|  | //! Defines how the compiler represents types internally. | 
|  | //! | 
|  | //! Two important entities in this module are: | 
|  | //! | 
|  | //! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type. | 
|  | //! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler. | 
|  | //! | 
|  | //! For more information, see ["The `ty` module: representing types"] in the rustc-dev-guide. | 
|  | //! | 
|  | //! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html | 
|  |  | 
|  | #![allow(rustc::usage_of_ty_tykind)] | 
|  |  | 
|  | use std::assert_matches::assert_matches; | 
|  | use std::fmt::Debug; | 
|  | use std::hash::{Hash, Hasher}; | 
|  | use std::marker::PhantomData; | 
|  | use std::num::NonZero; | 
|  | use std::ptr::NonNull; | 
|  | use std::{fmt, iter, str}; | 
|  |  | 
|  | pub use adt::*; | 
|  | pub use assoc::*; | 
|  | pub use generic_args::{GenericArgKind, TermKind, *}; | 
|  | pub use generics::*; | 
|  | pub use intrinsic::IntrinsicDef; | 
|  | use rustc_abi::{Align, FieldIdx, Integer, IntegerType, ReprFlags, ReprOptions, VariantIdx}; | 
|  | use rustc_ast::node_id::NodeMap; | 
|  | pub use rustc_ast_ir::{Movability, Mutability, try_visit}; | 
|  | use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet}; | 
|  | use rustc_data_structures::intern::Interned; | 
|  | use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; | 
|  | use rustc_data_structures::steal::Steal; | 
|  | use rustc_data_structures::unord::{UnordMap, UnordSet}; | 
|  | use rustc_errors::{Diag, ErrorGuaranteed, LintBuffer}; | 
|  | use rustc_hir::attrs::{AttributeKind, StrippedCfgItem}; | 
|  | use rustc_hir::def::{CtorKind, CtorOf, DefKind, DocLinkResMap, LifetimeRes, Res}; | 
|  | use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, LocalDefIdMap}; | 
|  | use rustc_hir::definitions::DisambiguatorState; | 
|  | use rustc_hir::{LangItem, attrs as attr, find_attr}; | 
|  | use rustc_index::IndexVec; | 
|  | use rustc_index::bit_set::BitMatrix; | 
|  | use rustc_macros::{ | 
|  | Decodable, Encodable, HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable, | 
|  | extension, | 
|  | }; | 
|  | use rustc_query_system::ich::StableHashingContext; | 
|  | use rustc_serialize::{Decodable, Encodable}; | 
|  | pub use rustc_session::lint::RegisteredTools; | 
|  | use rustc_span::hygiene::MacroKind; | 
|  | use rustc_span::{DUMMY_SP, ExpnId, ExpnKind, Ident, Span, Symbol, sym}; | 
|  | pub use rustc_type_ir::data_structures::{DelayedMap, DelayedSet}; | 
|  | pub use rustc_type_ir::fast_reject::DeepRejectCtxt; | 
|  | #[allow( | 
|  | hidden_glob_reexports, | 
|  | rustc::usage_of_type_ir_inherent, | 
|  | rustc::non_glob_import_of_type_ir_inherent | 
|  | )] | 
|  | use rustc_type_ir::inherent; | 
|  | pub use rustc_type_ir::relate::VarianceDiagInfo; | 
|  | pub use rustc_type_ir::solve::SizedTraitKind; | 
|  | pub use rustc_type_ir::*; | 
|  | #[allow(hidden_glob_reexports, unused_imports)] | 
|  | use rustc_type_ir::{InferCtxtLike, Interner}; | 
|  | use tracing::{debug, instrument}; | 
|  | pub use vtable::*; | 
|  | use {rustc_ast as ast, rustc_hir as hir}; | 
|  |  | 
|  | pub use self::closure::{ | 
|  | BorrowKind, CAPTURE_STRUCT_LOCAL, CaptureInfo, CapturedPlace, ClosureTypeInfo, | 
|  | MinCaptureInformationMap, MinCaptureList, RootVariableMinCaptureList, UpvarCapture, UpvarId, | 
|  | UpvarPath, analyze_coroutine_closure_captures, is_ancestor_or_same_capture, | 
|  | place_to_string_for_capture, | 
|  | }; | 
|  | pub use self::consts::{ | 
|  | AnonConstKind, AtomicOrdering, Const, ConstInt, ConstKind, ConstToValTreeResult, Expr, | 
|  | ExprKind, ScalarInt, UnevaluatedConst, ValTree, ValTreeKind, Value, | 
|  | }; | 
|  | pub use self::context::{ | 
|  | CtxtInterners, CurrentGcx, DeducedParamAttrs, Feed, FreeRegionInfo, GlobalCtxt, Lift, TyCtxt, | 
|  | TyCtxtFeed, tls, | 
|  | }; | 
|  | pub use self::fold::*; | 
|  | pub use self::instance::{Instance, InstanceKind, ReifyReason, UnusedGenericParams}; | 
|  | pub use self::list::{List, ListWithCachedTypeInfo}; | 
|  | pub use self::opaque_types::OpaqueTypeKey; | 
|  | pub use self::pattern::{Pattern, PatternKind}; | 
|  | pub use self::predicate::{ | 
|  | AliasTerm, ArgOutlivesPredicate, Clause, ClauseKind, CoercePredicate, ExistentialPredicate, | 
|  | ExistentialPredicateStableCmpExt, ExistentialProjection, ExistentialTraitRef, | 
|  | HostEffectPredicate, NormalizesTo, OutlivesPredicate, PolyCoercePredicate, | 
|  | PolyExistentialPredicate, PolyExistentialProjection, PolyExistentialTraitRef, | 
|  | PolyProjectionPredicate, PolyRegionOutlivesPredicate, PolySubtypePredicate, PolyTraitPredicate, | 
|  | PolyTraitRef, PolyTypeOutlivesPredicate, Predicate, PredicateKind, ProjectionPredicate, | 
|  | RegionOutlivesPredicate, SubtypePredicate, TraitPredicate, TraitRef, TypeOutlivesPredicate, | 
|  | }; | 
|  | pub use self::region::{ | 
|  | BoundRegion, BoundRegionKind, EarlyParamRegion, LateParamRegion, LateParamRegionKind, Region, | 
|  | RegionKind, RegionVid, | 
|  | }; | 
|  | pub use self::rvalue_scopes::RvalueScopes; | 
|  | pub use self::sty::{ | 
|  | AliasTy, Article, Binder, BoundTy, BoundTyKind, BoundVariableKind, CanonicalPolyFnSig, | 
|  | CoroutineArgsExt, EarlyBinder, FnSig, InlineConstArgs, InlineConstArgsParts, ParamConst, | 
|  | ParamTy, PolyFnSig, TyKind, TypeAndMut, TypingMode, UpvarArgs, | 
|  | }; | 
|  | pub use self::trait_def::TraitDef; | 
|  | pub use self::typeck_results::{ | 
|  | CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, IsIdentity, | 
|  | Rust2024IncompatiblePatInfo, TypeckResults, UserType, UserTypeAnnotationIndex, UserTypeKind, | 
|  | }; | 
|  | pub use self::visit::*; | 
|  | use crate::error::{OpaqueHiddenTypeMismatch, TypeMismatchReason}; | 
|  | use crate::metadata::ModChild; | 
|  | use crate::middle::privacy::EffectiveVisibilities; | 
|  | use crate::mir::{Body, CoroutineLayout, CoroutineSavedLocal, SourceInfo}; | 
|  | use crate::query::{IntoQueryParam, Providers}; | 
|  | use crate::ty; | 
|  | use crate::ty::codec::{TyDecoder, TyEncoder}; | 
|  | pub use crate::ty::diagnostics::*; | 
|  | use crate::ty::fast_reject::SimplifiedType; | 
|  | use crate::ty::layout::LayoutError; | 
|  | use crate::ty::util::Discr; | 
|  | use crate::ty::walk::TypeWalker; | 
|  |  | 
|  | pub mod abstract_const; | 
|  | pub mod adjustment; | 
|  | pub mod cast; | 
|  | pub mod codec; | 
|  | pub mod error; | 
|  | pub mod fast_reject; | 
|  | pub mod inhabitedness; | 
|  | pub mod layout; | 
|  | pub mod normalize_erasing_regions; | 
|  | pub mod pattern; | 
|  | pub mod print; | 
|  | pub mod relate; | 
|  | pub mod significant_drop_order; | 
|  | pub mod trait_def; | 
|  | pub mod util; | 
|  | pub mod vtable; | 
|  |  | 
|  | mod adt; | 
|  | mod assoc; | 
|  | mod closure; | 
|  | mod consts; | 
|  | mod context; | 
|  | mod diagnostics; | 
|  | mod elaborate_impl; | 
|  | mod erase_regions; | 
|  | mod fold; | 
|  | mod generic_args; | 
|  | mod generics; | 
|  | mod impls_ty; | 
|  | mod instance; | 
|  | mod intrinsic; | 
|  | mod list; | 
|  | mod opaque_types; | 
|  | mod predicate; | 
|  | mod region; | 
|  | mod rvalue_scopes; | 
|  | mod structural_impls; | 
|  | #[allow(hidden_glob_reexports)] | 
|  | mod sty; | 
|  | mod typeck_results; | 
|  | mod visit; | 
|  |  | 
|  | // Data types | 
|  |  | 
|  | #[derive(Debug, HashStable)] | 
|  | pub struct ResolverGlobalCtxt { | 
|  | pub visibilities_for_hashing: Vec<(LocalDefId, Visibility)>, | 
|  | /// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`. | 
|  | pub expn_that_defined: UnordMap<LocalDefId, ExpnId>, | 
|  | pub effective_visibilities: EffectiveVisibilities, | 
|  | pub extern_crate_map: UnordMap<LocalDefId, CrateNum>, | 
|  | pub maybe_unused_trait_imports: FxIndexSet<LocalDefId>, | 
|  | pub module_children: LocalDefIdMap<Vec<ModChild>>, | 
|  | pub glob_map: FxIndexMap<LocalDefId, FxIndexSet<Symbol>>, | 
|  | pub main_def: Option<MainDefinition>, | 
|  | pub trait_impls: FxIndexMap<DefId, Vec<LocalDefId>>, | 
|  | /// A list of proc macro LocalDefIds, written out in the order in which | 
|  | /// they are declared in the static array generated by proc_macro_harness. | 
|  | pub proc_macros: Vec<LocalDefId>, | 
|  | /// Mapping from ident span to path span for paths that don't exist as written, but that | 
|  | /// exist under `std`. For example, wrote `str::from_utf8` instead of `std::str::from_utf8`. | 
|  | pub confused_type_with_std_module: FxIndexMap<Span, Span>, | 
|  | pub doc_link_resolutions: FxIndexMap<LocalDefId, DocLinkResMap>, | 
|  | pub doc_link_traits_in_scope: FxIndexMap<LocalDefId, Vec<DefId>>, | 
|  | pub all_macro_rules: UnordSet<Symbol>, | 
|  | pub stripped_cfg_items: Vec<StrippedCfgItem>, | 
|  | } | 
|  |  | 
|  | /// Resolutions that should only be used for lowering. | 
|  | /// This struct is meant to be consumed by lowering. | 
|  | #[derive(Debug)] | 
|  | pub struct ResolverAstLowering { | 
|  | pub legacy_const_generic_args: FxHashMap<DefId, Option<Vec<usize>>>, | 
|  |  | 
|  | /// Resolutions for nodes that have a single resolution. | 
|  | pub partial_res_map: NodeMap<hir::def::PartialRes>, | 
|  | /// Resolutions for import nodes, which have multiple resolutions in different namespaces. | 
|  | pub import_res_map: NodeMap<hir::def::PerNS<Option<Res<ast::NodeId>>>>, | 
|  | /// Resolutions for labels (node IDs of their corresponding blocks or loops). | 
|  | pub label_res_map: NodeMap<ast::NodeId>, | 
|  | /// Resolutions for lifetimes. | 
|  | pub lifetimes_res_map: NodeMap<LifetimeRes>, | 
|  | /// Lifetime parameters that lowering will have to introduce. | 
|  | pub extra_lifetime_params_map: NodeMap<Vec<(Ident, ast::NodeId, LifetimeRes)>>, | 
|  |  | 
|  | pub next_node_id: ast::NodeId, | 
|  |  | 
|  | pub node_id_to_def_id: NodeMap<LocalDefId>, | 
|  |  | 
|  | pub disambiguator: DisambiguatorState, | 
|  |  | 
|  | pub trait_map: NodeMap<Vec<hir::TraitCandidate>>, | 
|  | /// List functions and methods for which lifetime elision was successful. | 
|  | pub lifetime_elision_allowed: FxHashSet<ast::NodeId>, | 
|  |  | 
|  | /// Lints that were emitted by the resolver and early lints. | 
|  | pub lint_buffer: Steal<LintBuffer>, | 
|  |  | 
|  | /// Information about functions signatures for delegation items expansion | 
|  | pub delegation_fn_sigs: LocalDefIdMap<DelegationFnSig>, | 
|  | } | 
|  |  | 
|  | #[derive(Debug)] | 
|  | pub struct DelegationFnSig { | 
|  | pub header: ast::FnHeader, | 
|  | pub param_count: usize, | 
|  | pub has_self: bool, | 
|  | pub c_variadic: bool, | 
|  | pub target_feature: bool, | 
|  | } | 
|  |  | 
|  | #[derive(Clone, Copy, Debug, HashStable)] | 
|  | pub struct MainDefinition { | 
|  | pub res: Res<ast::NodeId>, | 
|  | pub is_import: bool, | 
|  | pub span: Span, | 
|  | } | 
|  |  | 
|  | impl MainDefinition { | 
|  | pub fn opt_fn_def_id(self) -> Option<DefId> { | 
|  | if let Res::Def(DefKind::Fn, def_id) = self.res { Some(def_id) } else { None } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[derive(Copy, Clone, Debug, TyEncodable, TyDecodable, HashStable)] | 
|  | pub struct ImplTraitHeader<'tcx> { | 
|  | pub trait_ref: ty::EarlyBinder<'tcx, ty::TraitRef<'tcx>>, | 
|  | pub polarity: ImplPolarity, | 
|  | pub safety: hir::Safety, | 
|  | pub constness: hir::Constness, | 
|  | } | 
|  |  | 
|  | #[derive(Copy, Clone, PartialEq, Eq, Debug, TypeFoldable, TypeVisitable)] | 
|  | pub enum ImplSubject<'tcx> { | 
|  | Trait(TraitRef<'tcx>), | 
|  | Inherent(Ty<'tcx>), | 
|  | } | 
|  |  | 
|  | #[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable, Debug)] | 
|  | #[derive(TypeFoldable, TypeVisitable)] | 
|  | pub enum Asyncness { | 
|  | Yes, | 
|  | No, | 
|  | } | 
|  |  | 
|  | impl Asyncness { | 
|  | pub fn is_async(self) -> bool { | 
|  | matches!(self, Asyncness::Yes) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, Encodable, Decodable, HashStable)] | 
|  | pub enum Visibility<Id = LocalDefId> { | 
|  | /// Visible everywhere (including in other crates). | 
|  | Public, | 
|  | /// Visible only in the given crate-local module. | 
|  | Restricted(Id), | 
|  | } | 
|  |  | 
|  | impl Visibility { | 
|  | pub fn to_string(self, def_id: LocalDefId, tcx: TyCtxt<'_>) -> String { | 
|  | match self { | 
|  | ty::Visibility::Restricted(restricted_id) => { | 
|  | if restricted_id.is_top_level_module() { | 
|  | "pub(crate)".to_string() | 
|  | } else if restricted_id == tcx.parent_module_from_def_id(def_id).to_local_def_id() { | 
|  | "pub(self)".to_string() | 
|  | } else { | 
|  | format!( | 
|  | "pub(in crate{})", | 
|  | tcx.def_path(restricted_id.to_def_id()).to_string_no_crate_verbose() | 
|  | ) | 
|  | } | 
|  | } | 
|  | ty::Visibility::Public => "pub".to_string(), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)] | 
|  | #[derive(TypeFoldable, TypeVisitable)] | 
|  | pub struct ClosureSizeProfileData<'tcx> { | 
|  | /// Tuple containing the types of closure captures before the feature `capture_disjoint_fields` | 
|  | pub before_feature_tys: Ty<'tcx>, | 
|  | /// Tuple containing the types of closure captures after the feature `capture_disjoint_fields` | 
|  | pub after_feature_tys: Ty<'tcx>, | 
|  | } | 
|  |  | 
|  | impl TyCtxt<'_> { | 
|  | #[inline] | 
|  | pub fn opt_parent(self, id: DefId) -> Option<DefId> { | 
|  | self.def_key(id).parent.map(|index| DefId { index, ..id }) | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | #[track_caller] | 
|  | pub fn parent(self, id: DefId) -> DefId { | 
|  | match self.opt_parent(id) { | 
|  | Some(id) => id, | 
|  | // not `unwrap_or_else` to avoid breaking caller tracking | 
|  | None => bug!("{id:?} doesn't have a parent"), | 
|  | } | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | #[track_caller] | 
|  | pub fn opt_local_parent(self, id: LocalDefId) -> Option<LocalDefId> { | 
|  | self.opt_parent(id.to_def_id()).map(DefId::expect_local) | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | #[track_caller] | 
|  | pub fn local_parent(self, id: impl Into<LocalDefId>) -> LocalDefId { | 
|  | self.parent(id.into().to_def_id()).expect_local() | 
|  | } | 
|  |  | 
|  | pub fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool { | 
|  | if descendant.krate != ancestor.krate { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | while descendant != ancestor { | 
|  | match self.opt_parent(descendant) { | 
|  | Some(parent) => descendant = parent, | 
|  | None => return false, | 
|  | } | 
|  | } | 
|  | true | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<Id> Visibility<Id> { | 
|  | pub fn is_public(self) -> bool { | 
|  | matches!(self, Visibility::Public) | 
|  | } | 
|  |  | 
|  | pub fn map_id<OutId>(self, f: impl FnOnce(Id) -> OutId) -> Visibility<OutId> { | 
|  | match self { | 
|  | Visibility::Public => Visibility::Public, | 
|  | Visibility::Restricted(id) => Visibility::Restricted(f(id)), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<Id: Into<DefId>> Visibility<Id> { | 
|  | pub fn to_def_id(self) -> Visibility<DefId> { | 
|  | self.map_id(Into::into) | 
|  | } | 
|  |  | 
|  | /// Returns `true` if an item with this visibility is accessible from the given module. | 
|  | pub fn is_accessible_from(self, module: impl Into<DefId>, tcx: TyCtxt<'_>) -> bool { | 
|  | match self { | 
|  | // Public items are visible everywhere. | 
|  | Visibility::Public => true, | 
|  | Visibility::Restricted(id) => tcx.is_descendant_of(module.into(), id.into()), | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns `true` if this visibility is at least as accessible as the given visibility | 
|  | pub fn is_at_least(self, vis: Visibility<impl Into<DefId>>, tcx: TyCtxt<'_>) -> bool { | 
|  | match vis { | 
|  | Visibility::Public => self.is_public(), | 
|  | Visibility::Restricted(id) => self.is_accessible_from(id, tcx), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Visibility<DefId> { | 
|  | pub fn expect_local(self) -> Visibility { | 
|  | self.map_id(|id| id.expect_local()) | 
|  | } | 
|  |  | 
|  | /// Returns `true` if this item is visible anywhere in the local crate. | 
|  | pub fn is_visible_locally(self) -> bool { | 
|  | match self { | 
|  | Visibility::Public => true, | 
|  | Visibility::Restricted(def_id) => def_id.is_local(), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// The crate variances map is computed during typeck and contains the | 
|  | /// variance of every item in the local crate. You should not use it | 
|  | /// directly, because to do so will make your pass dependent on the | 
|  | /// HIR of every item in the local crate. Instead, use | 
|  | /// `tcx.variances_of()` to get the variance for a *particular* | 
|  | /// item. | 
|  | #[derive(HashStable, Debug)] | 
|  | pub struct CrateVariancesMap<'tcx> { | 
|  | /// For each item with generics, maps to a vector of the variance | 
|  | /// of its generics. If an item has no generics, it will have no | 
|  | /// entry. | 
|  | pub variances: DefIdMap<&'tcx [ty::Variance]>, | 
|  | } | 
|  |  | 
|  | // Contains information needed to resolve types and (in the future) look up | 
|  | // the types of AST nodes. | 
|  | #[derive(Copy, Clone, PartialEq, Eq, Hash)] | 
|  | pub struct CReaderCacheKey { | 
|  | pub cnum: Option<CrateNum>, | 
|  | pub pos: usize, | 
|  | } | 
|  |  | 
|  | /// Use this rather than `TyKind`, whenever possible. | 
|  | #[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable)] | 
|  | #[rustc_diagnostic_item = "Ty"] | 
|  | #[rustc_pass_by_value] | 
|  | pub struct Ty<'tcx>(Interned<'tcx, WithCachedTypeInfo<TyKind<'tcx>>>); | 
|  |  | 
|  | impl<'tcx> rustc_type_ir::inherent::IntoKind for Ty<'tcx> { | 
|  | type Kind = TyKind<'tcx>; | 
|  |  | 
|  | fn kind(self) -> TyKind<'tcx> { | 
|  | *self.kind() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> rustc_type_ir::Flags for Ty<'tcx> { | 
|  | fn flags(&self) -> TypeFlags { | 
|  | self.0.flags | 
|  | } | 
|  |  | 
|  | fn outer_exclusive_binder(&self) -> DebruijnIndex { | 
|  | self.0.outer_exclusive_binder | 
|  | } | 
|  | } | 
|  |  | 
|  | /// The crate outlives map is computed during typeck and contains the | 
|  | /// outlives of every item in the local crate. You should not use it | 
|  | /// directly, because to do so will make your pass dependent on the | 
|  | /// HIR of every item in the local crate. Instead, use | 
|  | /// `tcx.inferred_outlives_of()` to get the outlives for a *particular* | 
|  | /// item. | 
|  | #[derive(HashStable, Debug)] | 
|  | pub struct CratePredicatesMap<'tcx> { | 
|  | /// For each struct with outlive bounds, maps to a vector of the | 
|  | /// predicate of its outlive bounds. If an item has no outlives | 
|  | /// bounds, it will have no entry. | 
|  | pub predicates: DefIdMap<&'tcx [(Clause<'tcx>, Span)]>, | 
|  | } | 
|  |  | 
|  | #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)] | 
|  | pub struct Term<'tcx> { | 
|  | ptr: NonNull<()>, | 
|  | marker: PhantomData<(Ty<'tcx>, Const<'tcx>)>, | 
|  | } | 
|  |  | 
|  | impl<'tcx> rustc_type_ir::inherent::Term<TyCtxt<'tcx>> for Term<'tcx> {} | 
|  |  | 
|  | impl<'tcx> rustc_type_ir::inherent::IntoKind for Term<'tcx> { | 
|  | type Kind = TermKind<'tcx>; | 
|  |  | 
|  | fn kind(self) -> Self::Kind { | 
|  | self.kind() | 
|  | } | 
|  | } | 
|  |  | 
|  | unsafe impl<'tcx> rustc_data_structures::sync::DynSend for Term<'tcx> where | 
|  | &'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSend | 
|  | { | 
|  | } | 
|  | unsafe impl<'tcx> rustc_data_structures::sync::DynSync for Term<'tcx> where | 
|  | &'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSync | 
|  | { | 
|  | } | 
|  | unsafe impl<'tcx> Send for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Send {} | 
|  | unsafe impl<'tcx> Sync for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Sync {} | 
|  |  | 
|  | impl Debug for Term<'_> { | 
|  | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|  | match self.kind() { | 
|  | TermKind::Ty(ty) => write!(f, "Term::Ty({ty:?})"), | 
|  | TermKind::Const(ct) => write!(f, "Term::Const({ct:?})"), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> From<Ty<'tcx>> for Term<'tcx> { | 
|  | fn from(ty: Ty<'tcx>) -> Self { | 
|  | TermKind::Ty(ty).pack() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> From<Const<'tcx>> for Term<'tcx> { | 
|  | fn from(c: Const<'tcx>) -> Self { | 
|  | TermKind::Const(c).pack() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Term<'tcx> { | 
|  | fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) { | 
|  | self.kind().hash_stable(hcx, hasher); | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for Term<'tcx> { | 
|  | fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>( | 
|  | self, | 
|  | folder: &mut F, | 
|  | ) -> Result<Self, F::Error> { | 
|  | match self.kind() { | 
|  | ty::TermKind::Ty(ty) => ty.try_fold_with(folder).map(Into::into), | 
|  | ty::TermKind::Const(ct) => ct.try_fold_with(folder).map(Into::into), | 
|  | } | 
|  | } | 
|  |  | 
|  | fn fold_with<F: TypeFolder<TyCtxt<'tcx>>>(self, folder: &mut F) -> Self { | 
|  | match self.kind() { | 
|  | ty::TermKind::Ty(ty) => ty.fold_with(folder).into(), | 
|  | ty::TermKind::Const(ct) => ct.fold_with(folder).into(), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for Term<'tcx> { | 
|  | fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(&self, visitor: &mut V) -> V::Result { | 
|  | match self.kind() { | 
|  | ty::TermKind::Ty(ty) => ty.visit_with(visitor), | 
|  | ty::TermKind::Const(ct) => ct.visit_with(visitor), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx, E: TyEncoder<'tcx>> Encodable<E> for Term<'tcx> { | 
|  | fn encode(&self, e: &mut E) { | 
|  | self.kind().encode(e) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx, D: TyDecoder<'tcx>> Decodable<D> for Term<'tcx> { | 
|  | fn decode(d: &mut D) -> Self { | 
|  | let res: TermKind<'tcx> = Decodable::decode(d); | 
|  | res.pack() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> Term<'tcx> { | 
|  | #[inline] | 
|  | pub fn kind(self) -> TermKind<'tcx> { | 
|  | let ptr = | 
|  | unsafe { self.ptr.map_addr(|addr| NonZero::new_unchecked(addr.get() & !TAG_MASK)) }; | 
|  | // SAFETY: use of `Interned::new_unchecked` here is ok because these | 
|  | // pointers were originally created from `Interned` types in `pack()`, | 
|  | // and this is just going in the other direction. | 
|  | unsafe { | 
|  | match self.ptr.addr().get() & TAG_MASK { | 
|  | TYPE_TAG => TermKind::Ty(Ty(Interned::new_unchecked( | 
|  | ptr.cast::<WithCachedTypeInfo<ty::TyKind<'tcx>>>().as_ref(), | 
|  | ))), | 
|  | CONST_TAG => TermKind::Const(ty::Const(Interned::new_unchecked( | 
|  | ptr.cast::<WithCachedTypeInfo<ty::ConstKind<'tcx>>>().as_ref(), | 
|  | ))), | 
|  | _ => core::intrinsics::unreachable(), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | pub fn as_type(&self) -> Option<Ty<'tcx>> { | 
|  | if let TermKind::Ty(ty) = self.kind() { Some(ty) } else { None } | 
|  | } | 
|  |  | 
|  | pub fn expect_type(&self) -> Ty<'tcx> { | 
|  | self.as_type().expect("expected a type, but found a const") | 
|  | } | 
|  |  | 
|  | pub fn as_const(&self) -> Option<Const<'tcx>> { | 
|  | if let TermKind::Const(c) = self.kind() { Some(c) } else { None } | 
|  | } | 
|  |  | 
|  | pub fn expect_const(&self) -> Const<'tcx> { | 
|  | self.as_const().expect("expected a const, but found a type") | 
|  | } | 
|  |  | 
|  | pub fn into_arg(self) -> GenericArg<'tcx> { | 
|  | match self.kind() { | 
|  | TermKind::Ty(ty) => ty.into(), | 
|  | TermKind::Const(c) => c.into(), | 
|  | } | 
|  | } | 
|  |  | 
|  | pub fn to_alias_term(self) -> Option<AliasTerm<'tcx>> { | 
|  | match self.kind() { | 
|  | TermKind::Ty(ty) => match *ty.kind() { | 
|  | ty::Alias(_kind, alias_ty) => Some(alias_ty.into()), | 
|  | _ => None, | 
|  | }, | 
|  | TermKind::Const(ct) => match ct.kind() { | 
|  | ConstKind::Unevaluated(uv) => Some(uv.into()), | 
|  | _ => None, | 
|  | }, | 
|  | } | 
|  | } | 
|  |  | 
|  | pub fn is_infer(&self) -> bool { | 
|  | match self.kind() { | 
|  | TermKind::Ty(ty) => ty.is_ty_var(), | 
|  | TermKind::Const(ct) => ct.is_ct_infer(), | 
|  | } | 
|  | } | 
|  |  | 
|  | pub fn is_trivially_wf(&self, tcx: TyCtxt<'tcx>) -> bool { | 
|  | match self.kind() { | 
|  | TermKind::Ty(ty) => ty.is_trivially_wf(tcx), | 
|  | TermKind::Const(ct) => ct.is_trivially_wf(), | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Iterator that walks `self` and any types reachable from | 
|  | /// `self`, in depth-first order. Note that just walks the types | 
|  | /// that appear in `self`, it does not descend into the fields of | 
|  | /// structs or variants. For example: | 
|  | /// | 
|  | /// ```text | 
|  | /// isize => { isize } | 
|  | /// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize } | 
|  | /// [isize] => { [isize], isize } | 
|  | /// ``` | 
|  | pub fn walk(self) -> TypeWalker<TyCtxt<'tcx>> { | 
|  | TypeWalker::new(self.into()) | 
|  | } | 
|  | } | 
|  |  | 
|  | const TAG_MASK: usize = 0b11; | 
|  | const TYPE_TAG: usize = 0b00; | 
|  | const CONST_TAG: usize = 0b01; | 
|  |  | 
|  | #[extension(pub trait TermKindPackExt<'tcx>)] | 
|  | impl<'tcx> TermKind<'tcx> { | 
|  | #[inline] | 
|  | fn pack(self) -> Term<'tcx> { | 
|  | let (tag, ptr) = match self { | 
|  | TermKind::Ty(ty) => { | 
|  | // Ensure we can use the tag bits. | 
|  | assert_eq!(align_of_val(&*ty.0.0) & TAG_MASK, 0); | 
|  | (TYPE_TAG, NonNull::from(ty.0.0).cast()) | 
|  | } | 
|  | TermKind::Const(ct) => { | 
|  | // Ensure we can use the tag bits. | 
|  | assert_eq!(align_of_val(&*ct.0.0) & TAG_MASK, 0); | 
|  | (CONST_TAG, NonNull::from(ct.0.0).cast()) | 
|  | } | 
|  | }; | 
|  |  | 
|  | Term { ptr: ptr.map_addr(|addr| addr | tag), marker: PhantomData } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Represents the bounds declared on a particular set of type | 
|  | /// parameters. Should eventually be generalized into a flag list of | 
|  | /// where-clauses. You can obtain an `InstantiatedPredicates` list from a | 
|  | /// `GenericPredicates` by using the `instantiate` method. Note that this method | 
|  | /// reflects an important semantic invariant of `InstantiatedPredicates`: while | 
|  | /// the `GenericPredicates` are expressed in terms of the bound type | 
|  | /// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance | 
|  | /// represented a set of bounds for some particular instantiation, | 
|  | /// meaning that the generic parameters have been instantiated with | 
|  | /// their values. | 
|  | /// | 
|  | /// Example: | 
|  | /// ```ignore (illustrative) | 
|  | /// struct Foo<T, U: Bar<T>> { ... } | 
|  | /// ``` | 
|  | /// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like | 
|  | /// `[[], [U:Bar<T>]]`. Now if there were some particular reference | 
|  | /// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[], | 
|  | /// [usize:Bar<isize>]]`. | 
|  | #[derive(Clone, Debug, TypeFoldable, TypeVisitable)] | 
|  | pub struct InstantiatedPredicates<'tcx> { | 
|  | pub predicates: Vec<Clause<'tcx>>, | 
|  | pub spans: Vec<Span>, | 
|  | } | 
|  |  | 
|  | impl<'tcx> InstantiatedPredicates<'tcx> { | 
|  | pub fn empty() -> InstantiatedPredicates<'tcx> { | 
|  | InstantiatedPredicates { predicates: vec![], spans: vec![] } | 
|  | } | 
|  |  | 
|  | pub fn is_empty(&self) -> bool { | 
|  | self.predicates.is_empty() | 
|  | } | 
|  |  | 
|  | pub fn iter(&self) -> <&Self as IntoIterator>::IntoIter { | 
|  | self.into_iter() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> IntoIterator for InstantiatedPredicates<'tcx> { | 
|  | type Item = (Clause<'tcx>, Span); | 
|  |  | 
|  | type IntoIter = std::iter::Zip<std::vec::IntoIter<Clause<'tcx>>, std::vec::IntoIter<Span>>; | 
|  |  | 
|  | fn into_iter(self) -> Self::IntoIter { | 
|  | debug_assert_eq!(self.predicates.len(), self.spans.len()); | 
|  | std::iter::zip(self.predicates, self.spans) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'a, 'tcx> IntoIterator for &'a InstantiatedPredicates<'tcx> { | 
|  | type Item = (Clause<'tcx>, Span); | 
|  |  | 
|  | type IntoIter = std::iter::Zip< | 
|  | std::iter::Copied<std::slice::Iter<'a, Clause<'tcx>>>, | 
|  | std::iter::Copied<std::slice::Iter<'a, Span>>, | 
|  | >; | 
|  |  | 
|  | fn into_iter(self) -> Self::IntoIter { | 
|  | debug_assert_eq!(self.predicates.len(), self.spans.len()); | 
|  | std::iter::zip(self.predicates.iter().copied(), self.spans.iter().copied()) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable, HashStable, TyEncodable, TyDecodable)] | 
|  | pub struct OpaqueHiddenType<'tcx> { | 
|  | /// The span of this particular definition of the opaque type. So | 
|  | /// for example: | 
|  | /// | 
|  | /// ```ignore (incomplete snippet) | 
|  | /// type Foo = impl Baz; | 
|  | /// fn bar() -> Foo { | 
|  | /// //          ^^^ This is the span we are looking for! | 
|  | /// } | 
|  | /// ``` | 
|  | /// | 
|  | /// In cases where the fn returns `(impl Trait, impl Trait)` or | 
|  | /// other such combinations, the result is currently | 
|  | /// over-approximated, but better than nothing. | 
|  | pub span: Span, | 
|  |  | 
|  | /// The type variable that represents the value of the opaque type | 
|  | /// that we require. In other words, after we compile this function, | 
|  | /// we will be created a constraint like: | 
|  | /// ```ignore (pseudo-rust) | 
|  | /// Foo<'a, T> = ?C | 
|  | /// ``` | 
|  | /// where `?C` is the value of this type variable. =) It may | 
|  | /// naturally refer to the type and lifetime parameters in scope | 
|  | /// in this function, though ultimately it should only reference | 
|  | /// those that are arguments to `Foo` in the constraint above. (In | 
|  | /// other words, `?C` should not include `'b`, even though it's a | 
|  | /// lifetime parameter on `foo`.) | 
|  | pub ty: Ty<'tcx>, | 
|  | } | 
|  |  | 
|  | /// Whether we're currently in HIR typeck or MIR borrowck. | 
|  | #[derive(Debug, Clone, Copy)] | 
|  | pub enum DefiningScopeKind { | 
|  | /// During writeback in typeck, we don't care about regions and simply | 
|  | /// erase them. This means we also don't check whether regions are | 
|  | /// universal in the opaque type key. This will only be checked in | 
|  | /// MIR borrowck. | 
|  | HirTypeck, | 
|  | MirBorrowck, | 
|  | } | 
|  |  | 
|  | impl<'tcx> OpaqueHiddenType<'tcx> { | 
|  | pub fn new_error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> OpaqueHiddenType<'tcx> { | 
|  | OpaqueHiddenType { span: DUMMY_SP, ty: Ty::new_error(tcx, guar) } | 
|  | } | 
|  |  | 
|  | pub fn build_mismatch_error( | 
|  | &self, | 
|  | other: &Self, | 
|  | tcx: TyCtxt<'tcx>, | 
|  | ) -> Result<Diag<'tcx>, ErrorGuaranteed> { | 
|  | (self.ty, other.ty).error_reported()?; | 
|  | // Found different concrete types for the opaque type. | 
|  | let sub_diag = if self.span == other.span { | 
|  | TypeMismatchReason::ConflictType { span: self.span } | 
|  | } else { | 
|  | TypeMismatchReason::PreviousUse { span: self.span } | 
|  | }; | 
|  | Ok(tcx.dcx().create_err(OpaqueHiddenTypeMismatch { | 
|  | self_ty: self.ty, | 
|  | other_ty: other.ty, | 
|  | other_span: other.span, | 
|  | sub: sub_diag, | 
|  | })) | 
|  | } | 
|  |  | 
|  | #[instrument(level = "debug", skip(tcx), ret)] | 
|  | pub fn remap_generic_params_to_declaration_params( | 
|  | self, | 
|  | opaque_type_key: OpaqueTypeKey<'tcx>, | 
|  | tcx: TyCtxt<'tcx>, | 
|  | defining_scope_kind: DefiningScopeKind, | 
|  | ) -> Self { | 
|  | let OpaqueTypeKey { def_id, args } = opaque_type_key; | 
|  |  | 
|  | // Use args to build up a reverse map from regions to their | 
|  | // identity mappings. This is necessary because of `impl | 
|  | // Trait` lifetimes are computed by replacing existing | 
|  | // lifetimes with 'static and remapping only those used in the | 
|  | // `impl Trait` return type, resulting in the parameters | 
|  | // shifting. | 
|  | let id_args = GenericArgs::identity_for_item(tcx, def_id); | 
|  | debug!(?id_args); | 
|  |  | 
|  | // This zip may have several times the same lifetime in `args` paired with a different | 
|  | // lifetime from `id_args`. Simply `collect`ing the iterator is the correct behaviour: | 
|  | // it will pick the last one, which is the one we introduced in the impl-trait desugaring. | 
|  | let map = args.iter().zip(id_args).collect(); | 
|  | debug!("map = {:#?}", map); | 
|  |  | 
|  | // Convert the type from the function into a type valid outside by mapping generic | 
|  | // parameters to into the context of the opaque. | 
|  | // | 
|  | // We erase regions when doing this during HIR typeck. | 
|  | let this = match defining_scope_kind { | 
|  | DefiningScopeKind::HirTypeck => tcx.erase_regions(self), | 
|  | DefiningScopeKind::MirBorrowck => self, | 
|  | }; | 
|  | let result = this.fold_with(&mut opaque_types::ReverseMapper::new(tcx, map, self.span)); | 
|  | if cfg!(debug_assertions) && matches!(defining_scope_kind, DefiningScopeKind::HirTypeck) { | 
|  | assert_eq!(result.ty, tcx.erase_regions(result.ty)); | 
|  | } | 
|  | result | 
|  | } | 
|  | } | 
|  |  | 
|  | /// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are | 
|  | /// identified by both a universe, as well as a name residing within that universe. Distinct bound | 
|  | /// regions/types/consts within the same universe simply have an unknown relationship to one | 
|  | /// another. | 
|  | #[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)] | 
|  | #[derive(HashStable, TyEncodable, TyDecodable)] | 
|  | pub struct Placeholder<T> { | 
|  | pub universe: UniverseIndex, | 
|  | pub bound: T, | 
|  | } | 
|  |  | 
|  | pub type PlaceholderRegion = Placeholder<BoundRegion>; | 
|  |  | 
|  | impl<'tcx> rustc_type_ir::inherent::PlaceholderLike<TyCtxt<'tcx>> for PlaceholderRegion { | 
|  | type Bound = BoundRegion; | 
|  |  | 
|  | fn universe(self) -> UniverseIndex { | 
|  | self.universe | 
|  | } | 
|  |  | 
|  | fn var(self) -> BoundVar { | 
|  | self.bound.var | 
|  | } | 
|  |  | 
|  | fn with_updated_universe(self, ui: UniverseIndex) -> Self { | 
|  | Placeholder { universe: ui, ..self } | 
|  | } | 
|  |  | 
|  | fn new(ui: UniverseIndex, bound: BoundRegion) -> Self { | 
|  | Placeholder { universe: ui, bound } | 
|  | } | 
|  |  | 
|  | fn new_anon(ui: UniverseIndex, var: BoundVar) -> Self { | 
|  | Placeholder { universe: ui, bound: BoundRegion { var, kind: BoundRegionKind::Anon } } | 
|  | } | 
|  | } | 
|  |  | 
|  | pub type PlaceholderType = Placeholder<BoundTy>; | 
|  |  | 
|  | impl<'tcx> rustc_type_ir::inherent::PlaceholderLike<TyCtxt<'tcx>> for PlaceholderType { | 
|  | type Bound = BoundTy; | 
|  |  | 
|  | fn universe(self) -> UniverseIndex { | 
|  | self.universe | 
|  | } | 
|  |  | 
|  | fn var(self) -> BoundVar { | 
|  | self.bound.var | 
|  | } | 
|  |  | 
|  | fn with_updated_universe(self, ui: UniverseIndex) -> Self { | 
|  | Placeholder { universe: ui, ..self } | 
|  | } | 
|  |  | 
|  | fn new(ui: UniverseIndex, bound: BoundTy) -> Self { | 
|  | Placeholder { universe: ui, bound } | 
|  | } | 
|  |  | 
|  | fn new_anon(ui: UniverseIndex, var: BoundVar) -> Self { | 
|  | Placeholder { universe: ui, bound: BoundTy { var, kind: BoundTyKind::Anon } } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)] | 
|  | #[derive(TyEncodable, TyDecodable)] | 
|  | pub struct BoundConst { | 
|  | pub var: BoundVar, | 
|  | } | 
|  |  | 
|  | impl<'tcx> rustc_type_ir::inherent::BoundVarLike<TyCtxt<'tcx>> for BoundConst { | 
|  | fn var(self) -> BoundVar { | 
|  | self.var | 
|  | } | 
|  |  | 
|  | fn assert_eq(self, var: ty::BoundVariableKind) { | 
|  | var.expect_const() | 
|  | } | 
|  | } | 
|  |  | 
|  | pub type PlaceholderConst = Placeholder<BoundConst>; | 
|  |  | 
|  | impl<'tcx> rustc_type_ir::inherent::PlaceholderLike<TyCtxt<'tcx>> for PlaceholderConst { | 
|  | type Bound = BoundConst; | 
|  |  | 
|  | fn universe(self) -> UniverseIndex { | 
|  | self.universe | 
|  | } | 
|  |  | 
|  | fn var(self) -> BoundVar { | 
|  | self.bound.var | 
|  | } | 
|  |  | 
|  | fn with_updated_universe(self, ui: UniverseIndex) -> Self { | 
|  | Placeholder { universe: ui, ..self } | 
|  | } | 
|  |  | 
|  | fn new(ui: UniverseIndex, bound: BoundConst) -> Self { | 
|  | Placeholder { universe: ui, bound } | 
|  | } | 
|  |  | 
|  | fn new_anon(ui: UniverseIndex, var: BoundVar) -> Self { | 
|  | Placeholder { universe: ui, bound: BoundConst { var } } | 
|  | } | 
|  | } | 
|  |  | 
|  | pub type Clauses<'tcx> = &'tcx ListWithCachedTypeInfo<Clause<'tcx>>; | 
|  |  | 
|  | impl<'tcx> rustc_type_ir::Flags for Clauses<'tcx> { | 
|  | fn flags(&self) -> TypeFlags { | 
|  | (**self).flags() | 
|  | } | 
|  |  | 
|  | fn outer_exclusive_binder(&self) -> DebruijnIndex { | 
|  | (**self).outer_exclusive_binder() | 
|  | } | 
|  | } | 
|  |  | 
|  | /// When interacting with the type system we must provide information about the | 
|  | /// environment. `ParamEnv` is the type that represents this information. See the | 
|  | /// [dev guide chapter][param_env_guide] for more information. | 
|  | /// | 
|  | /// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/typing_parameter_envs.html | 
|  | #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)] | 
|  | #[derive(HashStable, TypeVisitable, TypeFoldable)] | 
|  | pub struct ParamEnv<'tcx> { | 
|  | /// Caller bounds are `Obligation`s that the caller must satisfy. This is | 
|  | /// basically the set of bounds on the in-scope type parameters, translated | 
|  | /// into `Obligation`s, and elaborated and normalized. | 
|  | /// | 
|  | /// Use the `caller_bounds()` method to access. | 
|  | caller_bounds: Clauses<'tcx>, | 
|  | } | 
|  |  | 
|  | impl<'tcx> rustc_type_ir::inherent::ParamEnv<TyCtxt<'tcx>> for ParamEnv<'tcx> { | 
|  | fn caller_bounds(self) -> impl inherent::SliceLike<Item = ty::Clause<'tcx>> { | 
|  | self.caller_bounds() | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> ParamEnv<'tcx> { | 
|  | /// Construct a trait environment suitable for contexts where there are | 
|  | /// no where-clauses in scope. In the majority of cases it is incorrect | 
|  | /// to use an empty environment. See the [dev guide section][param_env_guide] | 
|  | /// for information on what a `ParamEnv` is and how to acquire one. | 
|  | /// | 
|  | /// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/typing_parameter_envs.html | 
|  | #[inline] | 
|  | pub fn empty() -> Self { | 
|  | Self::new(ListWithCachedTypeInfo::empty()) | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | pub fn caller_bounds(self) -> Clauses<'tcx> { | 
|  | self.caller_bounds | 
|  | } | 
|  |  | 
|  | /// Construct a trait environment with the given set of predicates. | 
|  | #[inline] | 
|  | pub fn new(caller_bounds: Clauses<'tcx>) -> Self { | 
|  | ParamEnv { caller_bounds } | 
|  | } | 
|  |  | 
|  | /// Creates a pair of param-env and value for use in queries. | 
|  | pub fn and<T: TypeVisitable<TyCtxt<'tcx>>>(self, value: T) -> ParamEnvAnd<'tcx, T> { | 
|  | ParamEnvAnd { param_env: self, value } | 
|  | } | 
|  | } | 
|  |  | 
|  | #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable)] | 
|  | #[derive(HashStable)] | 
|  | pub struct ParamEnvAnd<'tcx, T> { | 
|  | pub param_env: ParamEnv<'tcx>, | 
|  | pub value: T, | 
|  | } | 
|  |  | 
|  | /// The environment in which to do trait solving. | 
|  | /// | 
|  | /// Most of the time you only need to care about the `ParamEnv` | 
|  | /// as the `TypingMode` is simply stored in the `InferCtxt`. | 
|  | /// | 
|  | /// However, there are some places which rely on trait solving | 
|  | /// without using an `InferCtxt` themselves. For these to be | 
|  | /// able to use the trait system they have to be able to initialize | 
|  | /// such an `InferCtxt` with the right `typing_mode`, so they need | 
|  | /// to track both. | 
|  | #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)] | 
|  | #[derive(TypeVisitable, TypeFoldable)] | 
|  | pub struct TypingEnv<'tcx> { | 
|  | #[type_foldable(identity)] | 
|  | #[type_visitable(ignore)] | 
|  | pub typing_mode: TypingMode<'tcx>, | 
|  | pub param_env: ParamEnv<'tcx>, | 
|  | } | 
|  |  | 
|  | impl<'tcx> TypingEnv<'tcx> { | 
|  | /// Create a typing environment with no where-clauses in scope | 
|  | /// where all opaque types and default associated items are revealed. | 
|  | /// | 
|  | /// This is only suitable for monomorphized, post-typeck environments. | 
|  | /// Do not use this for MIR optimizations, as even though they also | 
|  | /// use `TypingMode::PostAnalysis`, they may still have where-clauses | 
|  | /// in scope. | 
|  | pub fn fully_monomorphized() -> TypingEnv<'tcx> { | 
|  | TypingEnv { typing_mode: TypingMode::PostAnalysis, param_env: ParamEnv::empty() } | 
|  | } | 
|  |  | 
|  | /// Create a typing environment for use during analysis outside of a body. | 
|  | /// | 
|  | /// Using a typing environment inside of bodies is not supported as the body | 
|  | /// may define opaque types. In this case the used functions have to be | 
|  | /// converted to use proper canonical inputs instead. | 
|  | pub fn non_body_analysis( | 
|  | tcx: TyCtxt<'tcx>, | 
|  | def_id: impl IntoQueryParam<DefId>, | 
|  | ) -> TypingEnv<'tcx> { | 
|  | TypingEnv { typing_mode: TypingMode::non_body_analysis(), param_env: tcx.param_env(def_id) } | 
|  | } | 
|  |  | 
|  | pub fn post_analysis(tcx: TyCtxt<'tcx>, def_id: impl IntoQueryParam<DefId>) -> TypingEnv<'tcx> { | 
|  | tcx.typing_env_normalized_for_post_analysis(def_id) | 
|  | } | 
|  |  | 
|  | /// Modify the `typing_mode` to `PostAnalysis` and eagerly reveal all | 
|  | /// opaque types in the `param_env`. | 
|  | pub fn with_post_analysis_normalized(self, tcx: TyCtxt<'tcx>) -> TypingEnv<'tcx> { | 
|  | let TypingEnv { typing_mode, param_env } = self; | 
|  | if let TypingMode::PostAnalysis = typing_mode { | 
|  | return self; | 
|  | } | 
|  |  | 
|  | // No need to reveal opaques with the new solver enabled, | 
|  | // since we have lazy norm. | 
|  | let param_env = if tcx.next_trait_solver_globally() { | 
|  | param_env | 
|  | } else { | 
|  | ParamEnv::new(tcx.reveal_opaque_types_in_bounds(param_env.caller_bounds())) | 
|  | }; | 
|  | TypingEnv { typing_mode: TypingMode::PostAnalysis, param_env } | 
|  | } | 
|  |  | 
|  | /// Combine this typing environment with the given `value` to be used by | 
|  | /// not (yet) canonicalized queries. This only works if the value does not | 
|  | /// contain anything local to some `InferCtxt`, i.e. inference variables or | 
|  | /// placeholders. | 
|  | pub fn as_query_input<T>(self, value: T) -> PseudoCanonicalInput<'tcx, T> | 
|  | where | 
|  | T: TypeVisitable<TyCtxt<'tcx>>, | 
|  | { | 
|  | // FIXME(#132279): We should assert that the value does not contain any placeholders | 
|  | // as these placeholders are also local to the current inference context. However, we | 
|  | // currently use pseudo-canonical queries in the trait solver, which replaces params | 
|  | // with placeholders during canonicalization. We should also simply not use pseudo- | 
|  | // canonical queries in the trait solver, at which point we can readd this assert. | 
|  | // | 
|  | // As of writing this comment, this is only used when normalizing consts that mention | 
|  | // params. | 
|  | /* debug_assert!( | 
|  | !value.has_placeholders(), | 
|  | "{value:?} which has placeholder shouldn't be pseudo-canonicalized" | 
|  | ); */ | 
|  | PseudoCanonicalInput { typing_env: self, value } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Similar to `CanonicalInput`, this carries the `typing_mode` and the environment | 
|  | /// necessary to do any kind of trait solving inside of nested queries. | 
|  | /// | 
|  | /// Unlike proper canonicalization, this requires the `param_env` and the `value` to not | 
|  | /// contain anything local to the `infcx` of the caller, so we don't actually canonicalize | 
|  | /// anything. | 
|  | /// | 
|  | /// This should be created by using `infcx.pseudo_canonicalize_query(param_env, value)` | 
|  | /// or by using `typing_env.as_query_input(value)`. | 
|  | #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] | 
|  | #[derive(HashStable, TypeVisitable, TypeFoldable)] | 
|  | pub struct PseudoCanonicalInput<'tcx, T> { | 
|  | pub typing_env: TypingEnv<'tcx>, | 
|  | pub value: T, | 
|  | } | 
|  |  | 
|  | #[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)] | 
|  | pub struct Destructor { | 
|  | /// The `DefId` of the destructor method | 
|  | pub did: DefId, | 
|  | } | 
|  |  | 
|  | // FIXME: consider combining this definition with regular `Destructor` | 
|  | #[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)] | 
|  | pub struct AsyncDestructor { | 
|  | /// The `DefId` of the `impl AsyncDrop` | 
|  | pub impl_did: DefId, | 
|  | } | 
|  |  | 
|  | #[derive(Clone, Copy, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)] | 
|  | pub struct VariantFlags(u8); | 
|  | bitflags::bitflags! { | 
|  | impl VariantFlags: u8 { | 
|  | const NO_VARIANT_FLAGS        = 0; | 
|  | /// Indicates whether the field list of this variant is `#[non_exhaustive]`. | 
|  | const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0; | 
|  | } | 
|  | } | 
|  | rustc_data_structures::external_bitflags_debug! { VariantFlags } | 
|  |  | 
|  | /// Definition of a variant -- a struct's fields or an enum variant. | 
|  | #[derive(Debug, HashStable, TyEncodable, TyDecodable)] | 
|  | pub struct VariantDef { | 
|  | /// `DefId` that identifies the variant itself. | 
|  | /// If this variant belongs to a struct or union, then this is a copy of its `DefId`. | 
|  | pub def_id: DefId, | 
|  | /// `DefId` that identifies the variant's constructor. | 
|  | /// If this variant is a struct variant, then this is `None`. | 
|  | pub ctor: Option<(CtorKind, DefId)>, | 
|  | /// Variant or struct name. | 
|  | pub name: Symbol, | 
|  | /// Discriminant of this variant. | 
|  | pub discr: VariantDiscr, | 
|  | /// Fields of this variant. | 
|  | pub fields: IndexVec<FieldIdx, FieldDef>, | 
|  | /// The error guarantees from parser, if any. | 
|  | tainted: Option<ErrorGuaranteed>, | 
|  | /// Flags of the variant (e.g. is field list non-exhaustive)? | 
|  | flags: VariantFlags, | 
|  | } | 
|  |  | 
|  | impl VariantDef { | 
|  | /// Creates a new `VariantDef`. | 
|  | /// | 
|  | /// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef` | 
|  | /// represents an enum variant). | 
|  | /// | 
|  | /// `ctor_did` is the `DefId` that identifies the constructor of unit or | 
|  | /// tuple-variants/structs. If this is a `struct`-variant then this should be `None`. | 
|  | /// | 
|  | /// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that | 
|  | /// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having | 
|  | /// to go through the redirect of checking the ctor's attributes - but compiling a small crate | 
|  | /// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any | 
|  | /// built-in trait), and we do not want to load attributes twice. | 
|  | /// | 
|  | /// If someone speeds up attribute loading to not be a performance concern, they can | 
|  | /// remove this hack and use the constructor `DefId` everywhere. | 
|  | #[instrument(level = "debug")] | 
|  | pub fn new( | 
|  | name: Symbol, | 
|  | variant_did: Option<DefId>, | 
|  | ctor: Option<(CtorKind, DefId)>, | 
|  | discr: VariantDiscr, | 
|  | fields: IndexVec<FieldIdx, FieldDef>, | 
|  | parent_did: DefId, | 
|  | recover_tainted: Option<ErrorGuaranteed>, | 
|  | is_field_list_non_exhaustive: bool, | 
|  | ) -> Self { | 
|  | let mut flags = VariantFlags::NO_VARIANT_FLAGS; | 
|  | if is_field_list_non_exhaustive { | 
|  | flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE; | 
|  | } | 
|  |  | 
|  | VariantDef { | 
|  | def_id: variant_did.unwrap_or(parent_did), | 
|  | ctor, | 
|  | name, | 
|  | discr, | 
|  | fields, | 
|  | flags, | 
|  | tainted: recover_tainted, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns `true` if the field list of this variant is `#[non_exhaustive]`. | 
|  | /// | 
|  | /// Note that this function will return `true` even if the type has been | 
|  | /// defined in the crate currently being compiled. If that's not what you | 
|  | /// want, see [`Self::field_list_has_applicable_non_exhaustive`]. | 
|  | #[inline] | 
|  | pub fn is_field_list_non_exhaustive(&self) -> bool { | 
|  | self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE) | 
|  | } | 
|  |  | 
|  | /// Returns `true` if the field list of this variant is `#[non_exhaustive]` | 
|  | /// and the type has been defined in another crate. | 
|  | #[inline] | 
|  | pub fn field_list_has_applicable_non_exhaustive(&self) -> bool { | 
|  | self.is_field_list_non_exhaustive() && !self.def_id.is_local() | 
|  | } | 
|  |  | 
|  | /// Computes the `Ident` of this variant by looking up the `Span` | 
|  | pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident { | 
|  | Ident::new(self.name, tcx.def_ident_span(self.def_id).unwrap()) | 
|  | } | 
|  |  | 
|  | /// Was this variant obtained as part of recovering from a syntactic error? | 
|  | #[inline] | 
|  | pub fn has_errors(&self) -> Result<(), ErrorGuaranteed> { | 
|  | self.tainted.map_or(Ok(()), Err) | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | pub fn ctor_kind(&self) -> Option<CtorKind> { | 
|  | self.ctor.map(|(kind, _)| kind) | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | pub fn ctor_def_id(&self) -> Option<DefId> { | 
|  | self.ctor.map(|(_, def_id)| def_id) | 
|  | } | 
|  |  | 
|  | /// Returns the one field in this variant. | 
|  | /// | 
|  | /// `panic!`s if there are no fields or multiple fields. | 
|  | #[inline] | 
|  | pub fn single_field(&self) -> &FieldDef { | 
|  | assert!(self.fields.len() == 1); | 
|  |  | 
|  | &self.fields[FieldIdx::ZERO] | 
|  | } | 
|  |  | 
|  | /// Returns the last field in this variant, if present. | 
|  | #[inline] | 
|  | pub fn tail_opt(&self) -> Option<&FieldDef> { | 
|  | self.fields.raw.last() | 
|  | } | 
|  |  | 
|  | /// Returns the last field in this variant. | 
|  | /// | 
|  | /// # Panics | 
|  | /// | 
|  | /// Panics, if the variant has no fields. | 
|  | #[inline] | 
|  | pub fn tail(&self) -> &FieldDef { | 
|  | self.tail_opt().expect("expected unsized ADT to have a tail field") | 
|  | } | 
|  |  | 
|  | /// Returns whether this variant has unsafe fields. | 
|  | pub fn has_unsafe_fields(&self) -> bool { | 
|  | self.fields.iter().any(|x| x.safety.is_unsafe()) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl PartialEq for VariantDef { | 
|  | #[inline] | 
|  | fn eq(&self, other: &Self) -> bool { | 
|  | // There should be only one `VariantDef` for each `def_id`, therefore | 
|  | // it is fine to implement `PartialEq` only based on `def_id`. | 
|  | // | 
|  | // Below, we exhaustively destructure `self` and `other` so that if the | 
|  | // definition of `VariantDef` changes, a compile-error will be produced, | 
|  | // reminding us to revisit this assumption. | 
|  |  | 
|  | let Self { | 
|  | def_id: lhs_def_id, | 
|  | ctor: _, | 
|  | name: _, | 
|  | discr: _, | 
|  | fields: _, | 
|  | flags: _, | 
|  | tainted: _, | 
|  | } = &self; | 
|  | let Self { | 
|  | def_id: rhs_def_id, | 
|  | ctor: _, | 
|  | name: _, | 
|  | discr: _, | 
|  | fields: _, | 
|  | flags: _, | 
|  | tainted: _, | 
|  | } = other; | 
|  |  | 
|  | let res = lhs_def_id == rhs_def_id; | 
|  |  | 
|  | // Double check that implicit assumption detailed above. | 
|  | if cfg!(debug_assertions) && res { | 
|  | let deep = self.ctor == other.ctor | 
|  | && self.name == other.name | 
|  | && self.discr == other.discr | 
|  | && self.fields == other.fields | 
|  | && self.flags == other.flags; | 
|  | assert!(deep, "VariantDef for the same def-id has differing data"); | 
|  | } | 
|  |  | 
|  | res | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Eq for VariantDef {} | 
|  |  | 
|  | impl Hash for VariantDef { | 
|  | #[inline] | 
|  | fn hash<H: Hasher>(&self, s: &mut H) { | 
|  | // There should be only one `VariantDef` for each `def_id`, therefore | 
|  | // it is fine to implement `Hash` only based on `def_id`. | 
|  | // | 
|  | // Below, we exhaustively destructure `self` so that if the definition | 
|  | // of `VariantDef` changes, a compile-error will be produced, reminding | 
|  | // us to revisit this assumption. | 
|  |  | 
|  | let Self { def_id, ctor: _, name: _, discr: _, fields: _, flags: _, tainted: _ } = &self; | 
|  | def_id.hash(s) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)] | 
|  | pub enum VariantDiscr { | 
|  | /// Explicit value for this variant, i.e., `X = 123`. | 
|  | /// The `DefId` corresponds to the embedded constant. | 
|  | Explicit(DefId), | 
|  |  | 
|  | /// The previous variant's discriminant plus one. | 
|  | /// For efficiency reasons, the distance from the | 
|  | /// last `Explicit` discriminant is being stored, | 
|  | /// or `0` for the first variant, if it has none. | 
|  | Relative(u32), | 
|  | } | 
|  |  | 
|  | #[derive(Debug, HashStable, TyEncodable, TyDecodable)] | 
|  | pub struct FieldDef { | 
|  | pub did: DefId, | 
|  | pub name: Symbol, | 
|  | pub vis: Visibility<DefId>, | 
|  | pub safety: hir::Safety, | 
|  | pub value: Option<DefId>, | 
|  | } | 
|  |  | 
|  | impl PartialEq for FieldDef { | 
|  | #[inline] | 
|  | fn eq(&self, other: &Self) -> bool { | 
|  | // There should be only one `FieldDef` for each `did`, therefore it is | 
|  | // fine to implement `PartialEq` only based on `did`. | 
|  | // | 
|  | // Below, we exhaustively destructure `self` so that if the definition | 
|  | // of `FieldDef` changes, a compile-error will be produced, reminding | 
|  | // us to revisit this assumption. | 
|  |  | 
|  | let Self { did: lhs_did, name: _, vis: _, safety: _, value: _ } = &self; | 
|  |  | 
|  | let Self { did: rhs_did, name: _, vis: _, safety: _, value: _ } = other; | 
|  |  | 
|  | let res = lhs_did == rhs_did; | 
|  |  | 
|  | // Double check that implicit assumption detailed above. | 
|  | if cfg!(debug_assertions) && res { | 
|  | let deep = | 
|  | self.name == other.name && self.vis == other.vis && self.safety == other.safety; | 
|  | assert!(deep, "FieldDef for the same def-id has differing data"); | 
|  | } | 
|  |  | 
|  | res | 
|  | } | 
|  | } | 
|  |  | 
|  | impl Eq for FieldDef {} | 
|  |  | 
|  | impl Hash for FieldDef { | 
|  | #[inline] | 
|  | fn hash<H: Hasher>(&self, s: &mut H) { | 
|  | // There should be only one `FieldDef` for each `did`, therefore it is | 
|  | // fine to implement `Hash` only based on `did`. | 
|  | // | 
|  | // Below, we exhaustively destructure `self` so that if the definition | 
|  | // of `FieldDef` changes, a compile-error will be produced, reminding | 
|  | // us to revisit this assumption. | 
|  |  | 
|  | let Self { did, name: _, vis: _, safety: _, value: _ } = &self; | 
|  |  | 
|  | did.hash(s) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> FieldDef { | 
|  | /// Returns the type of this field. The resulting type is not normalized. The `arg` is | 
|  | /// typically obtained via the second field of [`TyKind::Adt`]. | 
|  | pub fn ty(&self, tcx: TyCtxt<'tcx>, args: GenericArgsRef<'tcx>) -> Ty<'tcx> { | 
|  | tcx.type_of(self.did).instantiate(tcx, args) | 
|  | } | 
|  |  | 
|  | /// Computes the `Ident` of this variant by looking up the `Span` | 
|  | pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident { | 
|  | Ident::new(self.name, tcx.def_ident_span(self.did).unwrap()) | 
|  | } | 
|  | } | 
|  |  | 
|  | #[derive(Debug, PartialEq, Eq)] | 
|  | pub enum ImplOverlapKind { | 
|  | /// These impls are always allowed to overlap. | 
|  | Permitted { | 
|  | /// Whether or not the impl is permitted due to the trait being a `#[marker]` trait | 
|  | marker: bool, | 
|  | }, | 
|  | } | 
|  |  | 
|  | /// Useful source information about where a desugared associated type for an | 
|  | /// RPITIT originated from. | 
|  | #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Encodable, Decodable, HashStable)] | 
|  | pub enum ImplTraitInTraitData { | 
|  | Trait { fn_def_id: DefId, opaque_def_id: DefId }, | 
|  | Impl { fn_def_id: DefId }, | 
|  | } | 
|  |  | 
|  | impl<'tcx> TyCtxt<'tcx> { | 
|  | pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> { | 
|  | self.typeck(self.hir_body_owner_def_id(body)) | 
|  | } | 
|  |  | 
|  | pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> { | 
|  | self.associated_items(id) | 
|  | .in_definition_order() | 
|  | .filter(move |item| item.is_fn() && item.defaultness(self).has_value()) | 
|  | } | 
|  |  | 
|  | pub fn repr_options_of_def(self, did: LocalDefId) -> ReprOptions { | 
|  | let mut flags = ReprFlags::empty(); | 
|  | let mut size = None; | 
|  | let mut max_align: Option<Align> = None; | 
|  | let mut min_pack: Option<Align> = None; | 
|  |  | 
|  | // Generate a deterministically-derived seed from the item's path hash | 
|  | // to allow for cross-crate compilation to actually work | 
|  | let mut field_shuffle_seed = self.def_path_hash(did.to_def_id()).0.to_smaller_hash(); | 
|  |  | 
|  | // If the user defined a custom seed for layout randomization, xor the item's | 
|  | // path hash with the user defined seed, this will allowing determinism while | 
|  | // still allowing users to further randomize layout generation for e.g. fuzzing | 
|  | if let Some(user_seed) = self.sess.opts.unstable_opts.layout_seed { | 
|  | field_shuffle_seed ^= user_seed; | 
|  | } | 
|  |  | 
|  | if let Some(reprs) = | 
|  | find_attr!(self.get_all_attrs(did), AttributeKind::Repr { reprs, .. } => reprs) | 
|  | { | 
|  | for (r, _) in reprs { | 
|  | flags.insert(match *r { | 
|  | attr::ReprRust => ReprFlags::empty(), | 
|  | attr::ReprC => ReprFlags::IS_C, | 
|  | attr::ReprPacked(pack) => { | 
|  | min_pack = Some(if let Some(min_pack) = min_pack { | 
|  | min_pack.min(pack) | 
|  | } else { | 
|  | pack | 
|  | }); | 
|  | ReprFlags::empty() | 
|  | } | 
|  | attr::ReprTransparent => ReprFlags::IS_TRANSPARENT, | 
|  | attr::ReprSimd => ReprFlags::IS_SIMD, | 
|  | attr::ReprInt(i) => { | 
|  | size = Some(match i { | 
|  | attr::IntType::SignedInt(x) => match x { | 
|  | ast::IntTy::Isize => IntegerType::Pointer(true), | 
|  | ast::IntTy::I8 => IntegerType::Fixed(Integer::I8, true), | 
|  | ast::IntTy::I16 => IntegerType::Fixed(Integer::I16, true), | 
|  | ast::IntTy::I32 => IntegerType::Fixed(Integer::I32, true), | 
|  | ast::IntTy::I64 => IntegerType::Fixed(Integer::I64, true), | 
|  | ast::IntTy::I128 => IntegerType::Fixed(Integer::I128, true), | 
|  | }, | 
|  | attr::IntType::UnsignedInt(x) => match x { | 
|  | ast::UintTy::Usize => IntegerType::Pointer(false), | 
|  | ast::UintTy::U8 => IntegerType::Fixed(Integer::I8, false), | 
|  | ast::UintTy::U16 => IntegerType::Fixed(Integer::I16, false), | 
|  | ast::UintTy::U32 => IntegerType::Fixed(Integer::I32, false), | 
|  | ast::UintTy::U64 => IntegerType::Fixed(Integer::I64, false), | 
|  | ast::UintTy::U128 => IntegerType::Fixed(Integer::I128, false), | 
|  | }, | 
|  | }); | 
|  | ReprFlags::empty() | 
|  | } | 
|  | attr::ReprAlign(align) => { | 
|  | max_align = max_align.max(Some(align)); | 
|  | ReprFlags::empty() | 
|  | } | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If `-Z randomize-layout` was enabled for the type definition then we can | 
|  | // consider performing layout randomization | 
|  | if self.sess.opts.unstable_opts.randomize_layout { | 
|  | flags.insert(ReprFlags::RANDOMIZE_LAYOUT); | 
|  | } | 
|  |  | 
|  | // box is special, on the one hand the compiler assumes an ordered layout, with the pointer | 
|  | // always at offset zero. On the other hand we want scalar abi optimizations. | 
|  | let is_box = self.is_lang_item(did.to_def_id(), LangItem::OwnedBox); | 
|  |  | 
|  | // This is here instead of layout because the choice must make it into metadata. | 
|  | if is_box { | 
|  | flags.insert(ReprFlags::IS_LINEAR); | 
|  | } | 
|  |  | 
|  | ReprOptions { int: size, align: max_align, pack: min_pack, flags, field_shuffle_seed } | 
|  | } | 
|  |  | 
|  | /// Look up the name of a definition across crates. This does not look at HIR. | 
|  | pub fn opt_item_name(self, def_id: impl IntoQueryParam<DefId>) -> Option<Symbol> { | 
|  | let def_id = def_id.into_query_param(); | 
|  | if let Some(cnum) = def_id.as_crate_root() { | 
|  | Some(self.crate_name(cnum)) | 
|  | } else { | 
|  | let def_key = self.def_key(def_id); | 
|  | match def_key.disambiguated_data.data { | 
|  | // The name of a constructor is that of its parent. | 
|  | rustc_hir::definitions::DefPathData::Ctor => self | 
|  | .opt_item_name(DefId { krate: def_id.krate, index: def_key.parent.unwrap() }), | 
|  | _ => def_key.get_opt_name(), | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Look up the name of a definition across crates. This does not look at HIR. | 
|  | /// | 
|  | /// This method will ICE if the corresponding item does not have a name. In these cases, use | 
|  | /// [`opt_item_name`] instead. | 
|  | /// | 
|  | /// [`opt_item_name`]: Self::opt_item_name | 
|  | pub fn item_name(self, id: impl IntoQueryParam<DefId>) -> Symbol { | 
|  | let id = id.into_query_param(); | 
|  | self.opt_item_name(id).unwrap_or_else(|| { | 
|  | bug!("item_name: no name for {:?}", self.def_path(id)); | 
|  | }) | 
|  | } | 
|  |  | 
|  | /// Look up the name and span of a definition. | 
|  | /// | 
|  | /// See [`item_name`][Self::item_name] for more information. | 
|  | pub fn opt_item_ident(self, def_id: impl IntoQueryParam<DefId>) -> Option<Ident> { | 
|  | let def_id = def_id.into_query_param(); | 
|  | let def = self.opt_item_name(def_id)?; | 
|  | let span = self | 
|  | .def_ident_span(def_id) | 
|  | .unwrap_or_else(|| bug!("missing ident span for {def_id:?}")); | 
|  | Some(Ident::new(def, span)) | 
|  | } | 
|  |  | 
|  | /// Look up the name and span of a definition. | 
|  | /// | 
|  | /// See [`item_name`][Self::item_name] for more information. | 
|  | pub fn item_ident(self, def_id: impl IntoQueryParam<DefId>) -> Ident { | 
|  | let def_id = def_id.into_query_param(); | 
|  | self.opt_item_ident(def_id).unwrap_or_else(|| { | 
|  | bug!("item_ident: no name for {:?}", self.def_path(def_id)); | 
|  | }) | 
|  | } | 
|  |  | 
|  | pub fn opt_associated_item(self, def_id: DefId) -> Option<AssocItem> { | 
|  | if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) { | 
|  | Some(self.associated_item(def_id)) | 
|  | } else { | 
|  | None | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If the `def_id` is an associated type that was desugared from a | 
|  | /// return-position `impl Trait` from a trait, then provide the source info | 
|  | /// about where that RPITIT came from. | 
|  | pub fn opt_rpitit_info(self, def_id: DefId) -> Option<ImplTraitInTraitData> { | 
|  | if let DefKind::AssocTy = self.def_kind(def_id) | 
|  | && let AssocKind::Type { data: AssocTypeData::Rpitit(rpitit_info) } = | 
|  | self.associated_item(def_id).kind | 
|  | { | 
|  | Some(rpitit_info) | 
|  | } else { | 
|  | None | 
|  | } | 
|  | } | 
|  |  | 
|  | pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<FieldIdx> { | 
|  | variant.fields.iter_enumerated().find_map(|(i, field)| { | 
|  | self.hygienic_eq(ident, field.ident(self), variant.def_id).then_some(i) | 
|  | }) | 
|  | } | 
|  |  | 
|  | /// Returns `Some` if the impls are the same polarity and the trait either | 
|  | /// has no items or is annotated `#[marker]` and prevents item overrides. | 
|  | #[instrument(level = "debug", skip(self), ret)] | 
|  | pub fn impls_are_allowed_to_overlap( | 
|  | self, | 
|  | def_id1: DefId, | 
|  | def_id2: DefId, | 
|  | ) -> Option<ImplOverlapKind> { | 
|  | let impl1 = self.impl_trait_header(def_id1).unwrap(); | 
|  | let impl2 = self.impl_trait_header(def_id2).unwrap(); | 
|  |  | 
|  | let trait_ref1 = impl1.trait_ref.skip_binder(); | 
|  | let trait_ref2 = impl2.trait_ref.skip_binder(); | 
|  |  | 
|  | // If either trait impl references an error, they're allowed to overlap, | 
|  | // as one of them essentially doesn't exist. | 
|  | if trait_ref1.references_error() || trait_ref2.references_error() { | 
|  | return Some(ImplOverlapKind::Permitted { marker: false }); | 
|  | } | 
|  |  | 
|  | match (impl1.polarity, impl2.polarity) { | 
|  | (ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => { | 
|  | // `#[rustc_reservation_impl]` impls don't overlap with anything | 
|  | return Some(ImplOverlapKind::Permitted { marker: false }); | 
|  | } | 
|  | (ImplPolarity::Positive, ImplPolarity::Negative) | 
|  | | (ImplPolarity::Negative, ImplPolarity::Positive) => { | 
|  | // `impl AutoTrait for Type` + `impl !AutoTrait for Type` | 
|  | return None; | 
|  | } | 
|  | (ImplPolarity::Positive, ImplPolarity::Positive) | 
|  | | (ImplPolarity::Negative, ImplPolarity::Negative) => {} | 
|  | }; | 
|  |  | 
|  | let is_marker_impl = |trait_ref: TraitRef<'_>| self.trait_def(trait_ref.def_id).is_marker; | 
|  | let is_marker_overlap = is_marker_impl(trait_ref1) && is_marker_impl(trait_ref2); | 
|  |  | 
|  | if is_marker_overlap { | 
|  | return Some(ImplOverlapKind::Permitted { marker: true }); | 
|  | } | 
|  |  | 
|  | None | 
|  | } | 
|  |  | 
|  | /// Returns `ty::VariantDef` if `res` refers to a struct, | 
|  | /// or variant or their constructors, panics otherwise. | 
|  | pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef { | 
|  | match res { | 
|  | Res::Def(DefKind::Variant, did) => { | 
|  | let enum_did = self.parent(did); | 
|  | self.adt_def(enum_did).variant_with_id(did) | 
|  | } | 
|  | Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(), | 
|  | Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => { | 
|  | let variant_did = self.parent(variant_ctor_did); | 
|  | let enum_did = self.parent(variant_did); | 
|  | self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did) | 
|  | } | 
|  | Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => { | 
|  | let struct_did = self.parent(ctor_did); | 
|  | self.adt_def(struct_did).non_enum_variant() | 
|  | } | 
|  | _ => bug!("expect_variant_res used with unexpected res {:?}", res), | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns the possibly-auto-generated MIR of a [`ty::InstanceKind`]. | 
|  | #[instrument(skip(self), level = "debug")] | 
|  | pub fn instance_mir(self, instance: ty::InstanceKind<'tcx>) -> &'tcx Body<'tcx> { | 
|  | match instance { | 
|  | ty::InstanceKind::Item(def) => { | 
|  | debug!("calling def_kind on def: {:?}", def); | 
|  | let def_kind = self.def_kind(def); | 
|  | debug!("returned from def_kind: {:?}", def_kind); | 
|  | match def_kind { | 
|  | DefKind::Const | 
|  | | DefKind::Static { .. } | 
|  | | DefKind::AssocConst | 
|  | | DefKind::Ctor(..) | 
|  | | DefKind::AnonConst | 
|  | | DefKind::InlineConst => self.mir_for_ctfe(def), | 
|  | // If the caller wants `mir_for_ctfe` of a function they should not be using | 
|  | // `instance_mir`, so we'll assume const fn also wants the optimized version. | 
|  | _ => self.optimized_mir(def), | 
|  | } | 
|  | } | 
|  | ty::InstanceKind::VTableShim(..) | 
|  | | ty::InstanceKind::ReifyShim(..) | 
|  | | ty::InstanceKind::Intrinsic(..) | 
|  | | ty::InstanceKind::FnPtrShim(..) | 
|  | | ty::InstanceKind::Virtual(..) | 
|  | | ty::InstanceKind::ClosureOnceShim { .. } | 
|  | | ty::InstanceKind::ConstructCoroutineInClosureShim { .. } | 
|  | | ty::InstanceKind::FutureDropPollShim(..) | 
|  | | ty::InstanceKind::DropGlue(..) | 
|  | | ty::InstanceKind::CloneShim(..) | 
|  | | ty::InstanceKind::ThreadLocalShim(..) | 
|  | | ty::InstanceKind::FnPtrAddrShim(..) | 
|  | | ty::InstanceKind::AsyncDropGlueCtorShim(..) | 
|  | | ty::InstanceKind::AsyncDropGlue(..) => self.mir_shims(instance), | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Gets all attributes with the given name. | 
|  | pub fn get_attrs( | 
|  | self, | 
|  | did: impl Into<DefId>, | 
|  | attr: Symbol, | 
|  | ) -> impl Iterator<Item = &'tcx hir::Attribute> { | 
|  | self.get_all_attrs(did).iter().filter(move |a: &&hir::Attribute| a.has_name(attr)) | 
|  | } | 
|  |  | 
|  | /// Gets all attributes. | 
|  | /// | 
|  | /// To see if an item has a specific attribute, you should use | 
|  | /// [`rustc_hir::find_attr!`] so you can use matching. | 
|  | pub fn get_all_attrs(self, did: impl Into<DefId>) -> &'tcx [hir::Attribute] { | 
|  | let did: DefId = did.into(); | 
|  | if let Some(did) = did.as_local() { | 
|  | self.hir_attrs(self.local_def_id_to_hir_id(did)) | 
|  | } else { | 
|  | self.attrs_for_def(did) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Get an attribute from the diagnostic attribute namespace | 
|  | /// | 
|  | /// This function requests an attribute with the following structure: | 
|  | /// | 
|  | /// `#[diagnostic::$attr]` | 
|  | /// | 
|  | /// This function performs feature checking, so if an attribute is returned | 
|  | /// it can be used by the consumer | 
|  | pub fn get_diagnostic_attr( | 
|  | self, | 
|  | did: impl Into<DefId>, | 
|  | attr: Symbol, | 
|  | ) -> Option<&'tcx hir::Attribute> { | 
|  | let did: DefId = did.into(); | 
|  | if did.as_local().is_some() { | 
|  | // it's a crate local item, we need to check feature flags | 
|  | if rustc_feature::is_stable_diagnostic_attribute(attr, self.features()) { | 
|  | self.get_attrs_by_path(did, &[sym::diagnostic, sym::do_not_recommend]).next() | 
|  | } else { | 
|  | None | 
|  | } | 
|  | } else { | 
|  | // we filter out unstable diagnostic attributes before | 
|  | // encoding attributes | 
|  | debug_assert!(rustc_feature::encode_cross_crate(attr)); | 
|  | self.attrs_for_def(did) | 
|  | .iter() | 
|  | .find(|a| matches!(a.path().as_ref(), [sym::diagnostic, a] if *a == attr)) | 
|  | } | 
|  | } | 
|  |  | 
|  | pub fn get_attrs_by_path( | 
|  | self, | 
|  | did: DefId, | 
|  | attr: &[Symbol], | 
|  | ) -> impl Iterator<Item = &'tcx hir::Attribute> { | 
|  | let filter_fn = move |a: &&hir::Attribute| a.path_matches(attr); | 
|  | if let Some(did) = did.as_local() { | 
|  | self.hir_attrs(self.local_def_id_to_hir_id(did)).iter().filter(filter_fn) | 
|  | } else { | 
|  | self.attrs_for_def(did).iter().filter(filter_fn) | 
|  | } | 
|  | } | 
|  |  | 
|  | pub fn get_attr(self, did: impl Into<DefId>, attr: Symbol) -> Option<&'tcx hir::Attribute> { | 
|  | if cfg!(debug_assertions) && !rustc_feature::is_valid_for_get_attr(attr) { | 
|  | let did: DefId = did.into(); | 
|  | bug!("get_attr: unexpected called with DefId `{:?}`, attr `{:?}`", did, attr); | 
|  | } else { | 
|  | self.get_attrs(did, attr).next() | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Determines whether an item is annotated with an attribute. | 
|  | pub fn has_attr(self, did: impl Into<DefId>, attr: Symbol) -> bool { | 
|  | self.get_attrs(did, attr).next().is_some() | 
|  | } | 
|  |  | 
|  | /// Determines whether an item is annotated with a multi-segment attribute | 
|  | pub fn has_attrs_with_path(self, did: impl Into<DefId>, attrs: &[Symbol]) -> bool { | 
|  | self.get_attrs_by_path(did.into(), attrs).next().is_some() | 
|  | } | 
|  |  | 
|  | /// Returns `true` if this is an `auto trait`. | 
|  | pub fn trait_is_auto(self, trait_def_id: DefId) -> bool { | 
|  | self.trait_def(trait_def_id).has_auto_impl | 
|  | } | 
|  |  | 
|  | /// Returns `true` if this is coinductive, either because it is | 
|  | /// an auto trait or because it has the `#[rustc_coinductive]` attribute. | 
|  | pub fn trait_is_coinductive(self, trait_def_id: DefId) -> bool { | 
|  | self.trait_def(trait_def_id).is_coinductive | 
|  | } | 
|  |  | 
|  | /// Returns `true` if this is a trait alias. | 
|  | pub fn trait_is_alias(self, trait_def_id: DefId) -> bool { | 
|  | self.def_kind(trait_def_id) == DefKind::TraitAlias | 
|  | } | 
|  |  | 
|  | /// Arena-alloc of LayoutError for coroutine layout | 
|  | fn layout_error(self, err: LayoutError<'tcx>) -> &'tcx LayoutError<'tcx> { | 
|  | self.arena.alloc(err) | 
|  | } | 
|  |  | 
|  | /// Returns layout of a non-async-drop coroutine. Layout might be unavailable if the | 
|  | /// coroutine is tainted by errors. | 
|  | /// | 
|  | /// Takes `coroutine_kind` which can be acquired from the `CoroutineArgs::kind_ty`, | 
|  | /// e.g. `args.as_coroutine().kind_ty()`. | 
|  | fn ordinary_coroutine_layout( | 
|  | self, | 
|  | def_id: DefId, | 
|  | args: GenericArgsRef<'tcx>, | 
|  | ) -> Result<&'tcx CoroutineLayout<'tcx>, &'tcx LayoutError<'tcx>> { | 
|  | let coroutine_kind_ty = args.as_coroutine().kind_ty(); | 
|  | let mir = self.optimized_mir(def_id); | 
|  | let ty = || Ty::new_coroutine(self, def_id, args); | 
|  | // Regular coroutine | 
|  | if coroutine_kind_ty.is_unit() { | 
|  | mir.coroutine_layout_raw().ok_or_else(|| self.layout_error(LayoutError::Unknown(ty()))) | 
|  | } else { | 
|  | // If we have a `Coroutine` that comes from an coroutine-closure, | 
|  | // then it may be a by-move or by-ref body. | 
|  | let ty::Coroutine(_, identity_args) = | 
|  | *self.type_of(def_id).instantiate_identity().kind() | 
|  | else { | 
|  | unreachable!(); | 
|  | }; | 
|  | let identity_kind_ty = identity_args.as_coroutine().kind_ty(); | 
|  | // If the types differ, then we must be getting the by-move body of | 
|  | // a by-ref coroutine. | 
|  | if identity_kind_ty == coroutine_kind_ty { | 
|  | mir.coroutine_layout_raw() | 
|  | .ok_or_else(|| self.layout_error(LayoutError::Unknown(ty()))) | 
|  | } else { | 
|  | assert_matches!(coroutine_kind_ty.to_opt_closure_kind(), Some(ClosureKind::FnOnce)); | 
|  | assert_matches!( | 
|  | identity_kind_ty.to_opt_closure_kind(), | 
|  | Some(ClosureKind::Fn | ClosureKind::FnMut) | 
|  | ); | 
|  | self.optimized_mir(self.coroutine_by_move_body_def_id(def_id)) | 
|  | .coroutine_layout_raw() | 
|  | .ok_or_else(|| self.layout_error(LayoutError::Unknown(ty()))) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns layout of a `async_drop_in_place::{closure}` coroutine | 
|  | ///   (returned from `async fn async_drop_in_place<T>(..)`). | 
|  | /// Layout might be unavailable if the coroutine is tainted by errors. | 
|  | fn async_drop_coroutine_layout( | 
|  | self, | 
|  | def_id: DefId, | 
|  | args: GenericArgsRef<'tcx>, | 
|  | ) -> Result<&'tcx CoroutineLayout<'tcx>, &'tcx LayoutError<'tcx>> { | 
|  | let ty = || Ty::new_coroutine(self, def_id, args); | 
|  | if args[0].has_placeholders() || args[0].has_non_region_param() { | 
|  | return Err(self.layout_error(LayoutError::TooGeneric(ty()))); | 
|  | } | 
|  | let instance = InstanceKind::AsyncDropGlue(def_id, Ty::new_coroutine(self, def_id, args)); | 
|  | self.mir_shims(instance) | 
|  | .coroutine_layout_raw() | 
|  | .ok_or_else(|| self.layout_error(LayoutError::Unknown(ty()))) | 
|  | } | 
|  |  | 
|  | /// Returns layout of a coroutine. Layout might be unavailable if the | 
|  | /// coroutine is tainted by errors. | 
|  | pub fn coroutine_layout( | 
|  | self, | 
|  | def_id: DefId, | 
|  | args: GenericArgsRef<'tcx>, | 
|  | ) -> Result<&'tcx CoroutineLayout<'tcx>, &'tcx LayoutError<'tcx>> { | 
|  | if self.is_async_drop_in_place_coroutine(def_id) { | 
|  | // layout of `async_drop_in_place<T>::{closure}` in case, | 
|  | // when T is a coroutine, contains this internal coroutine's ptr in upvars | 
|  | // and doesn't require any locals. Here is an `empty coroutine's layout` | 
|  | let arg_cor_ty = args.first().unwrap().expect_ty(); | 
|  | if arg_cor_ty.is_coroutine() { | 
|  | let span = self.def_span(def_id); | 
|  | let source_info = SourceInfo::outermost(span); | 
|  | // Even minimal, empty coroutine has 3 states (RESERVED_VARIANTS), | 
|  | // so variant_fields and variant_source_info should have 3 elements. | 
|  | let variant_fields: IndexVec<VariantIdx, IndexVec<FieldIdx, CoroutineSavedLocal>> = | 
|  | iter::repeat(IndexVec::new()).take(CoroutineArgs::RESERVED_VARIANTS).collect(); | 
|  | let variant_source_info: IndexVec<VariantIdx, SourceInfo> = | 
|  | iter::repeat(source_info).take(CoroutineArgs::RESERVED_VARIANTS).collect(); | 
|  | let proxy_layout = CoroutineLayout { | 
|  | field_tys: [].into(), | 
|  | field_names: [].into(), | 
|  | variant_fields, | 
|  | variant_source_info, | 
|  | storage_conflicts: BitMatrix::new(0, 0), | 
|  | }; | 
|  | return Ok(self.arena.alloc(proxy_layout)); | 
|  | } else { | 
|  | self.async_drop_coroutine_layout(def_id, args) | 
|  | } | 
|  | } else { | 
|  | self.ordinary_coroutine_layout(def_id, args) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Given the `DefId` of an impl, returns the `DefId` of the trait it implements. | 
|  | /// If it implements no trait, returns `None`. | 
|  | pub fn trait_id_of_impl(self, def_id: DefId) -> Option<DefId> { | 
|  | self.impl_trait_ref(def_id).map(|tr| tr.skip_binder().def_id) | 
|  | } | 
|  |  | 
|  | /// If the given `DefId` is an associated item, returns the `DefId` and `DefKind` of the parent trait or impl. | 
|  | pub fn assoc_parent(self, def_id: DefId) -> Option<(DefId, DefKind)> { | 
|  | if !self.def_kind(def_id).is_assoc() { | 
|  | return None; | 
|  | } | 
|  | let parent = self.parent(def_id); | 
|  | let def_kind = self.def_kind(parent); | 
|  | Some((parent, def_kind)) | 
|  | } | 
|  |  | 
|  | /// If the given `DefId` is an associated item of a trait, | 
|  | /// returns the `DefId` of the trait; otherwise, returns `None`. | 
|  | pub fn trait_of_assoc(self, def_id: DefId) -> Option<DefId> { | 
|  | match self.assoc_parent(def_id) { | 
|  | Some((id, DefKind::Trait)) => Some(id), | 
|  | _ => None, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If the given `DefId` is an associated item of an impl, | 
|  | /// returns the `DefId` of the impl; otherwise returns `None`. | 
|  | pub fn impl_of_assoc(self, def_id: DefId) -> Option<DefId> { | 
|  | match self.assoc_parent(def_id) { | 
|  | Some((id, DefKind::Impl { .. })) => Some(id), | 
|  | _ => None, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If the given `DefId` is an associated item of an inherent impl, | 
|  | /// returns the `DefId` of the impl; otherwise, returns `None`. | 
|  | pub fn inherent_impl_of_assoc(self, def_id: DefId) -> Option<DefId> { | 
|  | match self.assoc_parent(def_id) { | 
|  | Some((id, DefKind::Impl { of_trait: false })) => Some(id), | 
|  | _ => None, | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If the given `DefId` is an associated item of a trait impl, | 
|  | /// returns the `DefId` of the impl; otherwise, returns `None`. | 
|  | pub fn trait_impl_of_assoc(self, def_id: DefId) -> Option<DefId> { | 
|  | match self.assoc_parent(def_id) { | 
|  | Some((id, DefKind::Impl { of_trait: true })) => Some(id), | 
|  | _ => None, | 
|  | } | 
|  | } | 
|  |  | 
|  | pub fn is_exportable(self, def_id: DefId) -> bool { | 
|  | self.exportable_items(def_id.krate).contains(&def_id) | 
|  | } | 
|  |  | 
|  | /// Check if the given `DefId` is `#\[automatically_derived\]`, *and* | 
|  | /// whether it was produced by expanding a builtin derive macro. | 
|  | pub fn is_builtin_derived(self, def_id: DefId) -> bool { | 
|  | if self.is_automatically_derived(def_id) | 
|  | && let Some(def_id) = def_id.as_local() | 
|  | && let outer = self.def_span(def_id).ctxt().outer_expn_data() | 
|  | && matches!(outer.kind, ExpnKind::Macro(MacroKind::Derive, _)) | 
|  | && find_attr!( | 
|  | self.get_all_attrs(outer.macro_def_id.unwrap()), | 
|  | AttributeKind::RustcBuiltinMacro { .. } | 
|  | ) | 
|  | { | 
|  | true | 
|  | } else { | 
|  | false | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Check if the given `DefId` is `#\[automatically_derived\]`. | 
|  | pub fn is_automatically_derived(self, def_id: DefId) -> bool { | 
|  | find_attr!(self.get_all_attrs(def_id), AttributeKind::AutomaticallyDerived(..)) | 
|  | } | 
|  |  | 
|  | /// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err` | 
|  | /// with the name of the crate containing the impl. | 
|  | pub fn span_of_impl(self, impl_def_id: DefId) -> Result<Span, Symbol> { | 
|  | if let Some(impl_def_id) = impl_def_id.as_local() { | 
|  | Ok(self.def_span(impl_def_id)) | 
|  | } else { | 
|  | Err(self.crate_name(impl_def_id.krate)) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Hygienically compares a use-site name (`use_name`) for a field or an associated item with | 
|  | /// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed | 
|  | /// definition's parent/scope to perform comparison. | 
|  | pub fn hygienic_eq(self, use_ident: Ident, def_ident: Ident, def_parent_def_id: DefId) -> bool { | 
|  | // We could use `Ident::eq` here, but we deliberately don't. The identifier | 
|  | // comparison fails frequently, and we want to avoid the expensive | 
|  | // `normalize_to_macros_2_0()` calls required for the span comparison whenever possible. | 
|  | use_ident.name == def_ident.name | 
|  | && use_ident | 
|  | .span | 
|  | .ctxt() | 
|  | .hygienic_eq(def_ident.span.ctxt(), self.expn_that_defined(def_parent_def_id)) | 
|  | } | 
|  |  | 
|  | pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident { | 
|  | ident.span.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope)); | 
|  | ident | 
|  | } | 
|  |  | 
|  | // FIXME(vincenzopalazzo): move the HirId to a LocalDefId | 
|  | pub fn adjust_ident_and_get_scope( | 
|  | self, | 
|  | mut ident: Ident, | 
|  | scope: DefId, | 
|  | block: hir::HirId, | 
|  | ) -> (Ident, DefId) { | 
|  | let scope = ident | 
|  | .span | 
|  | .normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope)) | 
|  | .and_then(|actual_expansion| actual_expansion.expn_data().parent_module) | 
|  | .unwrap_or_else(|| self.parent_module(block).to_def_id()); | 
|  | (ident, scope) | 
|  | } | 
|  |  | 
|  | /// Checks whether this is a `const fn`. Returns `false` for non-functions. | 
|  | /// | 
|  | /// Even if this returns `true`, constness may still be unstable! | 
|  | #[inline] | 
|  | pub fn is_const_fn(self, def_id: DefId) -> bool { | 
|  | matches!( | 
|  | self.def_kind(def_id), | 
|  | DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) | DefKind::Closure | 
|  | ) && self.constness(def_id) == hir::Constness::Const | 
|  | } | 
|  |  | 
|  | /// Whether this item is conditionally constant for the purposes of the | 
|  | /// effects implementation. | 
|  | /// | 
|  | /// This roughly corresponds to all const functions and other callable | 
|  | /// items, along with const impls and traits, and associated types within | 
|  | /// those impls and traits. | 
|  | pub fn is_conditionally_const(self, def_id: impl Into<DefId>) -> bool { | 
|  | let def_id: DefId = def_id.into(); | 
|  | match self.def_kind(def_id) { | 
|  | DefKind::Impl { of_trait: true } => { | 
|  | let header = self.impl_trait_header(def_id).unwrap(); | 
|  | header.constness == hir::Constness::Const | 
|  | && self.is_const_trait(header.trait_ref.skip_binder().def_id) | 
|  | } | 
|  | DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn) => { | 
|  | self.constness(def_id) == hir::Constness::Const | 
|  | } | 
|  | DefKind::Trait => self.is_const_trait(def_id), | 
|  | DefKind::AssocTy => { | 
|  | let parent_def_id = self.parent(def_id); | 
|  | match self.def_kind(parent_def_id) { | 
|  | DefKind::Impl { of_trait: false } => false, | 
|  | DefKind::Impl { of_trait: true } | DefKind::Trait => { | 
|  | self.is_conditionally_const(parent_def_id) | 
|  | } | 
|  | _ => bug!("unexpected parent item of associated type: {parent_def_id:?}"), | 
|  | } | 
|  | } | 
|  | DefKind::AssocFn => { | 
|  | let parent_def_id = self.parent(def_id); | 
|  | match self.def_kind(parent_def_id) { | 
|  | DefKind::Impl { of_trait: false } => { | 
|  | self.constness(def_id) == hir::Constness::Const | 
|  | } | 
|  | DefKind::Impl { of_trait: true } | DefKind::Trait => { | 
|  | self.is_conditionally_const(parent_def_id) | 
|  | } | 
|  | _ => bug!("unexpected parent item of associated fn: {parent_def_id:?}"), | 
|  | } | 
|  | } | 
|  | DefKind::OpaqueTy => match self.opaque_ty_origin(def_id) { | 
|  | hir::OpaqueTyOrigin::FnReturn { parent, .. } => self.is_conditionally_const(parent), | 
|  | hir::OpaqueTyOrigin::AsyncFn { .. } => false, | 
|  | // FIXME(const_trait_impl): ATPITs could be conditionally const? | 
|  | hir::OpaqueTyOrigin::TyAlias { .. } => false, | 
|  | }, | 
|  | DefKind::Closure => { | 
|  | // Closures and RPITs will eventually have const conditions | 
|  | // for `[const]` bounds. | 
|  | false | 
|  | } | 
|  | DefKind::Ctor(_, CtorKind::Const) | 
|  | | DefKind::Impl { of_trait: false } | 
|  | | DefKind::Mod | 
|  | | DefKind::Struct | 
|  | | DefKind::Union | 
|  | | DefKind::Enum | 
|  | | DefKind::Variant | 
|  | | DefKind::TyAlias | 
|  | | DefKind::ForeignTy | 
|  | | DefKind::TraitAlias | 
|  | | DefKind::TyParam | 
|  | | DefKind::Const | 
|  | | DefKind::ConstParam | 
|  | | DefKind::Static { .. } | 
|  | | DefKind::AssocConst | 
|  | | DefKind::Macro(_) | 
|  | | DefKind::ExternCrate | 
|  | | DefKind::Use | 
|  | | DefKind::ForeignMod | 
|  | | DefKind::AnonConst | 
|  | | DefKind::InlineConst | 
|  | | DefKind::Field | 
|  | | DefKind::LifetimeParam | 
|  | | DefKind::GlobalAsm | 
|  | | DefKind::SyntheticCoroutineBody => false, | 
|  | } | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | pub fn is_const_trait(self, def_id: DefId) -> bool { | 
|  | self.trait_def(def_id).constness == hir::Constness::Const | 
|  | } | 
|  |  | 
|  | #[inline] | 
|  | pub fn is_const_default_method(self, def_id: DefId) -> bool { | 
|  | matches!(self.trait_of_assoc(def_id), Some(trait_id) if self.is_const_trait(trait_id)) | 
|  | } | 
|  |  | 
|  | pub fn impl_method_has_trait_impl_trait_tys(self, def_id: DefId) -> bool { | 
|  | if self.def_kind(def_id) != DefKind::AssocFn { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | let Some(item) = self.opt_associated_item(def_id) else { | 
|  | return false; | 
|  | }; | 
|  | if item.container != ty::AssocItemContainer::Impl { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | let Some(trait_item_def_id) = item.trait_item_def_id else { | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | return !self | 
|  | .associated_types_for_impl_traits_in_associated_fn(trait_item_def_id) | 
|  | .is_empty(); | 
|  | } | 
|  | } | 
|  |  | 
|  | pub fn provide(providers: &mut Providers) { | 
|  | closure::provide(providers); | 
|  | context::provide(providers); | 
|  | erase_regions::provide(providers); | 
|  | inhabitedness::provide(providers); | 
|  | util::provide(providers); | 
|  | print::provide(providers); | 
|  | super::util::bug::provide(providers); | 
|  | *providers = Providers { | 
|  | trait_impls_of: trait_def::trait_impls_of_provider, | 
|  | incoherent_impls: trait_def::incoherent_impls_provider, | 
|  | trait_impls_in_crate: trait_def::trait_impls_in_crate_provider, | 
|  | traits: trait_def::traits_provider, | 
|  | vtable_allocation: vtable::vtable_allocation_provider, | 
|  | ..*providers | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// A map for the local crate mapping each type to a vector of its | 
|  | /// inherent impls. This is not meant to be used outside of coherence; | 
|  | /// rather, you should request the vector for a specific type via | 
|  | /// `tcx.inherent_impls(def_id)` so as to minimize your dependencies | 
|  | /// (constructing this map requires touching the entire crate). | 
|  | #[derive(Clone, Debug, Default, HashStable)] | 
|  | pub struct CrateInherentImpls { | 
|  | pub inherent_impls: FxIndexMap<LocalDefId, Vec<DefId>>, | 
|  | pub incoherent_impls: FxIndexMap<SimplifiedType, Vec<LocalDefId>>, | 
|  | } | 
|  |  | 
|  | #[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)] | 
|  | pub struct SymbolName<'tcx> { | 
|  | /// `&str` gives a consistent ordering, which ensures reproducible builds. | 
|  | pub name: &'tcx str, | 
|  | } | 
|  |  | 
|  | impl<'tcx> SymbolName<'tcx> { | 
|  | pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> { | 
|  | SymbolName { name: tcx.arena.alloc_str(name) } | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> fmt::Display for SymbolName<'tcx> { | 
|  | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|  | fmt::Display::fmt(&self.name, fmt) | 
|  | } | 
|  | } | 
|  |  | 
|  | impl<'tcx> fmt::Debug for SymbolName<'tcx> { | 
|  | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { | 
|  | fmt::Display::fmt(&self.name, fmt) | 
|  | } | 
|  | } | 
|  |  | 
|  | /// The constituent parts of a type level constant of kind ADT or array. | 
|  | #[derive(Copy, Clone, Debug, HashStable)] | 
|  | pub struct DestructuredConst<'tcx> { | 
|  | pub variant: Option<VariantIdx>, | 
|  | pub fields: &'tcx [ty::Const<'tcx>], | 
|  | } |