blob: 9a610cd7d6ba3978df157f3209a7d5d98d865ff1 [file] [log] [blame]
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![unstable(feature = "ip", reason = "extra functionality has not been \
scrutinized to the level that it should \
be to be stable",
issue = "27709")]
use cmp::Ordering;
use fmt;
use hash;
use sys::net::netc as c;
use sys_common::{AsInner, FromInner};
/// An IP address, either IPv4 or IPv6.
///
/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
/// respective documentation for more details.
///
/// The size of an `IpAddr` instance may vary depending on the target operating
/// system.
///
/// [`Ipv4Addr`]: ../../std/net/struct.Ipv4Addr.html
/// [`Ipv6Addr`]: ../../std/net/struct.Ipv6Addr.html
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
/// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
///
/// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4));
/// assert_eq!("::1".parse(), Ok(localhost_v6));
///
/// assert_eq!(localhost_v4.is_ipv6(), false);
/// assert_eq!(localhost_v4.is_ipv4(), true);
/// ```
#[stable(feature = "ip_addr", since = "1.7.0")]
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub enum IpAddr {
/// An IPv4 address.
#[stable(feature = "ip_addr", since = "1.7.0")]
V4(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv4Addr),
/// An IPv6 address.
#[stable(feature = "ip_addr", since = "1.7.0")]
V6(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv6Addr),
}
/// An IPv4 address.
///
/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
/// They are usually represented as four octets.
///
/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
///
/// The size of an `Ipv4Addr` struct may vary depending on the target operating
/// system.
///
/// [IETF RFC 791]: https://tools.ietf.org/html/rfc791
/// [`IpAddr`]: ../../std/net/enum.IpAddr.html
///
/// # Textual representation
///
/// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal
/// notation, divided by `.` (this is called "dot-decimal notation").
///
/// [`FromStr`]: ../../std/str/trait.FromStr.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let localhost = Ipv4Addr::new(127, 0, 0, 1);
/// assert_eq!("127.0.0.1".parse(), Ok(localhost));
/// assert_eq!(localhost.is_loopback(), true);
/// ```
#[derive(Copy)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Ipv4Addr {
inner: c::in_addr,
}
/// An IPv6 address.
///
/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
/// They are usually represented as eight 16-bit segments.
///
/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
///
/// The size of an `Ipv6Addr` struct may vary depending on the target operating
/// system.
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`IpAddr`]: ../../std/net/enum.IpAddr.html
///
/// # Textual representation
///
/// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent
/// an IPv6 address in text, but in general, each segments is written in hexadecimal
/// notation, and segments are separated by `:`. For more information, see
/// [IETF RFC 5952].
///
/// [`FromStr`]: ../../std/str/trait.FromStr.html
/// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
/// assert_eq!("::1".parse(), Ok(localhost));
/// assert_eq!(localhost.is_loopback(), true);
/// ```
#[derive(Copy)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Ipv6Addr {
inner: c::in6_addr,
}
#[allow(missing_docs)]
#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
pub enum Ipv6MulticastScope {
InterfaceLocal,
LinkLocal,
RealmLocal,
AdminLocal,
SiteLocal,
OrganizationLocal,
Global
}
impl IpAddr {
/// Returns [`true`] for the special 'unspecified' address.
///
/// See the documentation for [`Ipv4Addr::is_unspecified`][IPv4] and
/// [`Ipv6Addr::is_unspecified`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_unspecified
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_unspecified
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true);
/// ```
#[stable(feature = "ip_shared", since = "1.12.0")]
pub fn is_unspecified(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_unspecified(),
IpAddr::V6(ip) => ip.is_unspecified(),
}
}
/// Returns [`true`] if this is a loopback address.
///
/// See the documentation for [`Ipv4Addr::is_loopback`][IPv4] and
/// [`Ipv6Addr::is_loopback`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_loopback
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_loopback
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true);
/// ```
#[stable(feature = "ip_shared", since = "1.12.0")]
pub fn is_loopback(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_loopback(),
IpAddr::V6(ip) => ip.is_loopback(),
}
}
/// Returns [`true`] if the address appears to be globally routable.
///
/// See the documentation for [`Ipv4Addr::is_global`][IPv4] and
/// [`Ipv6Addr::is_global`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_global
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_global
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// fn main() {
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(),
/// true);
/// }
/// ```
pub fn is_global(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_global(),
IpAddr::V6(ip) => ip.is_global(),
}
}
/// Returns [`true`] if this is a multicast address.
///
/// See the documentation for [`Ipv4Addr::is_multicast`][IPv4] and
/// [`Ipv6Addr::is_multicast`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_multicast
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_multicast
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true);
/// ```
#[stable(feature = "ip_shared", since = "1.12.0")]
pub fn is_multicast(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_multicast(),
IpAddr::V6(ip) => ip.is_multicast(),
}
}
/// Returns [`true`] if this address is in a range designated for documentation.
///
/// See the documentation for [`Ipv4Addr::is_documentation`][IPv4] and
/// [`Ipv6Addr::is_documentation`][IPv6] for more details.
///
/// [IPv4]: ../../std/net/struct.Ipv4Addr.html#method.is_documentation
/// [IPv6]: ../../std/net/struct.Ipv6Addr.html#method.is_documentation
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// fn main() {
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0))
/// .is_documentation(), true);
/// }
/// ```
pub fn is_documentation(&self) -> bool {
match self {
IpAddr::V4(ip) => ip.is_documentation(),
IpAddr::V6(ip) => ip.is_documentation(),
}
}
/// Returns [`true`] if this address is an [IPv4 address], and [`false`] otherwise.
///
/// [`true`]: ../../std/primitive.bool.html
/// [`false`]: ../../std/primitive.bool.html
/// [IPv4 address]: #variant.V4
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// fn main() {
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(),
/// false);
/// }
/// ```
#[stable(feature = "ipaddr_checker", since = "1.16.0")]
pub fn is_ipv4(&self) -> bool {
match self {
IpAddr::V4(_) => true,
IpAddr::V6(_) => false,
}
}
/// Returns [`true`] if this address is an [IPv6 address], and [`false`] otherwise.
///
/// [`true`]: ../../std/primitive.bool.html
/// [`false`]: ../../std/primitive.bool.html
/// [IPv6 address]: #variant.V6
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
///
/// fn main() {
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false);
/// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(),
/// true);
/// }
/// ```
#[stable(feature = "ipaddr_checker", since = "1.16.0")]
pub fn is_ipv6(&self) -> bool {
match self {
IpAddr::V4(_) => false,
IpAddr::V6(_) => true,
}
}
}
impl Ipv4Addr {
/// Creates a new IPv4 address from four eight-bit octets.
///
/// The result will represent the IP address `a`.`b`.`c`.`d`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::new(127, 0, 0, 1);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_ip")]
pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
Ipv4Addr {
inner: c::in_addr {
s_addr: u32::to_be(
((a as u32) << 24) |
((b as u32) << 16) |
((c as u32) << 8) |
(d as u32)
),
}
}
}
/// An IPv4 address with the address pointing to localhost: 127.0.0.1.
///
/// # Examples
///
/// ```
/// #![feature(ip_constructors)]
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::LOCALHOST;
/// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
/// ```
#[unstable(feature = "ip_constructors",
reason = "requires greater scrutiny before stabilization",
issue = "44582")]
pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1);
/// An IPv4 address representing an unspecified address: 0.0.0.0
///
/// # Examples
///
/// ```
/// #![feature(ip_constructors)]
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::UNSPECIFIED;
/// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
/// ```
#[unstable(feature = "ip_constructors",
reason = "requires greater scrutiny before stabilization",
issue = "44582")]
pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0);
/// An IPv4 address representing the broadcast address: 255.255.255.255
///
/// # Examples
///
/// ```
/// #![feature(ip_constructors)]
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::BROADCAST;
/// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
/// ```
#[unstable(feature = "ip_constructors",
reason = "requires greater scrutiny before stabilization",
issue = "44582")]
pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255);
/// Returns the four eight-bit integers that make up this address.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::new(127, 0, 0, 1);
/// assert_eq!(addr.octets(), [127, 0, 0, 1]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn octets(&self) -> [u8; 4] {
let bits = u32::from_be(self.inner.s_addr);
[(bits >> 24) as u8, (bits >> 16) as u8, (bits >> 8) as u8, bits as u8]
}
/// Returns [`true`] for the special 'unspecified' address (0.0.0.0).
///
/// This property is defined in _UNIX Network Programming, Second Edition_,
/// W. Richard Stevens, p. 891; see also [ip7].
///
/// [ip7]: http://man7.org/linux/man-pages/man7/ip.7.html
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
/// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
/// ```
#[stable(feature = "ip_shared", since = "1.12.0")]
pub fn is_unspecified(&self) -> bool {
self.inner.s_addr == 0
}
/// Returns [`true`] if this is a loopback address (127.0.0.0/8).
///
/// This property is defined by [IETF RFC 1122].
///
/// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
/// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_loopback(&self) -> bool {
self.octets()[0] == 127
}
/// Returns [`true`] if this is a private address.
///
/// The private address ranges are defined in [IETF RFC 1918] and include:
///
/// - 10.0.0.0/8
/// - 172.16.0.0/12
/// - 192.168.0.0/16
///
/// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
/// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
/// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
/// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
/// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
/// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
/// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_private(&self) -> bool {
match self.octets() {
[10, ..] => true,
[172, b, ..] if b >= 16 && b <= 31 => true,
[192, 168, ..] => true,
_ => false,
}
}
/// Returns [`true`] if the address is link-local (169.254.0.0/16).
///
/// This property is defined by [IETF RFC 3927].
///
/// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
/// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
/// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_link_local(&self) -> bool {
match self.octets() {
[169, 254, ..] => true,
_ => false,
}
}
/// Returns [`true`] if the address appears to be globally routable.
/// See [iana-ipv4-special-registry][ipv4-sr].
///
/// The following return false:
///
/// - private address (10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16)
/// - the loopback address (127.0.0.0/8)
/// - the link-local address (169.254.0.0/16)
/// - the broadcast address (255.255.255.255/32)
/// - test addresses used for documentation (192.0.2.0/24, 198.51.100.0/24 and 203.0.113.0/24)
/// - the unspecified address (0.0.0.0)
///
/// [ipv4-sr]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv4Addr;
///
/// fn main() {
/// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
/// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
/// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
/// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_global(), false);
/// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
/// }
/// ```
pub fn is_global(&self) -> bool {
!self.is_private() && !self.is_loopback() && !self.is_link_local() &&
!self.is_broadcast() && !self.is_documentation() && !self.is_unspecified()
}
/// Returns [`true`] if this is a multicast address (224.0.0.0/4).
///
/// Multicast addresses have a most significant octet between 224 and 239,
/// and is defined by [IETF RFC 5771].
///
/// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
/// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
/// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_multicast(&self) -> bool {
self.octets()[0] >= 224 && self.octets()[0] <= 239
}
/// Returns [`true`] if this is a broadcast address (255.255.255.255).
///
/// A broadcast address has all octets set to 255 as defined in [IETF RFC 919].
///
/// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
/// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_broadcast(&self) -> bool {
self == &Self::BROADCAST
}
/// Returns [`true`] if this address is in a range designated for documentation.
///
/// This is defined in [IETF RFC 5737]:
///
/// - 192.0.2.0/24 (TEST-NET-1)
/// - 198.51.100.0/24 (TEST-NET-2)
/// - 203.0.113.0/24 (TEST-NET-3)
///
/// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
/// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
/// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
/// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_documentation(&self) -> bool {
match self.octets() {
[192, 0, 2, _] => true,
[198, 51, 100, _] => true,
[203, 0, 113, _] => true,
_ => false,
}
}
/// Converts this address to an IPv4-compatible [IPv6 address].
///
/// a.b.c.d becomes ::a.b.c.d
///
/// [IPv6 address]: ../../std/net/struct.Ipv6Addr.html
///
/// # Examples
///
/// ```
/// use std::net::{Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
/// Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 767));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn to_ipv6_compatible(&self) -> Ipv6Addr {
Ipv6Addr::new(0, 0, 0, 0, 0, 0,
((self.octets()[0] as u16) << 8) | self.octets()[1] as u16,
((self.octets()[2] as u16) << 8) | self.octets()[3] as u16)
}
/// Converts this address to an IPv4-mapped [IPv6 address].
///
/// a.b.c.d becomes ::ffff:a.b.c.d
///
/// [IPv6 address]: ../../std/net/struct.Ipv6Addr.html
///
/// # Examples
///
/// ```
/// use std::net::{Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
/// Ipv6Addr::new(0, 0, 0, 0, 0, 65535, 49152, 767));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn to_ipv6_mapped(&self) -> Ipv6Addr {
Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff,
((self.octets()[0] as u16) << 8) | self.octets()[1] as u16,
((self.octets()[2] as u16) << 8) | self.octets()[3] as u16)
}
}
#[stable(feature = "ip_addr", since = "1.7.0")]
impl fmt::Display for IpAddr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self {
IpAddr::V4(ip) => ip.fmt(fmt),
IpAddr::V6(ip) => ip.fmt(fmt),
}
}
}
#[stable(feature = "ip_from_ip", since = "1.16.0")]
impl From<Ipv4Addr> for IpAddr {
fn from(ipv4: Ipv4Addr) -> IpAddr {
IpAddr::V4(ipv4)
}
}
#[stable(feature = "ip_from_ip", since = "1.16.0")]
impl From<Ipv6Addr> for IpAddr {
fn from(ipv6: Ipv6Addr) -> IpAddr {
IpAddr::V6(ipv6)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for Ipv4Addr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let octets = self.octets();
write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3])
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for Ipv4Addr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Clone for Ipv4Addr {
fn clone(&self) -> Ipv4Addr { *self }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialEq for Ipv4Addr {
fn eq(&self, other: &Ipv4Addr) -> bool {
self.inner.s_addr == other.inner.s_addr
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialEq<Ipv4Addr> for IpAddr {
fn eq(&self, other: &Ipv4Addr) -> bool {
match self {
IpAddr::V4(v4) => v4 == other,
IpAddr::V6(_) => false,
}
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialEq<IpAddr> for Ipv4Addr {
fn eq(&self, other: &IpAddr) -> bool {
match other {
IpAddr::V4(v4) => self == v4,
IpAddr::V6(_) => false,
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Eq for Ipv4Addr {}
#[stable(feature = "rust1", since = "1.0.0")]
impl hash::Hash for Ipv4Addr {
fn hash<H: hash::Hasher>(&self, s: &mut H) {
// `inner` is #[repr(packed)], so we need to copy `s_addr`.
{self.inner.s_addr}.hash(s)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialOrd for Ipv4Addr {
fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialOrd<Ipv4Addr> for IpAddr {
fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
match self {
IpAddr::V4(v4) => v4.partial_cmp(other),
IpAddr::V6(_) => Some(Ordering::Greater),
}
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialOrd<IpAddr> for Ipv4Addr {
fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
match other {
IpAddr::V4(v4) => self.partial_cmp(v4),
IpAddr::V6(_) => Some(Ordering::Less),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Ord for Ipv4Addr {
fn cmp(&self, other: &Ipv4Addr) -> Ordering {
u32::from_be(self.inner.s_addr).cmp(&u32::from_be(other.inner.s_addr))
}
}
impl AsInner<c::in_addr> for Ipv4Addr {
fn as_inner(&self) -> &c::in_addr { &self.inner }
}
impl FromInner<c::in_addr> for Ipv4Addr {
fn from_inner(addr: c::in_addr) -> Ipv4Addr {
Ipv4Addr { inner: addr }
}
}
#[stable(feature = "ip_u32", since = "1.1.0")]
impl From<Ipv4Addr> for u32 {
/// Convert an `Ipv4Addr` into a host byte order `u32`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::new(13, 12, 11, 10);
/// assert_eq!(0x0d0c0b0au32, u32::from(addr));
/// ```
fn from(ip: Ipv4Addr) -> u32 {
let ip = ip.octets();
((ip[0] as u32) << 24) + ((ip[1] as u32) << 16) + ((ip[2] as u32) << 8) + (ip[3] as u32)
}
}
#[stable(feature = "ip_u32", since = "1.1.0")]
impl From<u32> for Ipv4Addr {
/// Convert a host byte order `u32` into an `Ipv4Addr`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::from(0x0d0c0b0au32);
/// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
/// ```
fn from(ip: u32) -> Ipv4Addr {
Ipv4Addr::new((ip >> 24) as u8, (ip >> 16) as u8, (ip >> 8) as u8, ip as u8)
}
}
#[stable(feature = "from_slice_v4", since = "1.9.0")]
impl From<[u8; 4]> for Ipv4Addr {
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
/// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
/// ```
fn from(octets: [u8; 4]) -> Ipv4Addr {
Ipv4Addr::new(octets[0], octets[1], octets[2], octets[3])
}
}
#[stable(feature = "ip_from_slice", since = "1.17.0")]
impl From<[u8; 4]> for IpAddr {
/// Create an `IpAddr::V4` from a four element byte array.
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv4Addr};
///
/// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]);
/// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr);
/// ```
fn from(octets: [u8; 4]) -> IpAddr {
IpAddr::V4(Ipv4Addr::from(octets))
}
}
impl Ipv6Addr {
/// Creates a new IPv6 address from eight 16-bit segments.
///
/// The result will represent the IP address a:b:c:d:e:f:g:h.
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_ip")]
pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16,
g: u16, h: u16) -> Ipv6Addr {
Ipv6Addr {
inner: c::in6_addr {
s6_addr: [
(a >> 8) as u8, a as u8,
(b >> 8) as u8, b as u8,
(c >> 8) as u8, c as u8,
(d >> 8) as u8, d as u8,
(e >> 8) as u8, e as u8,
(f >> 8) as u8, f as u8,
(g >> 8) as u8, g as u8,
(h >> 8) as u8, h as u8
],
}
}
}
/// An IPv6 address representing localhost: `::1`.
///
/// # Examples
///
/// ```
/// #![feature(ip_constructors)]
/// use std::net::Ipv6Addr;
///
/// let addr = Ipv6Addr::LOCALHOST;
/// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
/// ```
#[unstable(feature = "ip_constructors",
reason = "requires greater scrutiny before stabilization",
issue = "44582")]
pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
/// An IPv6 address representing the unspecified address: `::`
///
/// # Examples
///
/// ```
/// #![feature(ip_constructors)]
/// use std::net::Ipv6Addr;
///
/// let addr = Ipv6Addr::UNSPECIFIED;
/// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
/// ```
#[unstable(feature = "ip_constructors",
reason = "requires greater scrutiny before stabilization",
issue = "44582")]
pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0);
/// Returns the eight 16-bit segments that make up this address.
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
/// [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn segments(&self) -> [u16; 8] {
let arr = &self.inner.s6_addr;
[
(arr[0] as u16) << 8 | (arr[1] as u16),
(arr[2] as u16) << 8 | (arr[3] as u16),
(arr[4] as u16) << 8 | (arr[5] as u16),
(arr[6] as u16) << 8 | (arr[7] as u16),
(arr[8] as u16) << 8 | (arr[9] as u16),
(arr[10] as u16) << 8 | (arr[11] as u16),
(arr[12] as u16) << 8 | (arr[13] as u16),
(arr[14] as u16) << 8 | (arr[15] as u16),
]
}
/// Returns [`true`] for the special 'unspecified' address (::).
///
/// This property is defined in [IETF RFC 4291].
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false);
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_unspecified(&self) -> bool {
self.segments() == [0, 0, 0, 0, 0, 0, 0, 0]
}
/// Returns [`true`] if this is a loopback address (::1).
///
/// This property is defined in [IETF RFC 4291].
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false);
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_loopback(&self) -> bool {
self.segments() == [0, 0, 0, 0, 0, 0, 0, 1]
}
/// Returns [`true`] if the address appears to be globally routable.
///
/// The following return [`false`]:
///
/// - the loopback address
/// - link-local, site-local, and unique local unicast addresses
/// - interface-, link-, realm-, admin- and site-local multicast addresses
///
/// [`true`]: ../../std/primitive.bool.html
/// [`false`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv6Addr;
///
/// fn main() {
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), true);
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_global(), false);
/// assert_eq!(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1).is_global(), true);
/// }
/// ```
pub fn is_global(&self) -> bool {
match self.multicast_scope() {
Some(Ipv6MulticastScope::Global) => true,
None => self.is_unicast_global(),
_ => false
}
}
/// Returns [`true`] if this is a unique local address (fc00::/7).
///
/// This property is defined in [IETF RFC 4193].
///
/// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv6Addr;
///
/// fn main() {
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(),
/// false);
/// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true);
/// }
/// ```
pub fn is_unique_local(&self) -> bool {
(self.segments()[0] & 0xfe00) == 0xfc00
}
/// Returns [`true`] if the address is unicast and link-local (fe80::/10).
///
/// This property is defined in [IETF RFC 4291].
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv6Addr;
///
/// fn main() {
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_link_local(),
/// false);
/// assert_eq!(Ipv6Addr::new(0xfe8a, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
/// }
/// ```
pub fn is_unicast_link_local(&self) -> bool {
(self.segments()[0] & 0xffc0) == 0xfe80
}
/// Returns [`true`] if this is a deprecated unicast site-local address
/// (fec0::/10).
///
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv6Addr;
///
/// fn main() {
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_site_local(),
/// false);
/// assert_eq!(Ipv6Addr::new(0xfec2, 0, 0, 0, 0, 0, 0, 0).is_unicast_site_local(), true);
/// }
/// ```
pub fn is_unicast_site_local(&self) -> bool {
(self.segments()[0] & 0xffc0) == 0xfec0
}
/// Returns [`true`] if this is an address reserved for documentation
/// (2001:db8::/32).
///
/// This property is defined in [IETF RFC 3849].
///
/// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv6Addr;
///
/// fn main() {
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(),
/// false);
/// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true);
/// }
/// ```
pub fn is_documentation(&self) -> bool {
(self.segments()[0] == 0x2001) && (self.segments()[1] == 0xdb8)
}
/// Returns [`true`] if the address is a globally routable unicast address.
///
/// The following return false:
///
/// - the loopback address
/// - the link-local addresses
/// - the (deprecated) site-local addresses
/// - unique local addresses
/// - the unspecified address
/// - the address range reserved for documentation
///
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::Ipv6Addr;
///
/// fn main() {
/// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false);
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(),
/// true);
/// }
/// ```
pub fn is_unicast_global(&self) -> bool {
!self.is_multicast()
&& !self.is_loopback() && !self.is_unicast_link_local()
&& !self.is_unicast_site_local() && !self.is_unique_local()
&& !self.is_unspecified() && !self.is_documentation()
}
/// Returns the address's multicast scope if the address is multicast.
///
/// # Examples
///
/// ```
/// #![feature(ip)]
///
/// use std::net::{Ipv6Addr, Ipv6MulticastScope};
///
/// fn main() {
/// assert_eq!(Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(),
/// Some(Ipv6MulticastScope::Global));
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None);
/// }
/// ```
pub fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
if self.is_multicast() {
match self.segments()[0] & 0x000f {
1 => Some(Ipv6MulticastScope::InterfaceLocal),
2 => Some(Ipv6MulticastScope::LinkLocal),
3 => Some(Ipv6MulticastScope::RealmLocal),
4 => Some(Ipv6MulticastScope::AdminLocal),
5 => Some(Ipv6MulticastScope::SiteLocal),
8 => Some(Ipv6MulticastScope::OrganizationLocal),
14 => Some(Ipv6MulticastScope::Global),
_ => None
}
} else {
None
}
}
/// Returns [`true`] if this is a multicast address (ff00::/8).
///
/// This property is defined by [IETF RFC 4291].
///
/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
/// [`true`]: ../../std/primitive.bool.html
///
/// # Examples
///
/// ```
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true);
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
/// ```
#[stable(since = "1.7.0", feature = "ip_17")]
pub fn is_multicast(&self) -> bool {
(self.segments()[0] & 0xff00) == 0xff00
}
/// Converts this address to an [IPv4 address]. Returns [`None`] if this address is
/// neither IPv4-compatible or IPv4-mapped.
///
/// ::a.b.c.d and ::ffff:a.b.c.d become a.b.c.d
///
/// [IPv4 address]: ../../std/net/struct.Ipv4Addr.html
/// [`None`]: ../../std/option/enum.Option.html#variant.None
///
/// # Examples
///
/// ```
/// use std::net::{Ipv4Addr, Ipv6Addr};
///
/// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
/// Some(Ipv4Addr::new(192, 10, 2, 255)));
/// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
/// Some(Ipv4Addr::new(0, 0, 0, 1)));
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn to_ipv4(&self) -> Option<Ipv4Addr> {
match self.segments() {
[0, 0, 0, 0, 0, f, g, h] if f == 0 || f == 0xffff => {
Some(Ipv4Addr::new((g >> 8) as u8, g as u8,
(h >> 8) as u8, h as u8))
},
_ => None
}
}
/// Returns the sixteen eight-bit integers the IPv6 address consists of.
///
/// ```
/// use std::net::Ipv6Addr;
///
/// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
/// [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
/// ```
#[stable(feature = "ipv6_to_octets", since = "1.12.0")]
pub fn octets(&self) -> [u8; 16] {
self.inner.s6_addr
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for Ipv6Addr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.segments() {
// We need special cases for :: and ::1, otherwise they're formatted
// as ::0.0.0.[01]
[0, 0, 0, 0, 0, 0, 0, 0] => write!(fmt, "::"),
[0, 0, 0, 0, 0, 0, 0, 1] => write!(fmt, "::1"),
// Ipv4 Compatible address
[0, 0, 0, 0, 0, 0, g, h] => {
write!(fmt, "::{}.{}.{}.{}", (g >> 8) as u8, g as u8,
(h >> 8) as u8, h as u8)
}
// Ipv4-Mapped address
[0, 0, 0, 0, 0, 0xffff, g, h] => {
write!(fmt, "::ffff:{}.{}.{}.{}", (g >> 8) as u8, g as u8,
(h >> 8) as u8, h as u8)
},
_ => {
fn find_zero_slice(segments: &[u16; 8]) -> (usize, usize) {
let mut longest_span_len = 0;
let mut longest_span_at = 0;
let mut cur_span_len = 0;
let mut cur_span_at = 0;
for i in 0..8 {
if segments[i] == 0 {
if cur_span_len == 0 {
cur_span_at = i;
}
cur_span_len += 1;
if cur_span_len > longest_span_len {
longest_span_len = cur_span_len;
longest_span_at = cur_span_at;
}
} else {
cur_span_len = 0;
cur_span_at = 0;
}
}
(longest_span_at, longest_span_len)
}
let (zeros_at, zeros_len) = find_zero_slice(&self.segments());
if zeros_len > 1 {
fn fmt_subslice(segments: &[u16], fmt: &mut fmt::Formatter) -> fmt::Result {
if !segments.is_empty() {
write!(fmt, "{:x}", segments[0])?;
for &seg in &segments[1..] {
write!(fmt, ":{:x}", seg)?;
}
}
Ok(())
}
fmt_subslice(&self.segments()[..zeros_at], fmt)?;
fmt.write_str("::")?;
fmt_subslice(&self.segments()[zeros_at + zeros_len..], fmt)
} else {
let &[a, b, c, d, e, f, g, h] = &self.segments();
write!(fmt, "{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}",
a, b, c, d, e, f, g, h)
}
}
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for Ipv6Addr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Clone for Ipv6Addr {
fn clone(&self) -> Ipv6Addr { *self }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialEq for Ipv6Addr {
fn eq(&self, other: &Ipv6Addr) -> bool {
self.inner.s6_addr == other.inner.s6_addr
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialEq<IpAddr> for Ipv6Addr {
fn eq(&self, other: &IpAddr) -> bool {
match other {
IpAddr::V4(_) => false,
IpAddr::V6(v6) => self == v6,
}
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialEq<Ipv6Addr> for IpAddr {
fn eq(&self, other: &Ipv6Addr) -> bool {
match self {
IpAddr::V4(_) => false,
IpAddr::V6(v6) => v6 == other,
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Eq for Ipv6Addr {}
#[stable(feature = "rust1", since = "1.0.0")]
impl hash::Hash for Ipv6Addr {
fn hash<H: hash::Hasher>(&self, s: &mut H) {
self.inner.s6_addr.hash(s)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl PartialOrd for Ipv6Addr {
fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialOrd<Ipv6Addr> for IpAddr {
fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
match self {
IpAddr::V4(_) => Some(Ordering::Less),
IpAddr::V6(v6) => v6.partial_cmp(other),
}
}
}
#[stable(feature = "ip_cmp", since = "1.16.0")]
impl PartialOrd<IpAddr> for Ipv6Addr {
fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
match other {
IpAddr::V4(_) => Some(Ordering::Greater),
IpAddr::V6(v6) => self.partial_cmp(v6),
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl Ord for Ipv6Addr {
fn cmp(&self, other: &Ipv6Addr) -> Ordering {
self.segments().cmp(&other.segments())
}
}
impl AsInner<c::in6_addr> for Ipv6Addr {
fn as_inner(&self) -> &c::in6_addr { &self.inner }
}
impl FromInner<c::in6_addr> for Ipv6Addr {
fn from_inner(addr: c::in6_addr) -> Ipv6Addr {
Ipv6Addr { inner: addr }
}
}
#[stable(feature = "i128", since = "1.26.0")]
impl From<Ipv6Addr> for u128 {
fn from(ip: Ipv6Addr) -> u128 {
let ip = ip.segments();
((ip[0] as u128) << 112) + ((ip[1] as u128) << 96) + ((ip[2] as u128) << 80) +
((ip[3] as u128) << 64) + ((ip[4] as u128) << 48) + ((ip[5] as u128) << 32) +
((ip[6] as u128) << 16) + (ip[7] as u128)
}
}
#[stable(feature = "i128", since = "1.26.0")]
impl From<u128> for Ipv6Addr {
fn from(ip: u128) -> Ipv6Addr {
Ipv6Addr::new(
(ip >> 112) as u16, (ip >> 96) as u16, (ip >> 80) as u16,
(ip >> 64) as u16, (ip >> 48) as u16, (ip >> 32) as u16,
(ip >> 16) as u16, ip as u16,
)
}
}
#[stable(feature = "ipv6_from_octets", since = "1.9.0")]
impl From<[u8; 16]> for Ipv6Addr {
fn from(octets: [u8; 16]) -> Ipv6Addr {
let inner = c::in6_addr { s6_addr: octets };
Ipv6Addr::from_inner(inner)
}
}
#[stable(feature = "ipv6_from_segments", since = "1.16.0")]
impl From<[u16; 8]> for Ipv6Addr {
fn from(segments: [u16; 8]) -> Ipv6Addr {
let [a, b, c, d, e, f, g, h] = segments;
Ipv6Addr::new(a, b, c, d, e, f, g, h)
}
}
#[stable(feature = "ip_from_slice", since = "1.17.0")]
impl From<[u8; 16]> for IpAddr {
/// Create an `IpAddr::V6` from a sixteen element byte array.
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv6Addr};
///
/// let addr = IpAddr::from([
/// 25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
/// 17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
/// ]);
/// assert_eq!(
/// IpAddr::V6(Ipv6Addr::new(
/// 0x1918, 0x1716,
/// 0x1514, 0x1312,
/// 0x1110, 0x0f0e,
/// 0x0d0c, 0x0b0a
/// )),
/// addr
/// );
/// ```
fn from(octets: [u8; 16]) -> IpAddr {
IpAddr::V6(Ipv6Addr::from(octets))
}
}
#[stable(feature = "ip_from_slice", since = "1.17.0")]
impl From<[u16; 8]> for IpAddr {
/// Create an `IpAddr::V6` from an eight element 16-bit array.
///
/// # Examples
///
/// ```
/// use std::net::{IpAddr, Ipv6Addr};
///
/// let addr = IpAddr::from([
/// 525u16, 524u16, 523u16, 522u16,
/// 521u16, 520u16, 519u16, 518u16,
/// ]);
/// assert_eq!(
/// IpAddr::V6(Ipv6Addr::new(
/// 0x20d, 0x20c,
/// 0x20b, 0x20a,
/// 0x209, 0x208,
/// 0x207, 0x206
/// )),
/// addr
/// );
/// ```
fn from(segments: [u16; 8]) -> IpAddr {
IpAddr::V6(Ipv6Addr::from(segments))
}
}
// Tests for this module
#[cfg(all(test, not(target_os = "emscripten")))]
mod tests {
use net::*;
use net::Ipv6MulticastScope::*;
use net::test::{tsa, sa6, sa4};
#[test]
fn test_from_str_ipv4() {
assert_eq!(Ok(Ipv4Addr::new(127, 0, 0, 1)), "127.0.0.1".parse());
assert_eq!(Ok(Ipv4Addr::new(255, 255, 255, 255)), "255.255.255.255".parse());
assert_eq!(Ok(Ipv4Addr::new(0, 0, 0, 0)), "0.0.0.0".parse());
// out of range
let none: Option<Ipv4Addr> = "256.0.0.1".parse().ok();
assert_eq!(None, none);
// too short
let none: Option<Ipv4Addr> = "255.0.0".parse().ok();
assert_eq!(None, none);
// too long
let none: Option<Ipv4Addr> = "255.0.0.1.2".parse().ok();
assert_eq!(None, none);
// no number between dots
let none: Option<Ipv4Addr> = "255.0..1".parse().ok();
assert_eq!(None, none);
}
#[test]
fn test_from_str_ipv6() {
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)), "0:0:0:0:0:0:0:0".parse());
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), "0:0:0:0:0:0:0:1".parse());
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)), "::1".parse());
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)), "::".parse());
assert_eq!(Ok(Ipv6Addr::new(0x2a02, 0x6b8, 0, 0, 0, 0, 0x11, 0x11)),
"2a02:6b8::11:11".parse());
// too long group
let none: Option<Ipv6Addr> = "::00000".parse().ok();
assert_eq!(None, none);
// too short
let none: Option<Ipv6Addr> = "1:2:3:4:5:6:7".parse().ok();
assert_eq!(None, none);
// too long
let none: Option<Ipv6Addr> = "1:2:3:4:5:6:7:8:9".parse().ok();
assert_eq!(None, none);
// triple colon
let none: Option<Ipv6Addr> = "1:2:::6:7:8".parse().ok();
assert_eq!(None, none);
// two double colons
let none: Option<Ipv6Addr> = "1:2::6::8".parse().ok();
assert_eq!(None, none);
// `::` indicating zero groups of zeros
let none: Option<Ipv6Addr> = "1:2:3:4::5:6:7:8".parse().ok();
assert_eq!(None, none);
}
#[test]
fn test_from_str_ipv4_in_ipv6() {
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 545)),
"::192.0.2.33".parse());
assert_eq!(Ok(Ipv6Addr::new(0, 0, 0, 0, 0, 0xFFFF, 49152, 545)),
"::FFFF:192.0.2.33".parse());
assert_eq!(Ok(Ipv6Addr::new(0x64, 0xff9b, 0, 0, 0, 0, 49152, 545)),
"64:ff9b::192.0.2.33".parse());
assert_eq!(Ok(Ipv6Addr::new(0x2001, 0xdb8, 0x122, 0xc000, 0x2, 0x2100, 49152, 545)),
"2001:db8:122:c000:2:2100:192.0.2.33".parse());
// colon after v4
let none: Option<Ipv4Addr> = "::127.0.0.1:".parse().ok();
assert_eq!(None, none);
// not enough groups
let none: Option<Ipv6Addr> = "1.2.3.4.5:127.0.0.1".parse().ok();
assert_eq!(None, none);
// too many groups
let none: Option<Ipv6Addr> = "1.2.3.4.5:6:7:127.0.0.1".parse().ok();
assert_eq!(None, none);
}
#[test]
fn test_from_str_socket_addr() {
assert_eq!(Ok(sa4(Ipv4Addr::new(77, 88, 21, 11), 80)),
"77.88.21.11:80".parse());
assert_eq!(Ok(SocketAddrV4::new(Ipv4Addr::new(77, 88, 21, 11), 80)),
"77.88.21.11:80".parse());
assert_eq!(Ok(sa6(Ipv6Addr::new(0x2a02, 0x6b8, 0, 1, 0, 0, 0, 1), 53)),
"[2a02:6b8:0:1::1]:53".parse());
assert_eq!(Ok(SocketAddrV6::new(Ipv6Addr::new(0x2a02, 0x6b8, 0, 1,
0, 0, 0, 1), 53, 0, 0)),
"[2a02:6b8:0:1::1]:53".parse());
assert_eq!(Ok(sa6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0x7F00, 1), 22)),
"[::127.0.0.1]:22".parse());
assert_eq!(Ok(SocketAddrV6::new(Ipv6Addr::new(0, 0, 0, 0, 0, 0,
0x7F00, 1), 22, 0, 0)),
"[::127.0.0.1]:22".parse());
// without port
let none: Option<SocketAddr> = "127.0.0.1".parse().ok();
assert_eq!(None, none);
// without port
let none: Option<SocketAddr> = "127.0.0.1:".parse().ok();
assert_eq!(None, none);
// wrong brackets around v4
let none: Option<SocketAddr> = "[127.0.0.1]:22".parse().ok();
assert_eq!(None, none);
// port out of range
let none: Option<SocketAddr> = "127.0.0.1:123456".parse().ok();
assert_eq!(None, none);
}
#[test]
fn ipv6_addr_to_string() {
// ipv4-mapped address
let a1 = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x280);
assert_eq!(a1.to_string(), "::ffff:192.0.2.128");
// ipv4-compatible address
let a1 = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x280);
assert_eq!(a1.to_string(), "::192.0.2.128");
// v6 address with no zero segments
assert_eq!(Ipv6Addr::new(8, 9, 10, 11, 12, 13, 14, 15).to_string(),
"8:9:a:b:c:d:e:f");
// reduce a single run of zeros
assert_eq!("ae::ffff:102:304",
Ipv6Addr::new(0xae, 0, 0, 0, 0, 0xffff, 0x0102, 0x0304).to_string());
// don't reduce just a single zero segment
assert_eq!("1:2:3:4:5:6:0:8",
Ipv6Addr::new(1, 2, 3, 4, 5, 6, 0, 8).to_string());
// 'any' address
assert_eq!("::", Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).to_string());
// loopback address
assert_eq!("::1", Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_string());
// ends in zeros
assert_eq!("1::", Ipv6Addr::new(1, 0, 0, 0, 0, 0, 0, 0).to_string());
// two runs of zeros, second one is longer
assert_eq!("1:0:0:4::8", Ipv6Addr::new(1, 0, 0, 4, 0, 0, 0, 8).to_string());
// two runs of zeros, equal length
assert_eq!("1::4:5:0:0:8", Ipv6Addr::new(1, 0, 0, 4, 5, 0, 0, 8).to_string());
}
#[test]
fn ipv4_to_ipv6() {
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x1234, 0x5678),
Ipv4Addr::new(0x12, 0x34, 0x56, 0x78).to_ipv6_mapped());
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0x1234, 0x5678),
Ipv4Addr::new(0x12, 0x34, 0x56, 0x78).to_ipv6_compatible());
}
#[test]
fn ipv6_to_ipv4() {
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x1234, 0x5678).to_ipv4(),
Some(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78)));
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0x1234, 0x5678).to_ipv4(),
Some(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78)));
assert_eq!(Ipv6Addr::new(0, 0, 1, 0, 0, 0, 0x1234, 0x5678).to_ipv4(),
None);
}
#[test]
fn ip_properties() {
fn check4(octets: &[u8; 4], unspec: bool, loopback: bool,
global: bool, multicast: bool, documentation: bool) {
let ip = IpAddr::V4(Ipv4Addr::new(octets[0], octets[1], octets[2], octets[3]));
assert_eq!(ip.is_unspecified(), unspec);
assert_eq!(ip.is_loopback(), loopback);
assert_eq!(ip.is_global(), global);
assert_eq!(ip.is_multicast(), multicast);
assert_eq!(ip.is_documentation(), documentation);
}
fn check6(str_addr: &str, unspec: bool, loopback: bool,
global: bool, u_doc: bool, mcast: bool) {
let ip = IpAddr::V6(str_addr.parse().unwrap());
assert_eq!(ip.is_unspecified(), unspec);
assert_eq!(ip.is_loopback(), loopback);
assert_eq!(ip.is_global(), global);
assert_eq!(ip.is_documentation(), u_doc);
assert_eq!(ip.is_multicast(), mcast);
}
// address unspec loopbk global multicast doc
check4(&[0, 0, 0, 0], true, false, false, false, false);
check4(&[0, 0, 0, 1], false, false, true, false, false);
check4(&[0, 1, 0, 0], false, false, true, false, false);
check4(&[10, 9, 8, 7], false, false, false, false, false);
check4(&[127, 1, 2, 3], false, true, false, false, false);
check4(&[172, 31, 254, 253], false, false, false, false, false);
check4(&[169, 254, 253, 242], false, false, false, false, false);
check4(&[192, 0, 2, 183], false, false, false, false, true);
check4(&[192, 1, 2, 183], false, false, true, false, false);
check4(&[192, 168, 254, 253], false, false, false, false, false);
check4(&[198, 51, 100, 0], false, false, false, false, true);
check4(&[203, 0, 113, 0], false, false, false, false, true);
check4(&[203, 2, 113, 0], false, false, true, false, false);
check4(&[224, 0, 0, 0], false, false, true, true, false);
check4(&[239, 255, 255, 255], false, false, true, true, false);
check4(&[255, 255, 255, 255], false, false, false, false, false);
// address unspec loopbk global doc mcast
check6("::", true, false, false, false, false);
check6("::1", false, true, false, false, false);
check6("::0.0.0.2", false, false, true, false, false);
check6("1::", false, false, true, false, false);
check6("fc00::", false, false, false, false, false);
check6("fdff:ffff::", false, false, false, false, false);
check6("fe80:ffff::", false, false, false, false, false);
check6("febf:ffff::", false, false, false, false, false);
check6("fec0::", false, false, false, false, false);
check6("ff01::", false, false, false, false, true);
check6("ff02::", false, false, false, false, true);
check6("ff03::", false, false, false, false, true);
check6("ff04::", false, false, false, false, true);
check6("ff05::", false, false, false, false, true);
check6("ff08::", false, false, false, false, true);
check6("ff0e::", false, false, true, false, true);
check6("2001:db8:85a3::8a2e:370:7334", false, false, false, true, false);
check6("102:304:506:708:90a:b0c:d0e:f10", false, false, true, false, false);
}
#[test]
fn ipv4_properties() {
fn check(octets: &[u8; 4], unspec: bool, loopback: bool,
private: bool, link_local: bool, global: bool,
multicast: bool, broadcast: bool, documentation: bool) {
let ip = Ipv4Addr::new(octets[0], octets[1], octets[2], octets[3]);
assert_eq!(octets, &ip.octets());
assert_eq!(ip.is_unspecified(), unspec);
assert_eq!(ip.is_loopback(), loopback);
assert_eq!(ip.is_private(), private);
assert_eq!(ip.is_link_local(), link_local);
assert_eq!(ip.is_global(), global);
assert_eq!(ip.is_multicast(), multicast);
assert_eq!(ip.is_broadcast(), broadcast);
assert_eq!(ip.is_documentation(), documentation);
}
// address unspec loopbk privt linloc global multicast brdcast doc
check(&[0, 0, 0, 0], true, false, false, false, false, false, false, false);
check(&[0, 0, 0, 1], false, false, false, false, true, false, false, false);
check(&[0, 1, 0, 0], false, false, false, false, true, false, false, false);
check(&[10, 9, 8, 7], false, false, true, false, false, false, false, false);
check(&[127, 1, 2, 3], false, true, false, false, false, false, false, false);
check(&[172, 31, 254, 253], false, false, true, false, false, false, false, false);
check(&[169, 254, 253, 242], false, false, false, true, false, false, false, false);
check(&[192, 0, 2, 183], false, false, false, false, false, false, false, true);
check(&[192, 1, 2, 183], false, false, false, false, true, false, false, false);
check(&[192, 168, 254, 253], false, false, true, false, false, false, false, false);
check(&[198, 51, 100, 0], false, false, false, false, false, false, false, true);
check(&[203, 0, 113, 0], false, false, false, false, false, false, false, true);
check(&[203, 2, 113, 0], false, false, false, false, true, false, false, false);
check(&[224, 0, 0, 0], false, false, false, false, true, true, false, false);
check(&[239, 255, 255, 255], false, false, false, false, true, true, false, false);
check(&[255, 255, 255, 255], false, false, false, false, false, false, true, false);
}
#[test]
fn ipv6_properties() {
fn check(str_addr: &str, octets: &[u8; 16], unspec: bool, loopback: bool,
unique_local: bool, global: bool,
u_link_local: bool, u_site_local: bool, u_global: bool, u_doc: bool,
m_scope: Option<Ipv6MulticastScope>) {
let ip: Ipv6Addr = str_addr.parse().unwrap();
assert_eq!(str_addr, ip.to_string());
assert_eq!(&ip.octets(), octets);
assert_eq!(Ipv6Addr::from(*octets), ip);
assert_eq!(ip.is_unspecified(), unspec);
assert_eq!(ip.is_loopback(), loopback);
assert_eq!(ip.is_unique_local(), unique_local);
assert_eq!(ip.is_global(), global);
assert_eq!(ip.is_unicast_link_local(), u_link_local);
assert_eq!(ip.is_unicast_site_local(), u_site_local);
assert_eq!(ip.is_unicast_global(), u_global);
assert_eq!(ip.is_documentation(), u_doc);
assert_eq!(ip.multicast_scope(), m_scope);
assert_eq!(ip.is_multicast(), m_scope.is_some());
}
// unspec loopbk uniqlo global unill unisl uniglo doc mscope
check("::", &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
true, false, false, false, false, false, false, false, None);
check("::1", &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
false, true, false, false, false, false, false, false, None);
check("::0.0.0.2", &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2],
false, false, false, true, false, false, true, false, None);
check("1::", &[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
false, false, false, true, false, false, true, false, None);
check("fc00::", &[0xfc, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
false, false, true, false, false, false, false, false, None);
check("fdff:ffff::", &[0xfd, 0xff, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
false, false, true, false, false, false, false, false, None);
check("fe80:ffff::", &[0xfe, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
false, false, false, false, true, false, false, false, None);
check("febf:ffff::", &[0xfe, 0xbf, 0xff, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
false, false, false, false, true, false, false, false, None);
check("fec0::", &[0xfe, 0xc0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
false, false, false, false, false, true, false, false, None);
check("ff01::", &[0xff, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
false, false, false, false, false, false, false, false, Some(InterfaceLocal));
check("ff02::", &[0xff, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
false, false, false, false, false, false, false, false, Some(LinkLocal));
check("ff03::", &[0xff, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
false, false, false, false, false, false, false, false, Some(RealmLocal));
check("ff04::", &[0xff, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
false, false, false, false, false, false, false, false, Some(AdminLocal));
check("ff05::", &[0xff, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
false, false, false, false, false, false, false, false, Some(SiteLocal));
check("ff08::", &[0xff, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
false, false, false, false, false, false, false, false, Some(OrganizationLocal));
check("ff0e::", &[0xff, 0xe, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
false, false, false, true, false, false, false, false, Some(Global));
check("2001:db8:85a3::8a2e:370:7334",
&[0x20, 1, 0xd, 0xb8, 0x85, 0xa3, 0, 0, 0, 0, 0x8a, 0x2e, 3, 0x70, 0x73, 0x34],
false, false, false, false, false, false, false, true, None);
check("102:304:506:708:90a:b0c:d0e:f10",
&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
false, false, false, true, false, false, true, false, None);
}
#[test]
fn to_socket_addr_socketaddr() {
let a = sa4(Ipv4Addr::new(77, 88, 21, 11), 12345);
assert_eq!(Ok(vec![a]), tsa(a));
}
#[test]
fn test_ipv4_to_int() {
let a = Ipv4Addr::new(0x11, 0x22, 0x33, 0x44);
assert_eq!(u32::from(a), 0x11223344);
}
#[test]
fn test_int_to_ipv4() {
let a = Ipv4Addr::new(0x11, 0x22, 0x33, 0x44);
assert_eq!(Ipv4Addr::from(0x11223344), a);
}
#[test]
fn test_ipv6_to_int() {
let a = Ipv6Addr::new(0x1122, 0x3344, 0x5566, 0x7788, 0x99aa, 0xbbcc, 0xddee, 0xff11);
assert_eq!(u128::from(a), 0x112233445566778899aabbccddeeff11u128);
}
#[test]
fn test_int_to_ipv6() {
let a = Ipv6Addr::new(0x1122, 0x3344, 0x5566, 0x7788, 0x99aa, 0xbbcc, 0xddee, 0xff11);
assert_eq!(Ipv6Addr::from(0x112233445566778899aabbccddeeff11u128), a);
}
#[test]
fn ipv4_from_constructors() {
assert_eq!(Ipv4Addr::LOCALHOST, Ipv4Addr::new(127, 0, 0, 1));
assert!(Ipv4Addr::LOCALHOST.is_loopback());
assert_eq!(Ipv4Addr::UNSPECIFIED, Ipv4Addr::new(0, 0, 0, 0));
assert!(Ipv4Addr::UNSPECIFIED.is_unspecified());
assert_eq!(Ipv4Addr::BROADCAST, Ipv4Addr::new(255, 255, 255, 255));
assert!(Ipv4Addr::BROADCAST.is_broadcast());
}
#[test]
fn ipv6_from_contructors() {
assert_eq!(Ipv6Addr::LOCALHOST, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
assert!(Ipv6Addr::LOCALHOST.is_loopback());
assert_eq!(Ipv6Addr::UNSPECIFIED, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
assert!(Ipv6Addr::UNSPECIFIED.is_unspecified());
}
#[test]
fn ipv4_from_octets() {
assert_eq!(Ipv4Addr::from([127, 0, 0, 1]), Ipv4Addr::new(127, 0, 0, 1))
}
#[test]
fn ipv6_from_segments() {
let from_u16s = Ipv6Addr::from([0x0011, 0x2233, 0x4455, 0x6677,
0x8899, 0xaabb, 0xccdd, 0xeeff]);
let new = Ipv6Addr::new(0x0011, 0x2233, 0x4455, 0x6677,
0x8899, 0xaabb, 0xccdd, 0xeeff);
assert_eq!(new, from_u16s);
}
#[test]
fn ipv6_from_octets() {
let from_u16s = Ipv6Addr::from([0x0011, 0x2233, 0x4455, 0x6677,
0x8899, 0xaabb, 0xccdd, 0xeeff]);
let from_u8s = Ipv6Addr::from([0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff]);
assert_eq!(from_u16s, from_u8s);
}
#[test]
fn cmp() {
let v41 = Ipv4Addr::new(100, 64, 3, 3);
let v42 = Ipv4Addr::new(192, 0, 2, 2);
let v61 = "2001:db8:f00::1002".parse::<Ipv6Addr>().unwrap();
let v62 = "2001:db8:f00::2001".parse::<Ipv6Addr>().unwrap();
assert!(v41 < v42);
assert!(v61 < v62);
assert_eq!(v41, IpAddr::V4(v41));
assert_eq!(v61, IpAddr::V6(v61));
assert!(v41 != IpAddr::V4(v42));
assert!(v61 != IpAddr::V6(v62));
assert!(v41 < IpAddr::V4(v42));
assert!(v61 < IpAddr::V6(v62));
assert!(IpAddr::V4(v41) < v42);
assert!(IpAddr::V6(v61) < v62);
assert!(v41 < IpAddr::V6(v61));
assert!(IpAddr::V4(v41) < v61);
}
#[test]
fn is_v4() {
let ip = IpAddr::V4(Ipv4Addr::new(100, 64, 3, 3));
assert!(ip.is_ipv4());
assert!(!ip.is_ipv6());
}
#[test]
fn is_v6() {
let ip = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x1234, 0x5678));
assert!(!ip.is_ipv4());
assert!(ip.is_ipv6());
}
}