blob: eed6215150fdbf829eafa24d7b22fcf7d54d1e0b [file] [log] [blame]
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! See the Book for more information.
pub use self::LateBoundRegionConversionTime::*;
pub use self::RegionVariableOrigin::*;
pub use self::SubregionOrigin::*;
pub use self::ValuePairs::*;
pub use ty::IntVarValue;
pub use self::freshen::TypeFreshener;
use hir::def_id::DefId;
use middle::free_region::RegionRelations;
use middle::region;
use middle::lang_items;
use ty::subst::{Kind, Substs};
use ty::{TyVid, IntVid, FloatVid};
use ty::{self, Ty, TyCtxt, GenericParamDefKind};
use ty::error::{ExpectedFound, TypeError, UnconstrainedNumeric};
use ty::fold::TypeFoldable;
use ty::relate::RelateResult;
use traits::{self, ObligationCause, PredicateObligations, TraitEngine};
use rustc_data_structures::unify as ut;
use std::cell::{Cell, RefCell, Ref, RefMut};
use std::collections::BTreeMap;
use std::fmt;
use syntax::ast;
use errors::DiagnosticBuilder;
use syntax_pos::{self, Span};
use syntax_pos::symbol::InternedString;
use util::nodemap::FxHashMap;
use arena::SyncDroplessArena;
use self::combine::CombineFields;
use self::higher_ranked::HrMatchResult;
use self::region_constraints::{RegionConstraintCollector, RegionSnapshot};
use self::region_constraints::{GenericKind, VerifyBound, RegionConstraintData, VarInfos};
use self::lexical_region_resolve::LexicalRegionResolutions;
use self::outlives::env::OutlivesEnvironment;
use self::type_variable::TypeVariableOrigin;
use self::unify_key::ToType;
pub mod anon_types;
pub mod at;
pub mod canonical;
mod combine;
mod equate;
pub mod error_reporting;
mod fudge;
mod glb;
mod higher_ranked;
pub mod lattice;
mod lub;
pub mod region_constraints;
mod lexical_region_resolve;
pub mod outlives;
pub mod resolve;
mod freshen;
mod sub;
pub mod type_variable;
pub mod unify_key;
#[must_use]
#[derive(Debug)]
pub struct InferOk<'tcx, T> {
pub value: T,
pub obligations: PredicateObligations<'tcx>,
}
pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
pub type Bound<T> = Option<T>;
pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
pub type FixupResult<T> = Result<T, FixupError>; // "fixup result"
pub struct InferCtxt<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
pub tcx: TyCtxt<'a, 'gcx, 'tcx>,
/// During type-checking/inference of a body, `in_progress_tables`
/// contains a reference to the tables being built up, which are
/// used for reading closure kinds/signatures as they are inferred,
/// and for error reporting logic to read arbitrary node types.
pub in_progress_tables: Option<&'a RefCell<ty::TypeckTables<'tcx>>>,
// Cache for projections. This cache is snapshotted along with the
// infcx.
//
// Public so that `traits::project` can use it.
pub projection_cache: RefCell<traits::ProjectionCache<'tcx>>,
// We instantiate UnificationTable with bounds<Ty> because the
// types that might instantiate a general type variable have an
// order, represented by its upper and lower bounds.
pub type_variables: RefCell<type_variable::TypeVariableTable<'tcx>>,
// Map from integral variable to the kind of integer it represents
int_unification_table: RefCell<ut::UnificationTable<ut::InPlace<ty::IntVid>>>,
// Map from floating variable to the kind of float it represents
float_unification_table: RefCell<ut::UnificationTable<ut::InPlace<ty::FloatVid>>>,
// Tracks the set of region variables and the constraints between
// them. This is initially `Some(_)` but when
// `resolve_regions_and_report_errors` is invoked, this gets set
// to `None` -- further attempts to perform unification etc may
// fail if new region constraints would've been added.
region_constraints: RefCell<Option<RegionConstraintCollector<'tcx>>>,
// Once region inference is done, the values for each variable.
lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
/// Caches the results of trait selection. This cache is used
/// for things that have to do with the parameters in scope.
pub selection_cache: traits::SelectionCache<'tcx>,
/// Caches the results of trait evaluation.
pub evaluation_cache: traits::EvaluationCache<'tcx>,
// the set of predicates on which errors have been reported, to
// avoid reporting the same error twice.
pub reported_trait_errors: RefCell<FxHashMap<Span, Vec<ty::Predicate<'tcx>>>>,
// When an error occurs, we want to avoid reporting "derived"
// errors that are due to this original failure. Normally, we
// handle this with the `err_count_on_creation` count, which
// basically just tracks how many errors were reported when we
// started type-checking a fn and checks to see if any new errors
// have been reported since then. Not great, but it works.
//
// However, when errors originated in other passes -- notably
// resolve -- this heuristic breaks down. Therefore, we have this
// auxiliary flag that one can set whenever one creates a
// type-error that is due to an error in a prior pass.
//
// Don't read this flag directly, call `is_tainted_by_errors()`
// and `set_tainted_by_errors()`.
tainted_by_errors_flag: Cell<bool>,
// Track how many errors were reported when this infcx is created.
// If the number of errors increases, that's also a sign (line
// `tained_by_errors`) to avoid reporting certain kinds of errors.
err_count_on_creation: usize,
// This flag is true while there is an active snapshot.
in_snapshot: Cell<bool>,
// A set of constraints that regionck must validate. Each
// constraint has the form `T:'a`, meaning "some type `T` must
// outlive the lifetime 'a". These constraints derive from
// instantiated type parameters. So if you had a struct defined
// like
//
// struct Foo<T:'static> { ... }
//
// then in some expression `let x = Foo { ... }` it will
// instantiate the type parameter `T` with a fresh type `$0`. At
// the same time, it will record a region obligation of
// `$0:'static`. This will get checked later by regionck. (We
// can't generally check these things right away because we have
// to wait until types are resolved.)
//
// These are stored in a map keyed to the id of the innermost
// enclosing fn body / static initializer expression. This is
// because the location where the obligation was incurred can be
// relevant with respect to which sublifetime assumptions are in
// place. The reason that we store under the fn-id, and not
// something more fine-grained, is so that it is easier for
// regionck to be sure that it has found *all* the region
// obligations (otherwise, it's easy to fail to walk to a
// particular node-id).
//
// Before running `resolve_regions_and_report_errors`, the creator
// of the inference context is expected to invoke
// `process_region_obligations` (defined in `self::region_obligations`)
// for each body-id in this map, which will process the
// obligations within. This is expected to be done 'late enough'
// that all type inference variables have been bound and so forth.
pub region_obligations: RefCell<Vec<(ast::NodeId, RegionObligation<'tcx>)>>,
/// What is the innermost universe we have created? Starts out as
/// `UniverseIndex::root()` but grows from there as we enter
/// universal quantifiers.
///
/// NB: At present, we exclude the universal quantifiers on the
/// item we are type-checking, and just consider those names as
/// part of the root universe. So this would only get incremented
/// when we enter into a higher-ranked (`for<..>`) type or trait
/// bound.
universe: Cell<ty::UniverseIndex>,
}
/// A map returned by `skolemize_late_bound_regions()` indicating the skolemized
/// region that each late-bound region was replaced with.
pub type SkolemizationMap<'tcx> = BTreeMap<ty::BoundRegion, ty::Region<'tcx>>;
/// See `error_reporting` module for more details
#[derive(Clone, Debug)]
pub enum ValuePairs<'tcx> {
Types(ExpectedFound<Ty<'tcx>>),
Regions(ExpectedFound<ty::Region<'tcx>>),
TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>),
PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>),
}
/// The trace designates the path through inference that we took to
/// encounter an error or subtyping constraint.
///
/// See `error_reporting` module for more details.
#[derive(Clone)]
pub struct TypeTrace<'tcx> {
cause: ObligationCause<'tcx>,
values: ValuePairs<'tcx>,
}
/// The origin of a `r1 <= r2` constraint.
///
/// See `error_reporting` module for more details
#[derive(Clone, Debug)]
pub enum SubregionOrigin<'tcx> {
// Arose from a subtyping relation
Subtype(TypeTrace<'tcx>),
// Stack-allocated closures cannot outlive innermost loop
// or function so as to ensure we only require finite stack
InfStackClosure(Span),
// Invocation of closure must be within its lifetime
InvokeClosure(Span),
// Dereference of reference must be within its lifetime
DerefPointer(Span),
// Closure bound must not outlive captured free variables
FreeVariable(Span, ast::NodeId),
// Index into slice must be within its lifetime
IndexSlice(Span),
// When casting `&'a T` to an `&'b Trait` object,
// relating `'a` to `'b`
RelateObjectBound(Span),
// Some type parameter was instantiated with the given type,
// and that type must outlive some region.
RelateParamBound(Span, Ty<'tcx>),
// The given region parameter was instantiated with a region
// that must outlive some other region.
RelateRegionParamBound(Span),
// A bound placed on type parameters that states that must outlive
// the moment of their instantiation.
RelateDefaultParamBound(Span, Ty<'tcx>),
// Creating a pointer `b` to contents of another reference
Reborrow(Span),
// Creating a pointer `b` to contents of an upvar
ReborrowUpvar(Span, ty::UpvarId),
// Data with type `Ty<'tcx>` was borrowed
DataBorrowed(Ty<'tcx>, Span),
// (&'a &'b T) where a >= b
ReferenceOutlivesReferent(Ty<'tcx>, Span),
// Type or region parameters must be in scope.
ParameterInScope(ParameterOrigin, Span),
// The type T of an expression E must outlive the lifetime for E.
ExprTypeIsNotInScope(Ty<'tcx>, Span),
// A `ref b` whose region does not enclose the decl site
BindingTypeIsNotValidAtDecl(Span),
// Regions appearing in a method receiver must outlive method call
CallRcvr(Span),
// Regions appearing in a function argument must outlive func call
CallArg(Span),
// Region in return type of invoked fn must enclose call
CallReturn(Span),
// Operands must be in scope
Operand(Span),
// Region resulting from a `&` expr must enclose the `&` expr
AddrOf(Span),
// An auto-borrow that does not enclose the expr where it occurs
AutoBorrow(Span),
// Region constraint arriving from destructor safety
SafeDestructor(Span),
// Comparing the signature and requirements of an impl method against
// the containing trait.
CompareImplMethodObligation {
span: Span,
item_name: ast::Name,
impl_item_def_id: DefId,
trait_item_def_id: DefId,
},
}
/// Places that type/region parameters can appear.
#[derive(Clone, Copy, Debug)]
pub enum ParameterOrigin {
Path, // foo::bar
MethodCall, // foo.bar() <-- parameters on impl providing bar()
OverloadedOperator, // a + b when overloaded
OverloadedDeref, // *a when overloaded
}
/// Times when we replace late-bound regions with variables:
#[derive(Clone, Copy, Debug)]
pub enum LateBoundRegionConversionTime {
/// when a fn is called
FnCall,
/// when two higher-ranked types are compared
HigherRankedType,
/// when projecting an associated type
AssocTypeProjection(DefId),
}
/// Reasons to create a region inference variable
///
/// See `error_reporting` module for more details
#[derive(Copy, Clone, Debug)]
pub enum RegionVariableOrigin {
// Region variables created for ill-categorized reasons,
// mostly indicates places in need of refactoring
MiscVariable(Span),
// Regions created by a `&P` or `[...]` pattern
PatternRegion(Span),
// Regions created by `&` operator
AddrOfRegion(Span),
// Regions created as part of an autoref of a method receiver
Autoref(Span),
// Regions created as part of an automatic coercion
Coercion(Span),
// Region variables created as the values for early-bound regions
EarlyBoundRegion(Span, InternedString),
// Region variables created for bound regions
// in a function or method that is called
LateBoundRegion(Span, ty::BoundRegion, LateBoundRegionConversionTime),
UpvarRegion(ty::UpvarId, Span),
BoundRegionInCoherence(ast::Name),
// This origin is used for the inference variables that we create
// during NLL region processing.
NLL(NLLRegionVariableOrigin),
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum NLLRegionVariableOrigin {
// During NLL region processing, we create variables for free
// regions that we encounter in the function signature and
// elsewhere. This origin indices we've got one of those.
FreeRegion,
BoundRegion(ty::UniverseIndex),
Existential,
}
impl NLLRegionVariableOrigin {
pub fn is_universal(self) -> bool {
match self {
NLLRegionVariableOrigin::FreeRegion => true,
NLLRegionVariableOrigin::BoundRegion(..) => true,
NLLRegionVariableOrigin::Existential => false,
}
}
pub fn is_existential(self) -> bool {
!self.is_universal()
}
}
#[derive(Copy, Clone, Debug)]
pub enum FixupError {
UnresolvedIntTy(IntVid),
UnresolvedFloatTy(FloatVid),
UnresolvedTy(TyVid)
}
/// See the `region_obligations` field for more information.
#[derive(Clone)]
pub struct RegionObligation<'tcx> {
pub sub_region: ty::Region<'tcx>,
pub sup_type: Ty<'tcx>,
pub cause: ObligationCause<'tcx>,
}
impl fmt::Display for FixupError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::FixupError::*;
match *self {
UnresolvedIntTy(_) => {
write!(f, "cannot determine the type of this integer; \
add a suffix to specify the type explicitly")
}
UnresolvedFloatTy(_) => {
write!(f, "cannot determine the type of this number; \
add a suffix to specify the type explicitly")
}
UnresolvedTy(_) => write!(f, "unconstrained type")
}
}
}
/// Helper type of a temporary returned by tcx.infer_ctxt().
/// Necessary because we can't write the following bound:
/// F: for<'b, 'tcx> where 'gcx: 'tcx FnOnce(InferCtxt<'b, 'gcx, 'tcx>).
pub struct InferCtxtBuilder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
global_tcx: TyCtxt<'a, 'gcx, 'gcx>,
arena: SyncDroplessArena,
fresh_tables: Option<RefCell<ty::TypeckTables<'tcx>>>,
}
impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'gcx> {
pub fn infer_ctxt(self) -> InferCtxtBuilder<'a, 'gcx, 'tcx> {
InferCtxtBuilder {
global_tcx: self,
arena: SyncDroplessArena::new(),
fresh_tables: None,
}
}
}
impl<'a, 'gcx, 'tcx> InferCtxtBuilder<'a, 'gcx, 'tcx> {
/// Used only by `rustc_typeck` during body type-checking/inference,
/// will initialize `in_progress_tables` with fresh `TypeckTables`.
pub fn with_fresh_in_progress_tables(mut self, table_owner: DefId) -> Self {
self.fresh_tables = Some(RefCell::new(ty::TypeckTables::empty(Some(table_owner))));
self
}
pub fn enter<F, R>(&'tcx mut self, f: F) -> R
where F: for<'b> FnOnce(InferCtxt<'b, 'gcx, 'tcx>) -> R
{
let InferCtxtBuilder {
global_tcx,
ref arena,
ref fresh_tables,
} = *self;
let in_progress_tables = fresh_tables.as_ref();
global_tcx.enter_local(arena, |tcx| f(InferCtxt {
tcx,
in_progress_tables,
projection_cache: RefCell::new(traits::ProjectionCache::new()),
type_variables: RefCell::new(type_variable::TypeVariableTable::new()),
int_unification_table: RefCell::new(ut::UnificationTable::new()),
float_unification_table: RefCell::new(ut::UnificationTable::new()),
region_constraints: RefCell::new(Some(RegionConstraintCollector::new())),
lexical_region_resolutions: RefCell::new(None),
selection_cache: traits::SelectionCache::new(),
evaluation_cache: traits::EvaluationCache::new(),
reported_trait_errors: RefCell::new(FxHashMap()),
tainted_by_errors_flag: Cell::new(false),
err_count_on_creation: tcx.sess.err_count(),
in_snapshot: Cell::new(false),
region_obligations: RefCell::new(vec![]),
universe: Cell::new(ty::UniverseIndex::ROOT),
}))
}
}
impl<T> ExpectedFound<T> {
pub fn new(a_is_expected: bool, a: T, b: T) -> Self {
if a_is_expected {
ExpectedFound {expected: a, found: b}
} else {
ExpectedFound {expected: b, found: a}
}
}
}
impl<'tcx, T> InferOk<'tcx, T> {
pub fn unit(self) -> InferOk<'tcx, ()> {
InferOk { value: (), obligations: self.obligations }
}
/// Extract `value`, registering any obligations into `fulfill_cx`
pub fn into_value_registering_obligations(
self,
infcx: &InferCtxt<'_, '_, 'tcx>,
fulfill_cx: &mut impl TraitEngine<'tcx>,
) -> T {
let InferOk { value, obligations } = self;
for obligation in obligations {
fulfill_cx.register_predicate_obligation(infcx, obligation);
}
value
}
}
impl<'tcx> InferOk<'tcx, ()> {
pub fn into_obligations(self) -> PredicateObligations<'tcx> {
self.obligations
}
}
#[must_use = "once you start a snapshot, you should always consume it"]
pub struct CombinedSnapshot<'a, 'tcx:'a> {
projection_cache_snapshot: traits::ProjectionCacheSnapshot,
type_snapshot: type_variable::Snapshot<'tcx>,
int_snapshot: ut::Snapshot<ut::InPlace<ty::IntVid>>,
float_snapshot: ut::Snapshot<ut::InPlace<ty::FloatVid>>,
region_constraints_snapshot: RegionSnapshot,
region_obligations_snapshot: usize,
universe: ty::UniverseIndex,
was_in_snapshot: bool,
_in_progress_tables: Option<Ref<'a, ty::TypeckTables<'tcx>>>,
}
impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
pub fn is_in_snapshot(&self) -> bool {
self.in_snapshot.get()
}
pub fn freshen<T:TypeFoldable<'tcx>>(&self, t: T) -> T {
t.fold_with(&mut self.freshener())
}
pub fn type_var_diverges(&'a self, ty: Ty) -> bool {
match ty.sty {
ty::TyInfer(ty::TyVar(vid)) => self.type_variables.borrow().var_diverges(vid),
_ => false
}
}
pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'gcx, 'tcx> {
freshen::TypeFreshener::new(self)
}
pub fn type_is_unconstrained_numeric(&'a self, ty: Ty) -> UnconstrainedNumeric {
use ty::error::UnconstrainedNumeric::Neither;
use ty::error::UnconstrainedNumeric::{UnconstrainedInt, UnconstrainedFloat};
match ty.sty {
ty::TyInfer(ty::IntVar(vid)) => {
if self.int_unification_table.borrow_mut().probe_value(vid).is_some() {
Neither
} else {
UnconstrainedInt
}
},
ty::TyInfer(ty::FloatVar(vid)) => {
if self.float_unification_table.borrow_mut().probe_value(vid).is_some() {
Neither
} else {
UnconstrainedFloat
}
},
_ => Neither,
}
}
pub fn unsolved_variables(&self) -> Vec<Ty<'tcx>> {
let mut type_variables = self.type_variables.borrow_mut();
let mut int_unification_table = self.int_unification_table.borrow_mut();
let mut float_unification_table = self.float_unification_table.borrow_mut();
type_variables
.unsolved_variables()
.into_iter()
.map(|t| self.tcx.mk_var(t))
.chain(
(0..int_unification_table.len())
.map(|i| ty::IntVid { index: i as u32 })
.filter(|&vid| int_unification_table.probe_value(vid).is_none())
.map(|v| self.tcx.mk_int_var(v))
).chain(
(0..float_unification_table.len())
.map(|i| ty::FloatVid { index: i as u32 })
.filter(|&vid| float_unification_table.probe_value(vid).is_none())
.map(|v| self.tcx.mk_float_var(v))
).collect()
}
fn combine_fields(&'a self, trace: TypeTrace<'tcx>, param_env: ty::ParamEnv<'tcx>)
-> CombineFields<'a, 'gcx, 'tcx> {
CombineFields {
infcx: self,
trace,
cause: None,
param_env,
obligations: PredicateObligations::new(),
}
}
// Clear the "currently in a snapshot" flag, invoke the closure,
// then restore the flag to its original value. This flag is a
// debugging measure designed to detect cases where we start a
// snapshot, create type variables, and register obligations
// which may involve those type variables in the fulfillment cx,
// potentially leaving "dangling type variables" behind.
// In such cases, an assertion will fail when attempting to
// register obligations, within a snapshot. Very useful, much
// better than grovelling through megabytes of RUST_LOG output.
//
// HOWEVER, in some cases the flag is unhelpful. In particular, we
// sometimes create a "mini-fulfilment-cx" in which we enroll
// obligations. As long as this fulfillment cx is fully drained
// before we return, this is not a problem, as there won't be any
// escaping obligations in the main cx. In those cases, you can
// use this function.
pub fn save_and_restore_in_snapshot_flag<F, R>(&self, func: F) -> R
where F: FnOnce(&Self) -> R
{
let flag = self.in_snapshot.get();
self.in_snapshot.set(false);
let result = func(self);
self.in_snapshot.set(flag);
result
}
fn start_snapshot(&self) -> CombinedSnapshot<'a, 'tcx> {
debug!("start_snapshot()");
let in_snapshot = self.in_snapshot.get();
self.in_snapshot.set(true);
CombinedSnapshot {
projection_cache_snapshot: self.projection_cache.borrow_mut().snapshot(),
type_snapshot: self.type_variables.borrow_mut().snapshot(),
int_snapshot: self.int_unification_table.borrow_mut().snapshot(),
float_snapshot: self.float_unification_table.borrow_mut().snapshot(),
region_constraints_snapshot: self.borrow_region_constraints().start_snapshot(),
region_obligations_snapshot: self.region_obligations.borrow().len(),
universe: self.universe(),
was_in_snapshot: in_snapshot,
// Borrow tables "in progress" (i.e. during typeck)
// to ban writes from within a snapshot to them.
_in_progress_tables: self.in_progress_tables.map(|tables| {
tables.borrow()
})
}
}
fn rollback_to(&self, cause: &str, snapshot: CombinedSnapshot<'a, 'tcx>) {
debug!("rollback_to(cause={})", cause);
let CombinedSnapshot { projection_cache_snapshot,
type_snapshot,
int_snapshot,
float_snapshot,
region_constraints_snapshot,
region_obligations_snapshot,
universe,
was_in_snapshot,
_in_progress_tables } = snapshot;
self.in_snapshot.set(was_in_snapshot);
self.universe.set(universe);
self.projection_cache
.borrow_mut()
.rollback_to(projection_cache_snapshot);
self.type_variables
.borrow_mut()
.rollback_to(type_snapshot);
self.int_unification_table
.borrow_mut()
.rollback_to(int_snapshot);
self.float_unification_table
.borrow_mut()
.rollback_to(float_snapshot);
self.region_obligations
.borrow_mut()
.truncate(region_obligations_snapshot);
self.borrow_region_constraints()
.rollback_to(region_constraints_snapshot);
}
fn commit_from(&self, snapshot: CombinedSnapshot<'a, 'tcx>) {
debug!("commit_from()");
let CombinedSnapshot { projection_cache_snapshot,
type_snapshot,
int_snapshot,
float_snapshot,
region_constraints_snapshot,
region_obligations_snapshot: _,
universe: _,
was_in_snapshot,
_in_progress_tables } = snapshot;
self.in_snapshot.set(was_in_snapshot);
self.projection_cache
.borrow_mut()
.commit(&projection_cache_snapshot);
self.type_variables
.borrow_mut()
.commit(type_snapshot);
self.int_unification_table
.borrow_mut()
.commit(int_snapshot);
self.float_unification_table
.borrow_mut()
.commit(float_snapshot);
self.borrow_region_constraints()
.commit(region_constraints_snapshot);
}
/// Execute `f` and commit the bindings
pub fn commit_unconditionally<R, F>(&self, f: F) -> R where
F: FnOnce() -> R,
{
debug!("commit()");
let snapshot = self.start_snapshot();
let r = f();
self.commit_from(snapshot);
r
}
/// Execute `f` and commit the bindings if closure `f` returns `Ok(_)`
pub fn commit_if_ok<T, E, F>(&self, f: F) -> Result<T, E> where
F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> Result<T, E>
{
debug!("commit_if_ok()");
let snapshot = self.start_snapshot();
let r = f(&snapshot);
debug!("commit_if_ok() -- r.is_ok() = {}", r.is_ok());
match r {
Ok(_) => { self.commit_from(snapshot); }
Err(_) => { self.rollback_to("commit_if_ok -- error", snapshot); }
}
r
}
// Execute `f` in a snapshot, and commit the bindings it creates
pub fn in_snapshot<T, F>(&self, f: F) -> T where
F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> T
{
debug!("in_snapshot()");
let snapshot = self.start_snapshot();
let r = f(&snapshot);
self.commit_from(snapshot);
r
}
/// Execute `f` then unroll any bindings it creates
pub fn probe<R, F>(&self, f: F) -> R where
F: FnOnce(&CombinedSnapshot<'a, 'tcx>) -> R,
{
debug!("probe()");
let snapshot = self.start_snapshot();
let r = f(&snapshot);
self.rollback_to("probe", snapshot);
r
}
pub fn add_given(&self,
sub: ty::Region<'tcx>,
sup: ty::RegionVid)
{
self.borrow_region_constraints().add_given(sub, sup);
}
pub fn can_sub<T>(&self,
param_env: ty::ParamEnv<'tcx>,
a: T,
b: T)
-> UnitResult<'tcx>
where T: at::ToTrace<'tcx>
{
let origin = &ObligationCause::dummy();
self.probe(|_| {
self.at(origin, param_env).sub(a, b).map(|InferOk { obligations: _, .. }| {
// Ignore obligations, since we are unrolling
// everything anyway.
})
})
}
pub fn can_eq<T>(&self,
param_env: ty::ParamEnv<'tcx>,
a: T,
b: T)
-> UnitResult<'tcx>
where T: at::ToTrace<'tcx>
{
let origin = &ObligationCause::dummy();
self.probe(|_| {
self.at(origin, param_env).eq(a, b).map(|InferOk { obligations: _, .. }| {
// Ignore obligations, since we are unrolling
// everything anyway.
})
})
}
pub fn sub_regions(&self,
origin: SubregionOrigin<'tcx>,
a: ty::Region<'tcx>,
b: ty::Region<'tcx>) {
debug!("sub_regions({:?} <: {:?})", a, b);
self.borrow_region_constraints().make_subregion(origin, a, b);
}
pub fn subtype_predicate(&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
predicate: &ty::PolySubtypePredicate<'tcx>)
-> Option<InferResult<'tcx, ()>>
{
// Subtle: it's ok to skip the binder here and resolve because
// `shallow_resolve` just ignores anything that is not a type
// variable, and because type variable's can't (at present, at
// least) capture any of the things bound by this binder.
//
// Really, there is no *particular* reason to do this
// `shallow_resolve` here except as a
// micro-optimization. Naturally I could not
// resist. -nmatsakis
let two_unbound_type_vars = {
let a = self.shallow_resolve(predicate.skip_binder().a);
let b = self.shallow_resolve(predicate.skip_binder().b);
a.is_ty_var() && b.is_ty_var()
};
if two_unbound_type_vars {
// Two unbound type variables? Can't make progress.
return None;
}
Some(self.commit_if_ok(|snapshot| {
let (ty::SubtypePredicate { a_is_expected, a, b}, skol_map) =
self.skolemize_late_bound_regions(predicate);
let cause_span = cause.span;
let ok = self.at(cause, param_env).sub_exp(a_is_expected, a, b)?;
self.leak_check(false, cause_span, &skol_map, snapshot)?;
self.pop_skolemized(skol_map, snapshot);
Ok(ok.unit())
}))
}
pub fn region_outlives_predicate(&self,
cause: &traits::ObligationCause<'tcx>,
predicate: &ty::PolyRegionOutlivesPredicate<'tcx>)
-> UnitResult<'tcx>
{
self.commit_if_ok(|snapshot| {
let (ty::OutlivesPredicate(r_a, r_b), skol_map) =
self.skolemize_late_bound_regions(predicate);
let origin =
SubregionOrigin::from_obligation_cause(cause,
|| RelateRegionParamBound(cause.span));
self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
self.leak_check(false, cause.span, &skol_map, snapshot)?;
Ok(self.pop_skolemized(skol_map, snapshot))
})
}
pub fn next_ty_var_id(&self, diverging: bool, origin: TypeVariableOrigin) -> TyVid {
self.type_variables
.borrow_mut()
.new_var(self.universe(), diverging, origin)
}
pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
self.tcx.mk_var(self.next_ty_var_id(false, origin))
}
pub fn next_diverging_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
self.tcx.mk_var(self.next_ty_var_id(true, origin))
}
pub fn next_int_var_id(&self) -> IntVid {
self.int_unification_table
.borrow_mut()
.new_key(None)
}
pub fn next_float_var_id(&self) -> FloatVid {
self.float_unification_table
.borrow_mut()
.new_key(None)
}
/// Create a fresh region variable with the next available index.
///
/// # Parameters
///
/// - `origin`: information about why we created this variable, for use
/// during diagnostics / error-reporting.
pub fn next_region_var(&self, origin: RegionVariableOrigin)
-> ty::Region<'tcx> {
let region_var = self.borrow_region_constraints()
.new_region_var(self.universe(), origin);
self.tcx.mk_region(ty::ReVar(region_var))
}
/// Number of region variables created so far.
pub fn num_region_vars(&self) -> usize {
self.borrow_region_constraints().num_region_vars()
}
/// Just a convenient wrapper of `next_region_var` for using during NLL.
pub fn next_nll_region_var(&self, origin: NLLRegionVariableOrigin)
-> ty::Region<'tcx> {
self.next_region_var(RegionVariableOrigin::NLL(origin))
}
pub fn var_for_def(&self,
span: Span,
param: &ty::GenericParamDef)
-> Kind<'tcx> {
match param.kind {
GenericParamDefKind::Lifetime => {
// Create a region inference variable for the given
// region parameter definition.
self.next_region_var(EarlyBoundRegion(span, param.name)).into()
}
GenericParamDefKind::Type {..} => {
// Create a type inference variable for the given
// type parameter definition. The substitutions are
// for actual parameters that may be referred to by
// the default of this type parameter, if it exists.
// E.g. `struct Foo<A, B, C = (A, B)>(...);` when
// used in a path such as `Foo::<T, U>::new()` will
// use an inference variable for `C` with `[T, U]`
// as the substitutions for the default, `(T, U)`.
let ty_var_id =
self.type_variables
.borrow_mut()
.new_var(self.universe(),
false,
TypeVariableOrigin::TypeParameterDefinition(span, param.name));
self.tcx.mk_var(ty_var_id).into()
}
}
}
/// Given a set of generics defined on a type or impl, returns a substitution mapping each
/// type/region parameter to a fresh inference variable.
pub fn fresh_substs_for_item(&self,
span: Span,
def_id: DefId)
-> &'tcx Substs<'tcx> {
Substs::for_item(self.tcx, def_id, |param, _| {
self.var_for_def(span, param)
})
}
/// True if errors have been reported since this infcx was
/// created. This is sometimes used as a heuristic to skip
/// reporting errors that often occur as a result of earlier
/// errors, but where it's hard to be 100% sure (e.g., unresolved
/// inference variables, regionck errors).
pub fn is_tainted_by_errors(&self) -> bool {
debug!("is_tainted_by_errors(err_count={}, err_count_on_creation={}, \
tainted_by_errors_flag={})",
self.tcx.sess.err_count(),
self.err_count_on_creation,
self.tainted_by_errors_flag.get());
if self.tcx.sess.err_count() > self.err_count_on_creation {
return true; // errors reported since this infcx was made
}
self.tainted_by_errors_flag.get()
}
/// Set the "tainted by errors" flag to true. We call this when we
/// observe an error from a prior pass.
pub fn set_tainted_by_errors(&self) {
debug!("set_tainted_by_errors()");
self.tainted_by_errors_flag.set(true)
}
/// Process the region constraints and report any errors that
/// result. After this, no more unification operations should be
/// done -- or the compiler will panic -- but it is legal to use
/// `resolve_type_vars_if_possible` as well as `fully_resolve`.
pub fn resolve_regions_and_report_errors(
&self,
region_context: DefId,
region_map: &region::ScopeTree,
outlives_env: &OutlivesEnvironment<'tcx>,
) {
self.resolve_regions_and_report_errors_inner(
region_context,
region_map,
outlives_env,
false,
)
}
/// Like `resolve_regions_and_report_errors`, but skips error
/// reporting if NLL is enabled. This is used for fn bodies where
/// the same error may later be reported by the NLL-based
/// inference.
pub fn resolve_regions_and_report_errors_unless_nll(
&self,
region_context: DefId,
region_map: &region::ScopeTree,
outlives_env: &OutlivesEnvironment<'tcx>,
) {
self.resolve_regions_and_report_errors_inner(
region_context,
region_map,
outlives_env,
true,
)
}
fn resolve_regions_and_report_errors_inner(
&self,
region_context: DefId,
region_map: &region::ScopeTree,
outlives_env: &OutlivesEnvironment<'tcx>,
will_later_be_reported_by_nll: bool,
) {
assert!(self.is_tainted_by_errors() || self.region_obligations.borrow().is_empty(),
"region_obligations not empty: {:#?}",
self.region_obligations.borrow());
let region_rels = &RegionRelations::new(self.tcx,
region_context,
region_map,
outlives_env.free_region_map());
let (var_infos, data) = self.region_constraints.borrow_mut()
.take()
.expect("regions already resolved")
.into_infos_and_data();
let (lexical_region_resolutions, errors) =
lexical_region_resolve::resolve(region_rels, var_infos, data);
let old_value = self.lexical_region_resolutions.replace(Some(lexical_region_resolutions));
assert!(old_value.is_none());
if !self.is_tainted_by_errors() {
// As a heuristic, just skip reporting region errors
// altogether if other errors have been reported while
// this infcx was in use. This is totally hokey but
// otherwise we have a hard time separating legit region
// errors from silly ones.
self.report_region_errors(region_map, &errors, will_later_be_reported_by_nll);
}
}
/// Obtains (and clears) the current set of region
/// constraints. The inference context is still usable: further
/// unifications will simply add new constraints.
///
/// This method is not meant to be used with normal lexical region
/// resolution. Rather, it is used in the NLL mode as a kind of
/// interim hack: basically we run normal type-check and generate
/// region constraints as normal, but then we take them and
/// translate them into the form that the NLL solver
/// understands. See the NLL module for mode details.
pub fn take_and_reset_region_constraints(&self) -> RegionConstraintData<'tcx> {
assert!(self.region_obligations.borrow().is_empty(),
"region_obligations not empty: {:#?}",
self.region_obligations.borrow());
self.borrow_region_constraints().take_and_reset_data()
}
/// Gives temporary access to the region constraint data.
#[allow(non_camel_case_types)] // bug with impl trait
pub fn with_region_constraints<R>(
&self,
op: impl FnOnce(&RegionConstraintData<'tcx>) -> R,
) -> R {
let region_constraints = self.borrow_region_constraints();
op(region_constraints.data())
}
/// Takes ownership of the list of variable regions. This implies
/// that all the region constriants have already been taken, and
/// hence that `resolve_regions_and_report_errors` can never be
/// called. This is used only during NLL processing to "hand off" ownership
/// of the set of region vairables into the NLL region context.
pub fn take_region_var_origins(&self) -> VarInfos {
let (var_infos, data) = self.region_constraints.borrow_mut()
.take()
.expect("regions already resolved")
.into_infos_and_data();
assert!(data.is_empty());
var_infos
}
pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
self.resolve_type_vars_if_possible(&t).to_string()
}
pub fn tys_to_string(&self, ts: &[Ty<'tcx>]) -> String {
let tstrs: Vec<String> = ts.iter().map(|t| self.ty_to_string(*t)).collect();
format!("({})", tstrs.join(", "))
}
pub fn trait_ref_to_string(&self, t: &ty::TraitRef<'tcx>) -> String {
self.resolve_type_vars_if_possible(t).to_string()
}
pub fn shallow_resolve(&self, typ: Ty<'tcx>) -> Ty<'tcx> {
match typ.sty {
ty::TyInfer(ty::TyVar(v)) => {
// Not entirely obvious: if `typ` is a type variable,
// it can be resolved to an int/float variable, which
// can then be recursively resolved, hence the
// recursion. Note though that we prevent type
// variables from unifyxing to other type variables
// directly (though they may be embedded
// structurally), and we prevent cycles in any case,
// so this recursion should always be of very limited
// depth.
self.type_variables.borrow_mut()
.probe(v)
.known()
.map(|t| self.shallow_resolve(t))
.unwrap_or(typ)
}
ty::TyInfer(ty::IntVar(v)) => {
self.int_unification_table
.borrow_mut()
.probe_value(v)
.map(|v| v.to_type(self.tcx))
.unwrap_or(typ)
}
ty::TyInfer(ty::FloatVar(v)) => {
self.float_unification_table
.borrow_mut()
.probe_value(v)
.map(|v| v.to_type(self.tcx))
.unwrap_or(typ)
}
_ => {
typ
}
}
}
pub fn resolve_type_vars_if_possible<T>(&self, value: &T) -> T
where T: TypeFoldable<'tcx>
{
/*!
* Where possible, replaces type/int/float variables in
* `value` with their final value. Note that region variables
* are unaffected. If a type variable has not been unified, it
* is left as is. This is an idempotent operation that does
* not affect inference state in any way and so you can do it
* at will.
*/
if !value.needs_infer() {
return value.clone(); // avoid duplicated subst-folding
}
let mut r = resolve::OpportunisticTypeResolver::new(self);
value.fold_with(&mut r)
}
/// Returns true if `T` contains unresolved type variables. In the
/// process of visiting `T`, this will resolve (where possible)
/// type variables in `T`, but it never constructs the final,
/// resolved type, so it's more efficient than
/// `resolve_type_vars_if_possible()`.
pub fn any_unresolved_type_vars<T>(&self, value: &T) -> bool
where T: TypeFoldable<'tcx>
{
let mut r = resolve::UnresolvedTypeFinder::new(self);
value.visit_with(&mut r)
}
pub fn resolve_type_and_region_vars_if_possible<T>(&self, value: &T) -> T
where T: TypeFoldable<'tcx>
{
let mut r = resolve::OpportunisticTypeAndRegionResolver::new(self);
value.fold_with(&mut r)
}
pub fn fully_resolve<T:TypeFoldable<'tcx>>(&self, value: &T) -> FixupResult<T> {
/*!
* Attempts to resolve all type/region variables in
* `value`. Region inference must have been run already (e.g.,
* by calling `resolve_regions_and_report_errors`). If some
* variable was never unified, an `Err` results.
*
* This method is idempotent, but it not typically not invoked
* except during the writeback phase.
*/
resolve::fully_resolve(self, value)
}
// [Note-Type-error-reporting]
// An invariant is that anytime the expected or actual type is TyError (the special
// error type, meaning that an error occurred when typechecking this expression),
// this is a derived error. The error cascaded from another error (that was already
// reported), so it's not useful to display it to the user.
// The following methods implement this logic.
// They check if either the actual or expected type is TyError, and don't print the error
// in this case. The typechecker should only ever report type errors involving mismatched
// types using one of these methods, and should not call span_err directly for such
// errors.
pub fn type_error_struct_with_diag<M>(&self,
sp: Span,
mk_diag: M,
actual_ty: Ty<'tcx>)
-> DiagnosticBuilder<'tcx>
where M: FnOnce(String) -> DiagnosticBuilder<'tcx>,
{
let actual_ty = self.resolve_type_vars_if_possible(&actual_ty);
debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);
// Don't report an error if actual type is TyError.
if actual_ty.references_error() {
return self.tcx.sess.diagnostic().struct_dummy();
}
mk_diag(self.ty_to_string(actual_ty))
}
pub fn report_mismatched_types(&self,
cause: &ObligationCause<'tcx>,
expected: Ty<'tcx>,
actual: Ty<'tcx>,
err: TypeError<'tcx>)
-> DiagnosticBuilder<'tcx> {
let trace = TypeTrace::types(cause, true, expected, actual);
self.report_and_explain_type_error(trace, &err)
}
pub fn replace_late_bound_regions_with_fresh_var<T>(
&self,
span: Span,
lbrct: LateBoundRegionConversionTime,
value: &ty::Binder<T>)
-> (T, BTreeMap<ty::BoundRegion, ty::Region<'tcx>>)
where T : TypeFoldable<'tcx>
{
self.tcx.replace_late_bound_regions(
value,
|br| self.next_region_var(LateBoundRegion(span, br, lbrct)))
}
/// Given a higher-ranked projection predicate like:
///
/// for<'a> <T as Fn<&'a u32>>::Output = &'a u32
///
/// and a target trait-ref like:
///
/// <T as Fn<&'x u32>>
///
/// find a substitution `S` for the higher-ranked regions (here,
/// `['a => 'x]`) such that the predicate matches the trait-ref,
/// and then return the value (here, `&'a u32`) but with the
/// substitution applied (hence, `&'x u32`).
///
/// See `higher_ranked_match` in `higher_ranked/mod.rs` for more
/// details.
pub fn match_poly_projection_predicate(&self,
cause: ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
match_a: ty::PolyProjectionPredicate<'tcx>,
match_b: ty::TraitRef<'tcx>)
-> InferResult<'tcx, HrMatchResult<Ty<'tcx>>>
{
let match_pair = match_a.map_bound(|p| (p.projection_ty.trait_ref(self.tcx), p.ty));
let trace = TypeTrace {
cause,
values: TraitRefs(ExpectedFound::new(true, match_pair.skip_binder().0, match_b))
};
let mut combine = self.combine_fields(trace, param_env);
let result = combine.higher_ranked_match(&match_pair, &match_b, true)?;
Ok(InferOk { value: result, obligations: combine.obligations })
}
/// See `verify_generic_bound` method in `region_constraints`
pub fn verify_generic_bound(&self,
origin: SubregionOrigin<'tcx>,
kind: GenericKind<'tcx>,
a: ty::Region<'tcx>,
bound: VerifyBound<'tcx>) {
debug!("verify_generic_bound({:?}, {:?} <: {:?})",
kind,
a,
bound);
self.borrow_region_constraints().verify_generic_bound(origin, kind, a, bound);
}
pub fn type_moves_by_default(&self,
param_env: ty::ParamEnv<'tcx>,
ty: Ty<'tcx>,
span: Span)
-> bool {
let ty = self.resolve_type_vars_if_possible(&ty);
// Even if the type may have no inference variables, during
// type-checking closure types are in local tables only.
if !self.in_progress_tables.is_some() || !ty.has_closure_types() {
if let Some((param_env, ty)) = self.tcx.lift_to_global(&(param_env, ty)) {
return ty.moves_by_default(self.tcx.global_tcx(), param_env, span);
}
}
let copy_def_id = self.tcx.require_lang_item(lang_items::CopyTraitLangItem);
// this can get called from typeck (by euv), and moves_by_default
// rightly refuses to work with inference variables, but
// moves_by_default has a cache, which we want to use in other
// cases.
!traits::type_known_to_meet_bound(self, param_env, ty, copy_def_id, span)
}
/// Obtains the latest type of the given closure; this may be a
/// closure in the current function, in which case its
/// `ClosureKind` may not yet be known.
pub fn closure_kind(&self,
closure_def_id: DefId,
closure_substs: ty::ClosureSubsts<'tcx>)
-> Option<ty::ClosureKind>
{
let closure_kind_ty = closure_substs.closure_kind_ty(closure_def_id, self.tcx);
let closure_kind_ty = self.shallow_resolve(&closure_kind_ty);
closure_kind_ty.to_opt_closure_kind()
}
/// Obtain the signature of a closure. For closures, unlike
/// `tcx.fn_sig(def_id)`, this method will work during the
/// type-checking of the enclosing function and return the closure
/// signature in its partially inferred state.
pub fn closure_sig(
&self,
def_id: DefId,
substs: ty::ClosureSubsts<'tcx>
) -> ty::PolyFnSig<'tcx> {
let closure_sig_ty = substs.closure_sig_ty(def_id, self.tcx);
let closure_sig_ty = self.shallow_resolve(&closure_sig_ty);
closure_sig_ty.fn_sig(self.tcx)
}
/// Normalizes associated types in `value`, potentially returning
/// new obligations that must further be processed.
pub fn partially_normalize_associated_types_in<T>(&self,
span: Span,
body_id: ast::NodeId,
param_env: ty::ParamEnv<'tcx>,
value: &T)
-> InferOk<'tcx, T>
where T : TypeFoldable<'tcx>
{
debug!("partially_normalize_associated_types_in(value={:?})", value);
let mut selcx = traits::SelectionContext::new(self);
let cause = ObligationCause::misc(span, body_id);
let traits::Normalized { value, obligations } =
traits::normalize(&mut selcx, param_env, cause, value);
debug!("partially_normalize_associated_types_in: result={:?} predicates={:?}",
value,
obligations);
InferOk { value, obligations }
}
pub fn borrow_region_constraints(&self) -> RefMut<'_, RegionConstraintCollector<'tcx>> {
RefMut::map(
self.region_constraints.borrow_mut(),
|c| c.as_mut().expect("region constraints already solved"))
}
/// Clears the selection, evaluation, and projection cachesThis is useful when
/// repeatedly attemping to select an Obligation while changing only
/// its ParamEnv, since FulfillmentContext doesn't use 'probe'
pub fn clear_caches(&self) {
self.selection_cache.clear();
self.evaluation_cache.clear();
self.projection_cache.borrow_mut().clear();
}
fn universe(&self) -> ty::UniverseIndex {
self.universe.get()
}
/// Create and return a new subunivese of the current universe;
/// update `self.universe` to that new subuniverse. At present,
/// used only in the NLL subtyping code, which uses the new
/// universe-based scheme instead of the more limited leak-check
/// scheme.
pub fn create_subuniverse(&self) -> ty::UniverseIndex {
let u = self.universe.get().subuniverse();
self.universe.set(u);
u
}
}
impl<'a, 'gcx, 'tcx> TypeTrace<'tcx> {
pub fn span(&self) -> Span {
self.cause.span
}
pub fn types(cause: &ObligationCause<'tcx>,
a_is_expected: bool,
a: Ty<'tcx>,
b: Ty<'tcx>)
-> TypeTrace<'tcx> {
TypeTrace {
cause: cause.clone(),
values: Types(ExpectedFound::new(a_is_expected, a, b))
}
}
pub fn dummy(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> TypeTrace<'tcx> {
TypeTrace {
cause: ObligationCause::dummy(),
values: Types(ExpectedFound {
expected: tcx.types.err,
found: tcx.types.err,
})
}
}
}
impl<'tcx> fmt::Debug for TypeTrace<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "TypeTrace({:?})", self.cause)
}
}
impl<'tcx> SubregionOrigin<'tcx> {
pub fn span(&self) -> Span {
match *self {
Subtype(ref a) => a.span(),
InfStackClosure(a) => a,
InvokeClosure(a) => a,
DerefPointer(a) => a,
FreeVariable(a, _) => a,
IndexSlice(a) => a,
RelateObjectBound(a) => a,
RelateParamBound(a, _) => a,
RelateRegionParamBound(a) => a,
RelateDefaultParamBound(a, _) => a,
Reborrow(a) => a,
ReborrowUpvar(a, _) => a,
DataBorrowed(_, a) => a,
ReferenceOutlivesReferent(_, a) => a,
ParameterInScope(_, a) => a,
ExprTypeIsNotInScope(_, a) => a,
BindingTypeIsNotValidAtDecl(a) => a,
CallRcvr(a) => a,
CallArg(a) => a,
CallReturn(a) => a,
Operand(a) => a,
AddrOf(a) => a,
AutoBorrow(a) => a,
SafeDestructor(a) => a,
CompareImplMethodObligation { span, .. } => span,
}
}
pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>,
default: F)
-> Self
where F: FnOnce() -> Self
{
match cause.code {
traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) =>
SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span),
traits::ObligationCauseCode::CompareImplMethodObligation { item_name,
impl_item_def_id,
trait_item_def_id, } =>
SubregionOrigin::CompareImplMethodObligation {
span: cause.span,
item_name,
impl_item_def_id,
trait_item_def_id,
},
_ => default(),
}
}
}
impl RegionVariableOrigin {
pub fn span(&self) -> Span {
match *self {
MiscVariable(a) => a,
PatternRegion(a) => a,
AddrOfRegion(a) => a,
Autoref(a) => a,
Coercion(a) => a,
EarlyBoundRegion(a, ..) => a,
LateBoundRegion(a, ..) => a,
BoundRegionInCoherence(_) => syntax_pos::DUMMY_SP,
UpvarRegion(_, a) => a,
NLL(..) => bug!("NLL variable used with `span`"),
}
}
}
EnumTypeFoldableImpl! {
impl<'tcx> TypeFoldable<'tcx> for ValuePairs<'tcx> {
(ValuePairs::Types)(a),
(ValuePairs::Regions)(a),
(ValuePairs::TraitRefs)(a),
(ValuePairs::PolyTraitRefs)(a),
}
}
impl<'tcx> fmt::Debug for RegionObligation<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "RegionObligation(sub_region={:?}, sup_type={:?})",
self.sub_region,
self.sup_type)
}
}