Symbol<'_, unsafe extern "C" fn()>, _> = |
| (unsafe { lib.get(link_name.as_str().as_bytes()) }) |
| else { |
| continue; |
| }; |
| #[expect(clippy::as_conversions)] // fn-ptr to raw-ptr cast needs `as`. |
| let fn_ptr = *func.deref() as *mut std::ffi::c_void; |
| |
| // FIXME: this is a hack! |
| // The `libloading` crate will automatically load system libraries like `libc`. |
| // On linux `libloading` is based on `dlsym`: https://docs.rs/libloading/0.7.3/src/libloading/os/unix/mod.rs.html#202 |
| // and `dlsym`(https://linux.die.net/man/3/dlsym) looks through the dependency tree of the |
| // library if it can't find the symbol in the library itself. |
| // So, in order to check if the function was actually found in the specified |
| // `machine.external_so_lib` we need to check its `dli_fname` and compare it to |
| // the specified SO file path. |
| // This code is a reimplementation of the mechanism for getting `dli_fname` in `libloading`, |
| // from: https://docs.rs/libloading/0.7.3/src/libloading/os/unix/mod.rs.html#411 |
| // using the `libc` crate where this interface is public. |
| let mut info = std::mem::MaybeUninit::<libc::Dl_info>::zeroed(); |
| unsafe { |
| let res = libc::dladdr(fn_ptr, info.as_mut_ptr()); |
| assert!(res != 0, "failed to load info about function we already loaded"); |
| let info = info.assume_init(); |
| #[cfg(target_os = "cygwin")] |
| let fname_ptr = info.dli_fname.as_ptr(); |
| #[cfg(not(target_os = "cygwin"))] |
| let fname_ptr = info.dli_fname; |
| assert!(!fname_ptr.is_null()); |
| if std::ffi::CStr::from_ptr(fname_ptr).to_str().unwrap() |
| != lib_path.to_str().unwrap() |
| { |
| // The function is not actually in this .so, check the next one. |
| continue; |
| } |
| } |
| |
| // Return a pointer to the function. |
| return Some(CodePtr(fn_ptr)); |
| } |
| None |
| } |
| |
| /// Applies the `events` to Miri's internal state. The event vector must be |
| /// ordered sequentially by when the accesses happened, and the sizes are |
| /// assumed to be exact. |
| fn tracing_apply_accesses(&mut self, events: MemEvents) -> InterpResult<'tcx> { |
| let this = self.eval_context_mut(); |
| |
| for evt in events.acc_events { |
| let evt_rg = evt.get_range(); |
| // LLVM at least permits vectorising accesses to adjacent allocations, |
| // so we cannot assume 1 access = 1 allocation. :( |
| let mut rg = evt_rg.addr..evt_rg.end(); |
| while let Some(curr) = rg.next() { |
| let Some(alloc_id) = this.alloc_id_from_addr( |
| curr.to_u64(), |
| rg.len().try_into().unwrap(), |
| /* only_exposed_allocations */ true, |
| ) else { |
| throw_ub_format!("Foreign code did an out-of-bounds access!") |
| }; |
| let alloc = this.get_alloc_raw(alloc_id)?; |
| // The logical and physical address of the allocation coincide, so we can use |
| // this instead of `addr_from_alloc_id`. |
| let alloc_addr = alloc.get_bytes_unchecked_raw().addr(); |
| |
| // Determine the range inside the allocation that this access covers. This range is |
| // in terms of offsets from the start of `alloc`. The start of the overlap range |
| // will be `curr`; the end will be the minimum of the end of the allocation and the |
| // end of the access' range. |
| let overlap = curr.strict_sub(alloc_addr) |
| ..std::cmp::min(alloc.len(), rg.end.strict_sub(alloc_addr)); |
| // Skip forward however many bytes of the access are contained in the current |
| // allocation, subtracting 1 since the overlap range includes the current addr |
| // that was already popped off of the range. |
| rg.advance_by(overlap.len().strict_sub(1)).unwrap(); |
| |
| match evt { |
| AccessEvent::Read(_) => { |
| // FIXME: ProvenanceMap should have something like get_range(). |
| let p_map = alloc.provenance(); |
| for idx in overlap { |
| // If a provenance was read by the foreign code, expose it. |
| if let Some((prov, _idx)) = p_map.get_byte(Size::from_bytes(idx), this) |
| { |
| this.expose_provenance(prov)?; |
| } |
| } |
| } |
| AccessEvent::Write(_, certain) => { |
| // Sometimes we aren't certain if a write happened, in which case we |
| // only initialise that data if the allocation is mutable. |
| if certain || alloc.mutability.is_mut() { |
| let (alloc, cx) = this.get_alloc_raw_mut(alloc_id)?; |
| alloc.process_native_write( |
| &cx.tcx, |
| Some(AllocRange { |
| start: Size::from_bytes(overlap.start), |
| size: Size::from_bytes(overlap.len()), |
| }), |
| ) |
| } |
| } |
| } |
| } |
| } |
| |
| interp_ok(()) |
| } |
| } |
| |
| impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {} |
| pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> { |
| /// Call the native host function, with supplied arguments. |
| /// Needs to convert all the arguments from their Miri representations to |
| /// a native form (through `libffi` call). |
| /// Then, convert the return value from the native form into something that |
| /// can be stored in Miri's internal memory. |
| fn call_native_fn( |
| &mut self, |
| link_name: Symbol, |
| dest: &MPlaceTy<'tcx>, |
| args: &[OpTy<'tcx>], |
| ) -> InterpResult<'tcx, bool> { |
| let this = self.eval_context_mut(); |
| // Get the pointer to the function in the shared object file if it exists. |
| let code_ptr = match this.get_func_ptr_explicitly_from_lib(link_name) { |
| Some(ptr) => ptr, |
| None => { |
| // Shared object file does not export this function -- try the shims next. |
| return interp_ok(false); |
| } |
| }; |
| |
| // Do we have ptrace? |
| let tracing = trace::Supervisor::is_enabled(); |
| |
| // Get the function arguments, and convert them to `libffi`-compatible form. |
| let mut libffi_args = Vec::<CArg>::with_capacity(args.len()); |
| for arg in args.iter() { |
| if !matches!(arg.layout.backend_repr, BackendRepr::Scalar(_)) { |
| throw_unsup_format!("only scalar argument types are supported for native calls") |
| } |
| let imm = this.read_immediate(arg)?; |
| libffi_args.push(imm_to_carg(&imm, this)?); |
| // If we are passing a pointer, expose its provenance. Below, all exposed memory |
| // (previously exposed and new exposed) will then be properly prepared. |
| if matches!(arg.layout.ty.kind(), ty::RawPtr(..)) { |
| let ptr = imm.to_scalar().to_pointer(this)?; |
| let Some(prov) = ptr.provenance else { |
| // Pointer without provenance may not access any memory anyway, skip. |
| continue; |
| }; |
| // The first time this happens, print a warning. |
| if !this.machine.native_call_mem_warned.replace(true) { |
| // Newly set, so first time we get here. |
| this.emit_diagnostic(NonHaltingDiagnostic::NativeCallSharedMem { tracing }); |
| } |
| |
| this.expose_provenance(prov)?; |
| } |
| } |
| // Convert arguments to `libffi::high::Arg` type. |
| let libffi_args = libffi_args |
| .iter() |
| .map(|arg| arg.arg_downcast()) |
| .collect::<Vec<libffi::high::Arg<'_>>>(); |
| |
| // Prepare all exposed memory (both previously exposed, and just newly exposed since a |
| // pointer was passed as argument). Uninitialised memory is left as-is, but any data |
| // exposed this way is garbage anyway. |
| this.visit_reachable_allocs(this.exposed_allocs(), |this, alloc_id, info| { |
| // If there is no data behind this pointer, skip this. |
| if !matches!(info.kind, AllocKind::LiveData) { |
| return interp_ok(()); |
| } |
| // It's okay to get raw access, what we do does not correspond to any actual |
| // AM operation, it just approximates the state to account for the native call. |
| let alloc = this.get_alloc_raw(alloc_id)?; |
| // Also expose the provenance of the interpreter-level allocation, so it can |
| // be read by FFI. The `black_box` is defensive programming as LLVM likes |
| // to (incorrectly) optimize away ptr2int casts whose result is unused. |
| std::hint::black_box(alloc.get_bytes_unchecked_raw().expose_provenance()); |
| |
| if !tracing { |
| // Expose all provenances in this allocation, since the native code can do $whatever. |
| // Can be skipped when tracing; in that case we'll expose just the actually-read parts later. |
| for prov in alloc.provenance().provenances() { |
| this.expose_provenance(prov)?; |
| } |
| } |
| |
| // Prepare for possible write from native code if mutable. |
| if info.mutbl.is_mut() { |
| let (alloc, cx) = this.get_alloc_raw_mut(alloc_id)?; |
| // These writes could initialize everything and wreck havoc with the pointers. |
| // We can skip that when tracing; in that case we'll later do that only for the memory that got actually written. |
| if !tracing { |
| alloc.process_native_write(&cx.tcx, None); |
| } |
| // Also expose *mutable* provenance for the interpreter-level allocation. |
| std::hint::black_box(alloc.get_bytes_unchecked_raw_mut().expose_provenance()); |
| } |
| |
| interp_ok(()) |
| })?; |
| |
| // Call the function and store output, depending on return type in the function signature. |
| let (ret, maybe_memevents) = |
| this.call_native_with_args(link_name, dest, code_ptr, libffi_args)?; |
| |
| if tracing { |
| this.tracing_apply_accesses(maybe_memevents.unwrap())?; |
| } |
| |
| this.write_immediate(*ret, dest)?; |
| interp_ok(true) |
| } |
| } |
| |
| #[derive(Debug, Clone)] |
| /// Enum of supported arguments to external C functions. |
| // We introduce this enum instead of just calling `ffi::arg` and storing a list |
| // of `libffi::high::Arg` directly, because the `libffi::high::Arg` just wraps a reference |
| // to the value it represents: https://docs.rs/libffi/latest/libffi/high/call/struct.Arg.html |
| // and we need to store a copy of the value, and pass a reference to this copy to C instead. |
| enum CArg { |
| /// 8-bit signed integer. |
| Int8(i8), |
| /// 16-bit signed integer. |
| Int16(i16), |
| /// 32-bit signed integer. |
| Int32(i32), |
| /// 64-bit signed integer. |
| Int64(i64), |
| /// isize. |
| ISize(isize), |
| /// 8-bit unsigned integer. |
| UInt8(u8), |
| /// 16-bit unsigned integer. |
| UInt16(u16), |
| /// 32-bit unsigned integer. |
| UInt32(u32), |
| /// 64-bit unsigned integer. |
| UInt64(u64), |
| /// usize. |
| USize(usize), |
| /// Raw pointer, stored as C's `void*`. |
| RawPtr(*mut std::ffi::c_void), |
| } |
| |
| impl<'a> CArg { |
| /// Convert a `CArg` to a `libffi` argument type. |
| fn arg_downcast(&'a self) -> libffi::high::Arg<'a> { |
| match self { |
| CArg::Int8(i) => ffi::arg(i), |
| CArg::Int16(i) => ffi::arg(i), |
| CArg::Int32(i) => ffi::arg(i), |
| CArg::Int64(i) => ffi::arg(i), |
| CArg::ISize(i) => ffi::arg(i), |
| CArg::UInt8(i) => ffi::arg(i), |
| CArg::UInt16(i) => ffi::arg(i), |
| CArg::UInt32(i) => ffi::arg(i), |
| CArg::UInt64(i) => ffi::arg(i), |
| CArg::USize(i) => ffi::arg(i), |
| CArg::RawPtr(i) => ffi::arg(i), |
| } |
| } |
| } |
| |
| /// Extract the scalar value from the result of reading a scalar from the machine, |
| /// and convert it to a `CArg`. |
| fn imm_to_carg<'tcx>(v: &ImmTy<'tcx>, cx: &impl HasDataLayout) -> InterpResult<'tcx, CArg> { |
| interp_ok(match v.layout.ty.kind() { |
| // If the primitive provided can be converted to a type matching the type pattern |
| // then create a `CArg` of this primitive value with the corresponding `CArg` constructor. |
| // the ints |
| ty::Int(IntTy::I8) => CArg::Int8(v.to_scalar().to_i8()?), |
| ty::Int(IntTy::I16) => CArg::Int16(v.to_scalar().to_i16()?), |
| ty::Int(IntTy::I32) => CArg::Int32(v.to_scalar().to_i32()?), |
| ty::Int(IntTy::I64) => CArg::Int64(v.to_scalar().to_i64()?), |
| ty::Int(IntTy::Isize) => |
| CArg::ISize(v.to_scalar().to_target_isize(cx)?.try_into().unwrap()), |
| // the uints |
| ty::Uint(UintTy::U8) => CArg::UInt8(v.to_scalar().to_u8()?), |
| ty::Uint(UintTy::U16) => CArg::UInt16(v.to_scalar().to_u16()?), |
| ty::Uint(UintTy::U32) => CArg::UInt32(v.to_scalar().to_u32()?), |
| ty::Uint(UintTy::U64) => CArg::UInt64(v.to_scalar().to_u64()?), |
| ty::Uint(UintTy::Usize) => |
| CArg::USize(v.to_scalar().to_target_usize(cx)?.try_into().unwrap()), |
| ty::RawPtr(..) => { |
| let s = v.to_scalar().to_pointer(cx)?.addr(); |
| // This relies on the `expose_provenance` in the `visit_reachable_allocs` callback |
| // above. |
| CArg::RawPtr(std::ptr::with_exposed_provenance_mut(s.bytes_usize())) |
| } |
| _ => throw_unsup_format!("unsupported argument type for native call: {}", v.layout.ty), |
| }) |
| } |