blob: 38eff43bad2be9cd0dbb1328d13661cc913054ab [file] [log] [blame]
// ignore-tidy-filelength
//! This module contains the "cleaned" pieces of the AST, and the functions
//! that clean them.
pub mod inline;
pub mod cfg;
mod simplify;
mod auto_trait;
mod blanket_impl;
use rustc_data_structures::indexed_vec::{IndexVec, Idx};
use rustc_target::spec::abi::Abi;
use rustc_typeck::hir_ty_to_ty;
use rustc::infer::region_constraints::{RegionConstraintData, Constraint};
use rustc::middle::resolve_lifetime as rl;
use rustc::middle::lang_items;
use rustc::middle::stability;
use rustc::mir::interpret::{GlobalId, ConstValue};
use rustc::hir;
use rustc::hir::def::{CtorKind, DefKind, Res};
use rustc::hir::def_id::{CrateNum, DefId, CRATE_DEF_INDEX, LOCAL_CRATE};
use rustc::hir::ptr::P;
use rustc::ty::subst::{InternalSubsts, SubstsRef, UnpackedKind};
use rustc::ty::{self, DefIdTree, TyCtxt, Region, RegionVid, Ty, AdtKind};
use rustc::ty::fold::TypeFolder;
use rustc::ty::layout::VariantIdx;
use rustc::util::nodemap::{FxHashMap, FxHashSet};
use syntax::ast::{self, AttrStyle, Ident};
use syntax::attr;
use syntax::ext::base::MacroKind;
use syntax::source_map::DUMMY_SP;
use syntax::symbol::{Symbol, kw, sym};
use syntax::symbol::InternedString;
use syntax_pos::{self, Pos, FileName};
use std::collections::hash_map::Entry;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::default::Default;
use std::{mem, slice, vec};
use std::iter::FromIterator;
use std::rc::Rc;
use std::cell::RefCell;
use std::sync::Arc;
use std::u32;
use crate::core::{self, DocContext, ImplTraitParam};
use crate::doctree;
use crate::html::render::{cache, ExternalLocation};
use crate::html::item_type::ItemType;
use self::cfg::Cfg;
use self::auto_trait::AutoTraitFinder;
use self::blanket_impl::BlanketImplFinder;
pub use self::Type::*;
pub use self::Mutability::*;
pub use self::ItemEnum::*;
pub use self::SelfTy::*;
pub use self::FunctionRetTy::*;
pub use self::Visibility::{Public, Inherited};
thread_local!(pub static MAX_DEF_ID: RefCell<FxHashMap<CrateNum, DefId>> = Default::default());
const FN_OUTPUT_NAME: &'static str = "Output";
// extract the stability index for a node from tcx, if possible
fn get_stability(cx: &DocContext<'_>, def_id: DefId) -> Option<Stability> {
cx.tcx.lookup_stability(def_id).clean(cx)
}
fn get_deprecation(cx: &DocContext<'_>, def_id: DefId) -> Option<Deprecation> {
cx.tcx.lookup_deprecation(def_id).clean(cx)
}
pub trait Clean<T> {
fn clean(&self, cx: &DocContext<'_>) -> T;
}
impl<T: Clean<U>, U> Clean<Vec<U>> for [T] {
fn clean(&self, cx: &DocContext<'_>) -> Vec<U> {
self.iter().map(|x| x.clean(cx)).collect()
}
}
impl<T: Clean<U>, U, V: Idx> Clean<IndexVec<V, U>> for IndexVec<V, T> {
fn clean(&self, cx: &DocContext<'_>) -> IndexVec<V, U> {
self.iter().map(|x| x.clean(cx)).collect()
}
}
impl<T: Clean<U>, U> Clean<U> for P<T> {
fn clean(&self, cx: &DocContext<'_>) -> U {
(**self).clean(cx)
}
}
impl<T: Clean<U>, U> Clean<U> for Rc<T> {
fn clean(&self, cx: &DocContext<'_>) -> U {
(**self).clean(cx)
}
}
impl<T: Clean<U>, U> Clean<Option<U>> for Option<T> {
fn clean(&self, cx: &DocContext<'_>) -> Option<U> {
self.as_ref().map(|v| v.clean(cx))
}
}
impl<T, U> Clean<U> for ty::Binder<T> where T: Clean<U> {
fn clean(&self, cx: &DocContext<'_>) -> U {
self.skip_binder().clean(cx)
}
}
impl<T: Clean<U>, U> Clean<Vec<U>> for P<[T]> {
fn clean(&self, cx: &DocContext<'_>) -> Vec<U> {
self.iter().map(|x| x.clean(cx)).collect()
}
}
#[derive(Clone, Debug)]
pub struct Crate {
pub name: String,
pub version: Option<String>,
pub src: FileName,
pub module: Option<Item>,
pub externs: Vec<(CrateNum, ExternalCrate)>,
pub primitives: Vec<(DefId, PrimitiveType, Attributes)>,
// These are later on moved into `CACHEKEY`, leaving the map empty.
// Only here so that they can be filtered through the rustdoc passes.
pub external_traits: Rc<RefCell<FxHashMap<DefId, Trait>>>,
pub masked_crates: FxHashSet<CrateNum>,
pub collapsed: bool,
}
pub fn krate(mut cx: &mut DocContext<'_>) -> Crate {
use crate::visit_lib::LibEmbargoVisitor;
let krate = cx.tcx.hir().krate();
let module = crate::visit_ast::RustdocVisitor::new(&mut cx).visit(krate);
let mut r = cx.renderinfo.get_mut();
r.deref_trait_did = cx.tcx.lang_items().deref_trait();
r.deref_mut_trait_did = cx.tcx.lang_items().deref_mut_trait();
r.owned_box_did = cx.tcx.lang_items().owned_box();
let mut externs = Vec::new();
for &cnum in cx.tcx.crates().iter() {
externs.push((cnum, cnum.clean(cx)));
// Analyze doc-reachability for extern items
LibEmbargoVisitor::new(&mut cx).visit_lib(cnum);
}
externs.sort_by(|&(a, _), &(b, _)| a.cmp(&b));
// Clean the crate, translating the entire libsyntax AST to one that is
// understood by rustdoc.
let mut module = module.clean(cx);
let mut masked_crates = FxHashSet::default();
match module.inner {
ModuleItem(ref module) => {
for it in &module.items {
// `compiler_builtins` should be masked too, but we can't apply
// `#[doc(masked)]` to the injected `extern crate` because it's unstable.
if it.is_extern_crate()
&& (it.attrs.has_doc_flag(sym::masked)
|| cx.tcx.is_compiler_builtins(it.def_id.krate))
{
masked_crates.insert(it.def_id.krate);
}
}
}
_ => unreachable!(),
}
let ExternalCrate { name, src, primitives, keywords, .. } = LOCAL_CRATE.clean(cx);
{
let m = match module.inner {
ModuleItem(ref mut m) => m,
_ => unreachable!(),
};
m.items.extend(primitives.iter().map(|&(def_id, prim, ref attrs)| {
Item {
source: Span::empty(),
name: Some(prim.to_url_str().to_string()),
attrs: attrs.clone(),
visibility: Some(Public),
stability: get_stability(cx, def_id),
deprecation: get_deprecation(cx, def_id),
def_id,
inner: PrimitiveItem(prim),
}
}));
m.items.extend(keywords.into_iter().map(|(def_id, kw, attrs)| {
Item {
source: Span::empty(),
name: Some(kw.clone()),
attrs: attrs,
visibility: Some(Public),
stability: get_stability(cx, def_id),
deprecation: get_deprecation(cx, def_id),
def_id,
inner: KeywordItem(kw),
}
}));
}
Crate {
name,
version: None,
src,
module: Some(module),
externs,
primitives,
external_traits: cx.external_traits.clone(),
masked_crates,
collapsed: false,
}
}
#[derive(Clone, Debug)]
pub struct ExternalCrate {
pub name: String,
pub src: FileName,
pub attrs: Attributes,
pub primitives: Vec<(DefId, PrimitiveType, Attributes)>,
pub keywords: Vec<(DefId, String, Attributes)>,
}
impl Clean<ExternalCrate> for CrateNum {
fn clean(&self, cx: &DocContext<'_>) -> ExternalCrate {
let root = DefId { krate: *self, index: CRATE_DEF_INDEX };
let krate_span = cx.tcx.def_span(root);
let krate_src = cx.sess().source_map().span_to_filename(krate_span);
// Collect all inner modules which are tagged as implementations of
// primitives.
//
// Note that this loop only searches the top-level items of the crate,
// and this is intentional. If we were to search the entire crate for an
// item tagged with `#[doc(primitive)]` then we would also have to
// search the entirety of external modules for items tagged
// `#[doc(primitive)]`, which is a pretty inefficient process (decoding
// all that metadata unconditionally).
//
// In order to keep the metadata load under control, the
// `#[doc(primitive)]` feature is explicitly designed to only allow the
// primitive tags to show up as the top level items in a crate.
//
// Also note that this does not attempt to deal with modules tagged
// duplicately for the same primitive. This is handled later on when
// rendering by delegating everything to a hash map.
let as_primitive = |res: Res| {
if let Res::Def(DefKind::Mod, def_id) = res {
let attrs = cx.tcx.get_attrs(def_id).clean(cx);
let mut prim = None;
for attr in attrs.lists(sym::doc) {
if let Some(v) = attr.value_str() {
if attr.check_name(sym::primitive) {
prim = PrimitiveType::from_str(&v.as_str());
if prim.is_some() {
break;
}
// FIXME: should warn on unknown primitives?
}
}
}
return prim.map(|p| (def_id, p, attrs));
}
None
};
let primitives = if root.is_local() {
cx.tcx.hir().krate().module.item_ids.iter().filter_map(|&id| {
let item = cx.tcx.hir().expect_item(id.id);
match item.node {
hir::ItemKind::Mod(_) => {
as_primitive(Res::Def(
DefKind::Mod,
cx.tcx.hir().local_def_id(id.id),
))
}
hir::ItemKind::Use(ref path, hir::UseKind::Single)
if item.vis.node.is_pub() => {
as_primitive(path.res).map(|(_, prim, attrs)| {
// Pretend the primitive is local.
(cx.tcx.hir().local_def_id(id.id), prim, attrs)
})
}
_ => None
}
}).collect()
} else {
cx.tcx.item_children(root).iter().map(|item| item.res)
.filter_map(as_primitive).collect()
};
let as_keyword = |res: Res| {
if let Res::Def(DefKind::Mod, def_id) = res {
let attrs = cx.tcx.get_attrs(def_id).clean(cx);
let mut keyword = None;
for attr in attrs.lists(sym::doc) {
if let Some(v) = attr.value_str() {
if attr.check_name(sym::keyword) {
if v.is_doc_keyword() {
keyword = Some(v.to_string());
break;
}
// FIXME: should warn on unknown keywords?
}
}
}
return keyword.map(|p| (def_id, p, attrs));
}
None
};
let keywords = if root.is_local() {
cx.tcx.hir().krate().module.item_ids.iter().filter_map(|&id| {
let item = cx.tcx.hir().expect_item(id.id);
match item.node {
hir::ItemKind::Mod(_) => {
as_keyword(Res::Def(
DefKind::Mod,
cx.tcx.hir().local_def_id(id.id),
))
}
hir::ItemKind::Use(ref path, hir::UseKind::Single)
if item.vis.node.is_pub() => {
as_keyword(path.res).map(|(_, prim, attrs)| {
(cx.tcx.hir().local_def_id(id.id), prim, attrs)
})
}
_ => None
}
}).collect()
} else {
cx.tcx.item_children(root).iter().map(|item| item.res)
.filter_map(as_keyword).collect()
};
ExternalCrate {
name: cx.tcx.crate_name(*self).to_string(),
src: krate_src,
attrs: cx.tcx.get_attrs(root).clean(cx),
primitives,
keywords,
}
}
}
/// Anything with a source location and set of attributes and, optionally, a
/// name. That is, anything that can be documented. This doesn't correspond
/// directly to the AST's concept of an item; it's a strict superset.
#[derive(Clone)]
pub struct Item {
/// Stringified span
pub source: Span,
/// Not everything has a name. E.g., impls
pub name: Option<String>,
pub attrs: Attributes,
pub inner: ItemEnum,
pub visibility: Option<Visibility>,
pub def_id: DefId,
pub stability: Option<Stability>,
pub deprecation: Option<Deprecation>,
}
impl fmt::Debug for Item {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let fake = MAX_DEF_ID.with(|m| m.borrow().get(&self.def_id.krate)
.map(|id| self.def_id >= *id).unwrap_or(false));
let def_id: &dyn fmt::Debug = if fake { &"**FAKE**" } else { &self.def_id };
fmt.debug_struct("Item")
.field("source", &self.source)
.field("name", &self.name)
.field("attrs", &self.attrs)
.field("inner", &self.inner)
.field("visibility", &self.visibility)
.field("def_id", def_id)
.field("stability", &self.stability)
.field("deprecation", &self.deprecation)
.finish()
}
}
impl Item {
/// Finds the `doc` attribute as a NameValue and returns the corresponding
/// value found.
pub fn doc_value(&self) -> Option<&str> {
self.attrs.doc_value()
}
/// Finds all `doc` attributes as NameValues and returns their corresponding values, joined
/// with newlines.
pub fn collapsed_doc_value(&self) -> Option<String> {
self.attrs.collapsed_doc_value()
}
pub fn links(&self) -> Vec<(String, String)> {
self.attrs.links(&self.def_id.krate)
}
pub fn is_crate(&self) -> bool {
match self.inner {
StrippedItem(box ModuleItem(Module { is_crate: true, ..})) |
ModuleItem(Module { is_crate: true, ..}) => true,
_ => false,
}
}
pub fn is_mod(&self) -> bool {
self.type_() == ItemType::Module
}
pub fn is_trait(&self) -> bool {
self.type_() == ItemType::Trait
}
pub fn is_struct(&self) -> bool {
self.type_() == ItemType::Struct
}
pub fn is_enum(&self) -> bool {
self.type_() == ItemType::Enum
}
pub fn is_variant(&self) -> bool {
self.type_() == ItemType::Variant
}
pub fn is_associated_type(&self) -> bool {
self.type_() == ItemType::AssocType
}
pub fn is_associated_const(&self) -> bool {
self.type_() == ItemType::AssocConst
}
pub fn is_method(&self) -> bool {
self.type_() == ItemType::Method
}
pub fn is_ty_method(&self) -> bool {
self.type_() == ItemType::TyMethod
}
pub fn is_typedef(&self) -> bool {
self.type_() == ItemType::Typedef
}
pub fn is_primitive(&self) -> bool {
self.type_() == ItemType::Primitive
}
pub fn is_union(&self) -> bool {
self.type_() == ItemType::Union
}
pub fn is_import(&self) -> bool {
self.type_() == ItemType::Import
}
pub fn is_extern_crate(&self) -> bool {
self.type_() == ItemType::ExternCrate
}
pub fn is_keyword(&self) -> bool {
self.type_() == ItemType::Keyword
}
pub fn is_stripped(&self) -> bool {
match self.inner { StrippedItem(..) => true, _ => false }
}
pub fn has_stripped_fields(&self) -> Option<bool> {
match self.inner {
StructItem(ref _struct) => Some(_struct.fields_stripped),
UnionItem(ref union) => Some(union.fields_stripped),
VariantItem(Variant { kind: VariantKind::Struct(ref vstruct)} ) => {
Some(vstruct.fields_stripped)
},
_ => None,
}
}
pub fn stability_class(&self) -> Option<String> {
self.stability.as_ref().and_then(|ref s| {
let mut classes = Vec::with_capacity(2);
if s.level == stability::Unstable {
classes.push("unstable");
}
if s.deprecation.is_some() {
classes.push("deprecated");
}
if classes.len() != 0 {
Some(classes.join(" "))
} else {
None
}
})
}
pub fn stable_since(&self) -> Option<&str> {
self.stability.as_ref().map(|s| &s.since[..])
}
pub fn is_non_exhaustive(&self) -> bool {
self.attrs.other_attrs.iter()
.any(|a| a.check_name(sym::non_exhaustive))
}
/// Returns a documentation-level item type from the item.
pub fn type_(&self) -> ItemType {
ItemType::from(self)
}
/// Returns the info in the item's `#[deprecated]` or `#[rustc_deprecated]` attributes.
///
/// If the item is not deprecated, returns `None`.
pub fn deprecation(&self) -> Option<&Deprecation> {
self.deprecation
.as_ref()
.or_else(|| self.stability.as_ref().and_then(|s| s.deprecation.as_ref()))
}
pub fn is_default(&self) -> bool {
match self.inner {
ItemEnum::MethodItem(ref meth) => {
if let Some(defaultness) = meth.defaultness {
defaultness.has_value() && !defaultness.is_final()
} else {
false
}
}
_ => false,
}
}
}
#[derive(Clone, Debug)]
pub enum ItemEnum {
ExternCrateItem(String, Option<String>),
ImportItem(Import),
StructItem(Struct),
UnionItem(Union),
EnumItem(Enum),
FunctionItem(Function),
ModuleItem(Module),
TypedefItem(Typedef, bool /* is associated type */),
OpaqueTyItem(OpaqueTy, bool /* is associated type */),
StaticItem(Static),
ConstantItem(Constant),
TraitItem(Trait),
TraitAliasItem(TraitAlias),
ImplItem(Impl),
/// A method signature only. Used for required methods in traits (ie,
/// non-default-methods).
TyMethodItem(TyMethod),
/// A method with a body.
MethodItem(Method),
StructFieldItem(Type),
VariantItem(Variant),
/// `fn`s from an extern block
ForeignFunctionItem(Function),
/// `static`s from an extern block
ForeignStaticItem(Static),
/// `type`s from an extern block
ForeignTypeItem,
MacroItem(Macro),
ProcMacroItem(ProcMacro),
PrimitiveItem(PrimitiveType),
AssocConstItem(Type, Option<String>),
AssocTypeItem(Vec<GenericBound>, Option<Type>),
/// An item that has been stripped by a rustdoc pass
StrippedItem(Box<ItemEnum>),
KeywordItem(String),
}
impl ItemEnum {
pub fn is_associated(&self) -> bool {
match *self {
ItemEnum::TypedefItem(_, _) |
ItemEnum::AssocTypeItem(_, _) => true,
_ => false,
}
}
}
#[derive(Clone, Debug)]
pub struct Module {
pub items: Vec<Item>,
pub is_crate: bool,
}
impl Clean<Item> for doctree::Module<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let name = if self.name.is_some() {
self.name.expect("No name provided").clean(cx)
} else {
String::new()
};
// maintain a stack of mod ids, for doc comment path resolution
// but we also need to resolve the module's own docs based on whether its docs were written
// inside or outside the module, so check for that
let attrs = self.attrs.clean(cx);
let mut items: Vec<Item> = vec![];
items.extend(self.extern_crates.iter().flat_map(|x| x.clean(cx)));
items.extend(self.imports.iter().flat_map(|x| x.clean(cx)));
items.extend(self.structs.iter().map(|x| x.clean(cx)));
items.extend(self.unions.iter().map(|x| x.clean(cx)));
items.extend(self.enums.iter().map(|x| x.clean(cx)));
items.extend(self.fns.iter().map(|x| x.clean(cx)));
items.extend(self.foreigns.iter().map(|x| x.clean(cx)));
items.extend(self.mods.iter().map(|x| x.clean(cx)));
items.extend(self.typedefs.iter().map(|x| x.clean(cx)));
items.extend(self.opaque_tys.iter().map(|x| x.clean(cx)));
items.extend(self.statics.iter().map(|x| x.clean(cx)));
items.extend(self.constants.iter().map(|x| x.clean(cx)));
items.extend(self.traits.iter().map(|x| x.clean(cx)));
items.extend(self.impls.iter().flat_map(|x| x.clean(cx)));
items.extend(self.macros.iter().map(|x| x.clean(cx)));
items.extend(self.proc_macros.iter().map(|x| x.clean(cx)));
items.extend(self.trait_aliases.iter().map(|x| x.clean(cx)));
// determine if we should display the inner contents or
// the outer `mod` item for the source code.
let whence = {
let cm = cx.sess().source_map();
let outer = cm.lookup_char_pos(self.where_outer.lo());
let inner = cm.lookup_char_pos(self.where_inner.lo());
if outer.file.start_pos == inner.file.start_pos {
// mod foo { ... }
self.where_outer
} else {
// mod foo; (and a separate SourceFile for the contents)
self.where_inner
}
};
Item {
name: Some(name),
attrs,
source: whence.clean(cx),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
inner: ModuleItem(Module {
is_crate: self.is_crate,
items,
})
}
}
}
pub struct ListAttributesIter<'a> {
attrs: slice::Iter<'a, ast::Attribute>,
current_list: vec::IntoIter<ast::NestedMetaItem>,
name: Symbol,
}
impl<'a> Iterator for ListAttributesIter<'a> {
type Item = ast::NestedMetaItem;
fn next(&mut self) -> Option<Self::Item> {
if let Some(nested) = self.current_list.next() {
return Some(nested);
}
for attr in &mut self.attrs {
if let Some(list) = attr.meta_item_list() {
if attr.check_name(self.name) {
self.current_list = list.into_iter();
if let Some(nested) = self.current_list.next() {
return Some(nested);
}
}
}
}
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
let lower = self.current_list.len();
(lower, None)
}
}
pub trait AttributesExt {
/// Finds an attribute as List and returns the list of attributes nested inside.
fn lists(&self, name: Symbol) -> ListAttributesIter<'_>;
}
impl AttributesExt for [ast::Attribute] {
fn lists(&self, name: Symbol) -> ListAttributesIter<'_> {
ListAttributesIter {
attrs: self.iter(),
current_list: Vec::new().into_iter(),
name,
}
}
}
pub trait NestedAttributesExt {
/// Returns `true` if the attribute list contains a specific `Word`
fn has_word(self, word: Symbol) -> bool;
}
impl<I: IntoIterator<Item=ast::NestedMetaItem>> NestedAttributesExt for I {
fn has_word(self, word: Symbol) -> bool {
self.into_iter().any(|attr| attr.is_word() && attr.check_name(word))
}
}
/// A portion of documentation, extracted from a `#[doc]` attribute.
///
/// Each variant contains the line number within the complete doc-comment where the fragment
/// starts, as well as the Span where the corresponding doc comment or attribute is located.
///
/// Included files are kept separate from inline doc comments so that proper line-number
/// information can be given when a doctest fails. Sugared doc comments and "raw" doc comments are
/// kept separate because of issue #42760.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum DocFragment {
/// A doc fragment created from a `///` or `//!` doc comment.
SugaredDoc(usize, syntax_pos::Span, String),
/// A doc fragment created from a "raw" `#[doc=""]` attribute.
RawDoc(usize, syntax_pos::Span, String),
/// A doc fragment created from a `#[doc(include="filename")]` attribute. Contains both the
/// given filename and the file contents.
Include(usize, syntax_pos::Span, String, String),
}
impl DocFragment {
pub fn as_str(&self) -> &str {
match *self {
DocFragment::SugaredDoc(_, _, ref s) => &s[..],
DocFragment::RawDoc(_, _, ref s) => &s[..],
DocFragment::Include(_, _, _, ref s) => &s[..],
}
}
pub fn span(&self) -> syntax_pos::Span {
match *self {
DocFragment::SugaredDoc(_, span, _) |
DocFragment::RawDoc(_, span, _) |
DocFragment::Include(_, span, _, _) => span,
}
}
}
impl<'a> FromIterator<&'a DocFragment> for String {
fn from_iter<T>(iter: T) -> Self
where
T: IntoIterator<Item = &'a DocFragment>
{
iter.into_iter().fold(String::new(), |mut acc, frag| {
if !acc.is_empty() {
acc.push('\n');
}
match *frag {
DocFragment::SugaredDoc(_, _, ref docs)
| DocFragment::RawDoc(_, _, ref docs)
| DocFragment::Include(_, _, _, ref docs) =>
acc.push_str(docs),
}
acc
})
}
}
#[derive(Clone, Debug, Default)]
pub struct Attributes {
pub doc_strings: Vec<DocFragment>,
pub other_attrs: Vec<ast::Attribute>,
pub cfg: Option<Arc<Cfg>>,
pub span: Option<syntax_pos::Span>,
/// map from Rust paths to resolved defs and potential URL fragments
pub links: Vec<(String, Option<DefId>, Option<String>)>,
pub inner_docs: bool,
}
impl Attributes {
/// Extracts the content from an attribute `#[doc(cfg(content))]`.
fn extract_cfg(mi: &ast::MetaItem) -> Option<&ast::MetaItem> {
use syntax::ast::NestedMetaItem::MetaItem;
if let ast::MetaItemKind::List(ref nmis) = mi.node {
if nmis.len() == 1 {
if let MetaItem(ref cfg_mi) = nmis[0] {
if cfg_mi.check_name(sym::cfg) {
if let ast::MetaItemKind::List(ref cfg_nmis) = cfg_mi.node {
if cfg_nmis.len() == 1 {
if let MetaItem(ref content_mi) = cfg_nmis[0] {
return Some(content_mi);
}
}
}
}
}
}
}
None
}
/// Reads a `MetaItem` from within an attribute, looks for whether it is a
/// `#[doc(include="file")]`, and returns the filename and contents of the file as loaded from
/// its expansion.
fn extract_include(mi: &ast::MetaItem)
-> Option<(String, String)>
{
mi.meta_item_list().and_then(|list| {
for meta in list {
if meta.check_name(sym::include) {
// the actual compiled `#[doc(include="filename")]` gets expanded to
// `#[doc(include(file="filename", contents="file contents")]` so we need to
// look for that instead
return meta.meta_item_list().and_then(|list| {
let mut filename: Option<String> = None;
let mut contents: Option<String> = None;
for it in list {
if it.check_name(sym::file) {
if let Some(name) = it.value_str() {
filename = Some(name.to_string());
}
} else if it.check_name(sym::contents) {
if let Some(docs) = it.value_str() {
contents = Some(docs.to_string());
}
}
}
if let (Some(filename), Some(contents)) = (filename, contents) {
Some((filename, contents))
} else {
None
}
});
}
}
None
})
}
pub fn has_doc_flag(&self, flag: Symbol) -> bool {
for attr in &self.other_attrs {
if !attr.check_name(sym::doc) { continue; }
if let Some(items) = attr.meta_item_list() {
if items.iter().filter_map(|i| i.meta_item()).any(|it| it.check_name(flag)) {
return true;
}
}
}
false
}
pub fn from_ast(diagnostic: &::errors::Handler,
attrs: &[ast::Attribute]) -> Attributes {
let mut doc_strings = vec![];
let mut sp = None;
let mut cfg = Cfg::True;
let mut doc_line = 0;
let other_attrs = attrs.iter().filter_map(|attr| {
attr.with_desugared_doc(|attr| {
if attr.check_name(sym::doc) {
if let Some(mi) = attr.meta() {
if let Some(value) = mi.value_str() {
// Extracted #[doc = "..."]
let value = value.to_string();
let line = doc_line;
doc_line += value.lines().count();
if attr.is_sugared_doc {
doc_strings.push(DocFragment::SugaredDoc(line, attr.span, value));
} else {
doc_strings.push(DocFragment::RawDoc(line, attr.span, value));
}
if sp.is_none() {
sp = Some(attr.span);
}
return None;
} else if let Some(cfg_mi) = Attributes::extract_cfg(&mi) {
// Extracted #[doc(cfg(...))]
match Cfg::parse(cfg_mi) {
Ok(new_cfg) => cfg &= new_cfg,
Err(e) => diagnostic.span_err(e.span, e.msg),
}
return None;
} else if let Some((filename, contents)) = Attributes::extract_include(&mi)
{
let line = doc_line;
doc_line += contents.lines().count();
doc_strings.push(DocFragment::Include(line,
attr.span,
filename,
contents));
}
}
}
Some(attr.clone())
})
}).collect();
// treat #[target_feature(enable = "feat")] attributes as if they were
// #[doc(cfg(target_feature = "feat"))] attributes as well
for attr in attrs.lists(sym::target_feature) {
if attr.check_name(sym::enable) {
if let Some(feat) = attr.value_str() {
let meta = attr::mk_name_value_item_str(
Ident::with_dummy_span(sym::target_feature), feat, DUMMY_SP
);
if let Ok(feat_cfg) = Cfg::parse(&meta) {
cfg &= feat_cfg;
}
}
}
}
let inner_docs = attrs.iter()
.filter(|a| a.check_name(sym::doc))
.next()
.map_or(true, |a| a.style == AttrStyle::Inner);
Attributes {
doc_strings,
other_attrs,
cfg: if cfg == Cfg::True { None } else { Some(Arc::new(cfg)) },
span: sp,
links: vec![],
inner_docs,
}
}
/// Finds the `doc` attribute as a NameValue and returns the corresponding
/// value found.
pub fn doc_value(&self) -> Option<&str> {
self.doc_strings.first().map(|s| s.as_str())
}
/// Finds all `doc` attributes as NameValues and returns their corresponding values, joined
/// with newlines.
pub fn collapsed_doc_value(&self) -> Option<String> {
if !self.doc_strings.is_empty() {
Some(self.doc_strings.iter().collect())
} else {
None
}
}
/// Gets links as a vector
///
/// Cache must be populated before call
pub fn links(&self, krate: &CrateNum) -> Vec<(String, String)> {
use crate::html::format::href;
self.links.iter().filter_map(|&(ref s, did, ref fragment)| {
match did {
Some(did) => {
if let Some((mut href, ..)) = href(did) {
if let Some(ref fragment) = *fragment {
href.push_str("#");
href.push_str(fragment);
}
Some((s.clone(), href))
} else {
None
}
}
None => {
if let Some(ref fragment) = *fragment {
let cache = cache();
let url = match cache.extern_locations.get(krate) {
Some(&(_, ref src, ExternalLocation::Local)) =>
src.to_str().expect("invalid file path"),
Some(&(_, _, ExternalLocation::Remote(ref s))) => s,
Some(&(_, _, ExternalLocation::Unknown)) | None =>
"https://doc.rust-lang.org/nightly",
};
// This is a primitive so the url is done "by hand".
let tail = fragment.find('#').unwrap_or_else(|| fragment.len());
Some((s.clone(),
format!("{}{}std/primitive.{}.html{}",
url,
if !url.ends_with('/') { "/" } else { "" },
&fragment[..tail],
&fragment[tail..])))
} else {
panic!("This isn't a primitive?!");
}
}
}
}).collect()
}
}
impl PartialEq for Attributes {
fn eq(&self, rhs: &Self) -> bool {
self.doc_strings == rhs.doc_strings &&
self.cfg == rhs.cfg &&
self.span == rhs.span &&
self.links == rhs.links &&
self.other_attrs.iter().map(|attr| attr.id).eq(rhs.other_attrs.iter().map(|attr| attr.id))
}
}
impl Eq for Attributes {}
impl Hash for Attributes {
fn hash<H: Hasher>(&self, hasher: &mut H) {
self.doc_strings.hash(hasher);
self.cfg.hash(hasher);
self.span.hash(hasher);
self.links.hash(hasher);
for attr in &self.other_attrs {
attr.id.hash(hasher);
}
}
}
impl AttributesExt for Attributes {
fn lists(&self, name: Symbol) -> ListAttributesIter<'_> {
self.other_attrs.lists(name)
}
}
impl Clean<Attributes> for [ast::Attribute] {
fn clean(&self, cx: &DocContext<'_>) -> Attributes {
Attributes::from_ast(cx.sess().diagnostic(), self)
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum GenericBound {
TraitBound(PolyTrait, hir::TraitBoundModifier),
Outlives(Lifetime),
}
impl GenericBound {
fn maybe_sized(cx: &DocContext<'_>) -> GenericBound {
let did = cx.tcx.require_lang_item(lang_items::SizedTraitLangItem, None);
let empty = cx.tcx.intern_substs(&[]);
let path = external_path(cx, &cx.tcx.item_name(did).as_str(),
Some(did), false, vec![], empty);
inline::record_extern_fqn(cx, did, TypeKind::Trait);
GenericBound::TraitBound(PolyTrait {
trait_: ResolvedPath {
path,
param_names: None,
did,
is_generic: false,
},
generic_params: Vec::new(),
}, hir::TraitBoundModifier::Maybe)
}
fn is_sized_bound(&self, cx: &DocContext<'_>) -> bool {
use rustc::hir::TraitBoundModifier as TBM;
if let GenericBound::TraitBound(PolyTrait { ref trait_, .. }, TBM::None) = *self {
if trait_.def_id() == cx.tcx.lang_items().sized_trait() {
return true;
}
}
false
}
fn get_poly_trait(&self) -> Option<PolyTrait> {
if let GenericBound::TraitBound(ref p, _) = *self {
return Some(p.clone())
}
None
}
fn get_trait_type(&self) -> Option<Type> {
if let GenericBound::TraitBound(PolyTrait { ref trait_, .. }, _) = *self {
Some(trait_.clone())
} else {
None
}
}
}
impl Clean<GenericBound> for hir::GenericBound {
fn clean(&self, cx: &DocContext<'_>) -> GenericBound {
match *self {
hir::GenericBound::Outlives(lt) => GenericBound::Outlives(lt.clean(cx)),
hir::GenericBound::Trait(ref t, modifier) => {
GenericBound::TraitBound(t.clean(cx), modifier)
}
}
}
}
fn external_generic_args(
cx: &DocContext<'_>,
trait_did: Option<DefId>,
has_self: bool,
bindings: Vec<TypeBinding>,
substs: SubstsRef<'_>,
) -> GenericArgs {
let mut skip_self = has_self;
let mut ty_sty = None;
let args: Vec<_> = substs.iter().filter_map(|kind| match kind.unpack() {
UnpackedKind::Lifetime(lt) => {
lt.clean(cx).and_then(|lt| Some(GenericArg::Lifetime(lt)))
}
UnpackedKind::Type(_) if skip_self => {
skip_self = false;
None
}
UnpackedKind::Type(ty) => {
ty_sty = Some(&ty.sty);
Some(GenericArg::Type(ty.clean(cx)))
}
UnpackedKind::Const(ct) => Some(GenericArg::Const(ct.clean(cx))),
}).collect();
match trait_did {
// Attempt to sugar an external path like Fn<(A, B,), C> to Fn(A, B) -> C
Some(did) if cx.tcx.lang_items().fn_trait_kind(did).is_some() => {
assert!(ty_sty.is_some());
let inputs = match ty_sty {
Some(ty::Tuple(ref tys)) => tys.iter().map(|t| t.expect_ty().clean(cx)).collect(),
_ => return GenericArgs::AngleBracketed { args, bindings },
};
let output = None;
// FIXME(#20299) return type comes from a projection now
// match types[1].sty {
// ty::Tuple(ref v) if v.is_empty() => None, // -> ()
// _ => Some(types[1].clean(cx))
// };
GenericArgs::Parenthesized { inputs, output }
},
_ => {
GenericArgs::AngleBracketed { args, bindings }
}
}
}
// trait_did should be set to a trait's DefId if called on a TraitRef, in order to sugar
// from Fn<(A, B,), C> to Fn(A, B) -> C
fn external_path(cx: &DocContext<'_>, name: &str, trait_did: Option<DefId>, has_self: bool,
bindings: Vec<TypeBinding>, substs: SubstsRef<'_>) -> Path {
Path {
global: false,
res: Res::Err,
segments: vec![PathSegment {
name: name.to_string(),
args: external_generic_args(cx, trait_did, has_self, bindings, substs)
}],
}
}
impl<'a, 'tcx> Clean<GenericBound> for (&'a ty::TraitRef<'tcx>, Vec<TypeBinding>) {
fn clean(&self, cx: &DocContext<'_>) -> GenericBound {
let (trait_ref, ref bounds) = *self;
inline::record_extern_fqn(cx, trait_ref.def_id, TypeKind::Trait);
let path = external_path(cx, &cx.tcx.item_name(trait_ref.def_id).as_str(),
Some(trait_ref.def_id), true, bounds.clone(), trait_ref.substs);
debug!("ty::TraitRef\n subst: {:?}\n", trait_ref.substs);
// collect any late bound regions
let mut late_bounds = vec![];
for ty_s in trait_ref.input_types().skip(1) {
if let ty::Tuple(ts) = ty_s.sty {
for &ty_s in ts {
if let ty::Ref(ref reg, _, _) = ty_s.expect_ty().sty {
if let &ty::RegionKind::ReLateBound(..) = *reg {
debug!(" hit an ReLateBound {:?}", reg);
if let Some(Lifetime(name)) = reg.clean(cx) {
late_bounds.push(GenericParamDef {
name,
kind: GenericParamDefKind::Lifetime,
});
}
}
}
}
}
}
GenericBound::TraitBound(
PolyTrait {
trait_: ResolvedPath {
path,
param_names: None,
did: trait_ref.def_id,
is_generic: false,
},
generic_params: late_bounds,
},
hir::TraitBoundModifier::None
)
}
}
impl<'tcx> Clean<GenericBound> for ty::TraitRef<'tcx> {
fn clean(&self, cx: &DocContext<'_>) -> GenericBound {
(self, vec![]).clean(cx)
}
}
impl<'tcx> Clean<Option<Vec<GenericBound>>> for InternalSubsts<'tcx> {
fn clean(&self, cx: &DocContext<'_>) -> Option<Vec<GenericBound>> {
let mut v = Vec::new();
v.extend(self.regions().filter_map(|r| r.clean(cx)).map(GenericBound::Outlives));
v.extend(self.types().map(|t| GenericBound::TraitBound(PolyTrait {
trait_: t.clean(cx),
generic_params: Vec::new(),
}, hir::TraitBoundModifier::None)));
if !v.is_empty() {Some(v)} else {None}
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct Lifetime(String);
impl Lifetime {
pub fn get_ref<'a>(&'a self) -> &'a str {
let Lifetime(ref s) = *self;
let s: &'a str = s;
s
}
pub fn statik() -> Lifetime {
Lifetime("'static".to_string())
}
}
impl Clean<Lifetime> for hir::Lifetime {
fn clean(&self, cx: &DocContext<'_>) -> Lifetime {
if self.hir_id != hir::DUMMY_HIR_ID {
let def = cx.tcx.named_region(self.hir_id);
match def {
Some(rl::Region::EarlyBound(_, node_id, _)) |
Some(rl::Region::LateBound(_, node_id, _)) |
Some(rl::Region::Free(_, node_id)) => {
if let Some(lt) = cx.lt_substs.borrow().get(&node_id).cloned() {
return lt;
}
}
_ => {}
}
}
Lifetime(self.name.ident().to_string())
}
}
impl Clean<Lifetime> for hir::GenericParam {
fn clean(&self, _: &DocContext<'_>) -> Lifetime {
match self.kind {
hir::GenericParamKind::Lifetime { .. } => {
if self.bounds.len() > 0 {
let mut bounds = self.bounds.iter().map(|bound| match bound {
hir::GenericBound::Outlives(lt) => lt,
_ => panic!(),
});
let name = bounds.next().expect("no more bounds").name.ident();
let mut s = format!("{}: {}", self.name.ident(), name);
for bound in bounds {
s.push_str(&format!(" + {}", bound.name.ident()));
}
Lifetime(s)
} else {
Lifetime(self.name.ident().to_string())
}
}
_ => panic!(),
}
}
}
impl Clean<Constant> for hir::ConstArg {
fn clean(&self, cx: &DocContext<'_>) -> Constant {
Constant {
type_: cx.tcx.type_of(cx.tcx.hir().body_owner_def_id(self.value.body)).clean(cx),
expr: print_const_expr(cx, self.value.body),
}
}
}
impl Clean<Lifetime> for ty::GenericParamDef {
fn clean(&self, _cx: &DocContext<'_>) -> Lifetime {
Lifetime(self.name.to_string())
}
}
impl Clean<Option<Lifetime>> for ty::RegionKind {
fn clean(&self, cx: &DocContext<'_>) -> Option<Lifetime> {
match *self {
ty::ReStatic => Some(Lifetime::statik()),
ty::ReLateBound(_, ty::BrNamed(_, name)) => Some(Lifetime(name.to_string())),
ty::ReEarlyBound(ref data) => Some(Lifetime(data.name.clean(cx))),
ty::ReLateBound(..) |
ty::ReFree(..) |
ty::ReScope(..) |
ty::ReVar(..) |
ty::RePlaceholder(..) |
ty::ReEmpty |
ty::ReClosureBound(_) |
ty::ReErased => {
debug!("cannot clean region {:?}", self);
None
}
}
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum WherePredicate {
BoundPredicate { ty: Type, bounds: Vec<GenericBound> },
RegionPredicate { lifetime: Lifetime, bounds: Vec<GenericBound> },
EqPredicate { lhs: Type, rhs: Type },
}
impl WherePredicate {
pub fn get_bounds(&self) -> Option<&[GenericBound]> {
match *self {
WherePredicate::BoundPredicate { ref bounds, .. } => Some(bounds),
WherePredicate::RegionPredicate { ref bounds, .. } => Some(bounds),
_ => None,
}
}
}
impl Clean<WherePredicate> for hir::WherePredicate {
fn clean(&self, cx: &DocContext<'_>) -> WherePredicate {
match *self {
hir::WherePredicate::BoundPredicate(ref wbp) => {
WherePredicate::BoundPredicate {
ty: wbp.bounded_ty.clean(cx),
bounds: wbp.bounds.clean(cx)
}
}
hir::WherePredicate::RegionPredicate(ref wrp) => {
WherePredicate::RegionPredicate {
lifetime: wrp.lifetime.clean(cx),
bounds: wrp.bounds.clean(cx)
}
}
hir::WherePredicate::EqPredicate(ref wrp) => {
WherePredicate::EqPredicate {
lhs: wrp.lhs_ty.clean(cx),
rhs: wrp.rhs_ty.clean(cx)
}
}
}
}
}
impl<'a> Clean<Option<WherePredicate>> for ty::Predicate<'a> {
fn clean(&self, cx: &DocContext<'_>) -> Option<WherePredicate> {
use rustc::ty::Predicate;
match *self {
Predicate::Trait(ref pred) => Some(pred.clean(cx)),
Predicate::Subtype(ref pred) => Some(pred.clean(cx)),
Predicate::RegionOutlives(ref pred) => pred.clean(cx),
Predicate::TypeOutlives(ref pred) => pred.clean(cx),
Predicate::Projection(ref pred) => Some(pred.clean(cx)),
Predicate::WellFormed(..) |
Predicate::ObjectSafe(..) |
Predicate::ClosureKind(..) |
Predicate::ConstEvaluatable(..) => panic!("not user writable"),
}
}
}
impl<'a> Clean<WherePredicate> for ty::TraitPredicate<'a> {
fn clean(&self, cx: &DocContext<'_>) -> WherePredicate {
WherePredicate::BoundPredicate {
ty: self.trait_ref.self_ty().clean(cx),
bounds: vec![self.trait_ref.clean(cx)]
}
}
}
impl<'tcx> Clean<WherePredicate> for ty::SubtypePredicate<'tcx> {
fn clean(&self, _cx: &DocContext<'_>) -> WherePredicate {
panic!("subtype predicates are an internal rustc artifact \
and should not be seen by rustdoc")
}
}
impl<'tcx> Clean<Option<WherePredicate>> for
ty::OutlivesPredicate<ty::Region<'tcx>,ty::Region<'tcx>> {
fn clean(&self, cx: &DocContext<'_>) -> Option<WherePredicate> {
let ty::OutlivesPredicate(ref a, ref b) = *self;
match (a, b) {
(ty::ReEmpty, ty::ReEmpty) => {
return None;
},
_ => {}
}
Some(WherePredicate::RegionPredicate {
lifetime: a.clean(cx).expect("failed to clean lifetime"),
bounds: vec![GenericBound::Outlives(b.clean(cx).expect("failed to clean bounds"))]
})
}
}
impl<'tcx> Clean<Option<WherePredicate>> for ty::OutlivesPredicate<Ty<'tcx>, ty::Region<'tcx>> {
fn clean(&self, cx: &DocContext<'_>) -> Option<WherePredicate> {
let ty::OutlivesPredicate(ref ty, ref lt) = *self;
match lt {
ty::ReEmpty => return None,
_ => {}
}
Some(WherePredicate::BoundPredicate {
ty: ty.clean(cx),
bounds: vec![GenericBound::Outlives(lt.clean(cx).expect("failed to clean lifetimes"))]
})
}
}
impl<'tcx> Clean<WherePredicate> for ty::ProjectionPredicate<'tcx> {
fn clean(&self, cx: &DocContext<'_>) -> WherePredicate {
WherePredicate::EqPredicate {
lhs: self.projection_ty.clean(cx),
rhs: self.ty.clean(cx)
}
}
}
impl<'tcx> Clean<Type> for ty::ProjectionTy<'tcx> {
fn clean(&self, cx: &DocContext<'_>) -> Type {
let trait_ = match self.trait_ref(cx.tcx).clean(cx) {
GenericBound::TraitBound(t, _) => t.trait_,
GenericBound::Outlives(_) => panic!("cleaning a trait got a lifetime"),
};
Type::QPath {
name: cx.tcx.associated_item(self.item_def_id).ident.name.clean(cx),
self_type: box self.self_ty().clean(cx),
trait_: box trait_
}
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum GenericParamDefKind {
Lifetime,
Type {
did: DefId,
bounds: Vec<GenericBound>,
default: Option<Type>,
synthetic: Option<hir::SyntheticTyParamKind>,
},
Const {
did: DefId,
ty: Type,
},
}
impl GenericParamDefKind {
pub fn is_type(&self) -> bool {
match *self {
GenericParamDefKind::Type { .. } => true,
_ => false,
}
}
pub fn get_type(&self, cx: &DocContext<'_>) -> Option<Type> {
match *self {
GenericParamDefKind::Type { did, .. } => {
rustc_typeck::checked_type_of(cx.tcx, did, false).map(|t| t.clean(cx))
}
GenericParamDefKind::Const { ref ty, .. } => Some(ty.clone()),
GenericParamDefKind::Lifetime => None,
}
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct GenericParamDef {
pub name: String,
pub kind: GenericParamDefKind,
}
impl GenericParamDef {
pub fn is_synthetic_type_param(&self) -> bool {
match self.kind {
GenericParamDefKind::Lifetime |
GenericParamDefKind::Const { .. } => false,
GenericParamDefKind::Type { ref synthetic, .. } => synthetic.is_some(),
}
}
pub fn is_type(&self) -> bool {
self.kind.is_type()
}
pub fn get_type(&self, cx: &DocContext<'_>) -> Option<Type> {
self.kind.get_type(cx)
}
pub fn get_bounds(&self) -> Option<&[GenericBound]> {
match self.kind {
GenericParamDefKind::Type { ref bounds, .. } => Some(bounds),
_ => None,
}
}
}
impl Clean<GenericParamDef> for ty::GenericParamDef {
fn clean(&self, cx: &DocContext<'_>) -> GenericParamDef {
let (name, kind) = match self.kind {
ty::GenericParamDefKind::Lifetime => {
(self.name.to_string(), GenericParamDefKind::Lifetime)
}
ty::GenericParamDefKind::Type { has_default, synthetic, .. } => {
let default = if has_default {
Some(cx.tcx.type_of(self.def_id).clean(cx))
} else {
None
};
(self.name.clean(cx), GenericParamDefKind::Type {
did: self.def_id,
bounds: vec![], // These are filled in from the where-clauses.
default,
synthetic,
})
}
ty::GenericParamDefKind::Const { .. } => {
(self.name.clean(cx), GenericParamDefKind::Const {
did: self.def_id,
ty: cx.tcx.type_of(self.def_id).clean(cx),
})
}
};
GenericParamDef {
name,
kind,
}
}
}
impl Clean<GenericParamDef> for hir::GenericParam {
fn clean(&self, cx: &DocContext<'_>) -> GenericParamDef {
let (name, kind) = match self.kind {
hir::GenericParamKind::Lifetime { .. } => {
let name = if self.bounds.len() > 0 {
let mut bounds = self.bounds.iter().map(|bound| match bound {
hir::GenericBound::Outlives(lt) => lt,
_ => panic!(),
});
let name = bounds.next().expect("no more bounds").name.ident();
let mut s = format!("{}: {}", self.name.ident(), name);
for bound in bounds {
s.push_str(&format!(" + {}", bound.name.ident()));
}
s
} else {
self.name.ident().to_string()
};
(name, GenericParamDefKind::Lifetime)
}
hir::GenericParamKind::Type { ref default, synthetic } => {
(self.name.ident().name.clean(cx), GenericParamDefKind::Type {
did: cx.tcx.hir().local_def_id(self.hir_id),
bounds: self.bounds.clean(cx),
default: default.clean(cx),
synthetic: synthetic,
})
}
hir::GenericParamKind::Const { ref ty } => {
(self.name.ident().name.clean(cx), GenericParamDefKind::Const {
did: cx.tcx.hir().local_def_id(self.hir_id),
ty: ty.clean(cx),
})
}
};
GenericParamDef {
name,
kind,
}
}
}
// maybe use a Generic enum and use Vec<Generic>?
#[derive(Clone, PartialEq, Eq, Debug, Default, Hash)]
pub struct Generics {
pub params: Vec<GenericParamDef>,
pub where_predicates: Vec<WherePredicate>,
}
impl Clean<Generics> for hir::Generics {
fn clean(&self, cx: &DocContext<'_>) -> Generics {
// Synthetic type-parameters are inserted after normal ones.
// In order for normal parameters to be able to refer to synthetic ones,
// scans them first.
fn is_impl_trait(param: &hir::GenericParam) -> bool {
match param.kind {
hir::GenericParamKind::Type { synthetic, .. } => {
synthetic == Some(hir::SyntheticTyParamKind::ImplTrait)
}
_ => false,
}
}
let impl_trait_params = self.params
.iter()
.filter(|param| is_impl_trait(param))
.map(|param| {
let param: GenericParamDef = param.clean(cx);
match param.kind {
GenericParamDefKind::Lifetime => unreachable!(),
GenericParamDefKind::Type { did, ref bounds, .. } => {
cx.impl_trait_bounds.borrow_mut().insert(did.into(), bounds.clone());
}
GenericParamDefKind::Const { .. } => unreachable!(),
}
param
})
.collect::<Vec<_>>();
let mut params = Vec::with_capacity(self.params.len());
for p in self.params.iter().filter(|p| !is_impl_trait(p)) {
let p = p.clean(cx);
params.push(p);
}
params.extend(impl_trait_params);
let mut generics = Generics {
params,
where_predicates: self.where_clause.predicates.clean(cx),
};
// Some duplicates are generated for ?Sized bounds between type params and where
// predicates. The point in here is to move the bounds definitions from type params
// to where predicates when such cases occur.
for where_pred in &mut generics.where_predicates {
match *where_pred {
WherePredicate::BoundPredicate { ty: Generic(ref name), ref mut bounds } => {
if bounds.is_empty() {
for param in &mut generics.params {
match param.kind {
GenericParamDefKind::Lifetime => {}
GenericParamDefKind::Type { bounds: ref mut ty_bounds, .. } => {
if &param.name == name {
mem::swap(bounds, ty_bounds);
break
}
}
GenericParamDefKind::Const { .. } => {}
}
}
}
}
_ => continue,
}
}
generics
}
}
impl<'a, 'tcx> Clean<Generics> for (&'a ty::Generics,
&'a &'tcx ty::GenericPredicates<'tcx>) {
fn clean(&self, cx: &DocContext<'_>) -> Generics {
use self::WherePredicate as WP;
use std::collections::BTreeMap;
let (gens, preds) = *self;
// Don't populate `cx.impl_trait_bounds` before `clean`ning `where` clauses,
// since `Clean for ty::Predicate` would consume them.
let mut impl_trait = BTreeMap::<ImplTraitParam, Vec<GenericBound>>::default();
// Bounds in the type_params and lifetimes fields are repeated in the
// predicates field (see rustc_typeck::collect::ty_generics), so remove
// them.
let stripped_typarams = gens.params.iter()
.filter_map(|param| match param.kind {
ty::GenericParamDefKind::Lifetime => None,
ty::GenericParamDefKind::Type { synthetic, .. } => {
if param.name.as_symbol() == kw::SelfUpper {
assert_eq!(param.index, 0);
return None;
}
if synthetic == Some(hir::SyntheticTyParamKind::ImplTrait) {
impl_trait.insert(param.index.into(), vec![]);
return None;
}
Some(param.clean(cx))
}
ty::GenericParamDefKind::Const { .. } => None,
}).collect::<Vec<GenericParamDef>>();
// param index -> [(DefId of trait, associated type name, type)]
let mut impl_trait_proj =
FxHashMap::<u32, Vec<(DefId, String, Ty<'tcx>)>>::default();
let where_predicates = preds.predicates.iter()
.flat_map(|(p, _)| {
let mut projection = None;
let param_idx = (|| {
if let Some(trait_ref) = p.to_opt_poly_trait_ref() {
if let ty::Param(param) = trait_ref.self_ty().sty {
return Some(param.index);
}
} else if let Some(outlives) = p.to_opt_type_outlives() {
if let ty::Param(param) = outlives.skip_binder().0.sty {
return Some(param.index);
}
} else if let ty::Predicate::Projection(p) = p {
if let ty::Param(param) = p.skip_binder().projection_ty.self_ty().sty {
projection = Some(p);
return Some(param.index);
}
}
None
})();
if let Some(param_idx) = param_idx {
if let Some(b) = impl_trait.get_mut(&param_idx.into()) {
let p = p.clean(cx)?;
b.extend(
p.get_bounds()
.into_iter()
.flatten()
.cloned()
.filter(|b| !b.is_sized_bound(cx))
);
let proj = projection
.map(|p| (p.skip_binder().projection_ty.clean(cx), p.skip_binder().ty));
if let Some(((_, trait_did, name), rhs)) =
proj.as_ref().and_then(|(lhs, rhs)| Some((lhs.projection()?, rhs)))
{
impl_trait_proj
.entry(param_idx)
.or_default()
.push((trait_did, name.to_string(), rhs));
}
return None;
}
}
Some(p)
})
.collect::<Vec<_>>();
for (param, mut bounds) in impl_trait {
// Move trait bounds to the front.
bounds.sort_by_key(|b| if let GenericBound::TraitBound(..) = b {
false
} else {
true
});
if let crate::core::ImplTraitParam::ParamIndex(idx) = param {
if let Some(proj) = impl_trait_proj.remove(&idx) {
for (trait_did, name, rhs) in proj {
simplify::merge_bounds(
cx,
&mut bounds,
trait_did,
&name,
&rhs.clean(cx),
);
}
}
} else {
unreachable!();
}
cx.impl_trait_bounds.borrow_mut().insert(param, bounds);
}
// Now that `cx.impl_trait_bounds` is populated, we can process
// remaining predicates which could contain `impl Trait`.
let mut where_predicates = where_predicates
.into_iter()
.flat_map(|p| p.clean(cx))
.collect::<Vec<_>>();
// Type parameters and have a Sized bound by default unless removed with
// ?Sized. Scan through the predicates and mark any type parameter with
// a Sized bound, removing the bounds as we find them.
//
// Note that associated types also have a sized bound by default, but we
// don't actually know the set of associated types right here so that's
// handled in cleaning associated types
let mut sized_params = FxHashSet::default();
where_predicates.retain(|pred| {
match *pred {
WP::BoundPredicate { ty: Generic(ref g), ref bounds } => {
if bounds.iter().any(|b| b.is_sized_bound(cx)) {
sized_params.insert(g.clone());
false
} else {
true
}
}
_ => true,
}
});
// Run through the type parameters again and insert a ?Sized
// unbound for any we didn't find to be Sized.
for tp in &stripped_typarams {
if !sized_params.contains(&tp.name) {
where_predicates.push(WP::BoundPredicate {
ty: Type::Generic(tp.name.clone()),
bounds: vec![GenericBound::maybe_sized(cx)],
})
}
}
// It would be nice to collect all of the bounds on a type and recombine
// them if possible, to avoid e.g., `where T: Foo, T: Bar, T: Sized, T: 'a`
// and instead see `where T: Foo + Bar + Sized + 'a`
Generics {
params: gens.params
.iter()
.flat_map(|param| match param.kind {
ty::GenericParamDefKind::Lifetime => Some(param.clean(cx)),
ty::GenericParamDefKind::Type { .. } => None,
ty::GenericParamDefKind::Const { .. } => Some(param.clean(cx)),
}).chain(simplify::ty_params(stripped_typarams).into_iter())
.collect(),
where_predicates: simplify::where_clauses(cx, where_predicates),
}
}
}
/// The point of this function is to replace bounds with types.
///
/// i.e. `[T, U]` when you have the following bounds: `T: Display, U: Option<T>` will return
/// `[Display, Option]` (we just returns the list of the types, we don't care about the
/// wrapped types in here).
fn get_real_types(
generics: &Generics,
arg: &Type,
cx: &DocContext<'_>,
recurse: i32,
) -> FxHashSet<Type> {
let arg_s = arg.to_string();
let mut res = FxHashSet::default();
if recurse >= 10 { // FIXME: remove this whole recurse thing when the recursion bug is fixed
return res;
}
if arg.is_full_generic() {
if let Some(where_pred) = generics.where_predicates.iter().find(|g| {
match g {
&WherePredicate::BoundPredicate { ref ty, .. } => ty.def_id() == arg.def_id(),
_ => false,
}
}) {
let bounds = where_pred.get_bounds().unwrap_or_else(|| &[]);
for bound in bounds.iter() {
match *bound {
GenericBound::TraitBound(ref poly_trait, _) => {
for x in poly_trait.generic_params.iter() {
if !x.is_type() {
continue
}
if let Some(ty) = x.get_type(cx) {
let adds = get_real_types(generics, &ty, cx, recurse + 1);
if !adds.is_empty() {
res.extend(adds);
} else if !ty.is_full_generic() {
res.insert(ty);
}
}
}
}
_ => {}
}
}
}
if let Some(bound) = generics.params.iter().find(|g| {
g.is_type() && g.name == arg_s
}) {
for bound in bound.get_bounds().unwrap_or_else(|| &[]) {
if let Some(ty) = bound.get_trait_type() {
let adds = get_real_types(generics, &ty, cx, recurse + 1);
if !adds.is_empty() {
res.extend(adds);
} else if !ty.is_full_generic() {
res.insert(ty.clone());
}
}
}
}
} else {
res.insert(arg.clone());
if let Some(gens) = arg.generics() {
for gen in gens.iter() {
if gen.is_full_generic() {
let adds = get_real_types(generics, gen, cx, recurse + 1);
if !adds.is_empty() {
res.extend(adds);
}
} else {
res.insert(gen.clone());
}
}
}
}
res
}
/// Return the full list of types when bounds have been resolved.
///
/// i.e. `fn foo<A: Display, B: Option<A>>(x: u32, y: B)` will return
/// `[u32, Display, Option]`.
pub fn get_all_types(
generics: &Generics,
decl: &FnDecl,
cx: &DocContext<'_>,
) -> (Vec<Type>, Vec<Type>) {
let mut all_types = FxHashSet::default();
for arg in decl.inputs.values.iter() {
if arg.type_.is_self_type() {
continue;
}
let args = get_real_types(generics, &arg.type_, cx, 0);
if !args.is_empty() {
all_types.extend(args);
} else {
all_types.insert(arg.type_.clone());
}
}
let ret_types = match decl.output {
FunctionRetTy::Return(ref return_type) => {
let mut ret = get_real_types(generics, &return_type, cx, 0);
if ret.is_empty() {
ret.insert(return_type.clone());
}
ret.into_iter().collect()
}
_ => Vec::new(),
};
(all_types.into_iter().collect(), ret_types)
}
#[derive(Clone, Debug)]
pub struct Method {
pub generics: Generics,
pub decl: FnDecl,
pub header: hir::FnHeader,
pub defaultness: Option<hir::Defaultness>,
pub all_types: Vec<Type>,
pub ret_types: Vec<Type>,
}
impl<'a> Clean<Method> for (&'a hir::MethodSig, &'a hir::Generics, hir::BodyId,
Option<hir::Defaultness>) {
fn clean(&self, cx: &DocContext<'_>) -> Method {
let (generics, decl) = enter_impl_trait(cx, || {
(self.1.clean(cx), (&*self.0.decl, self.2).clean(cx))
});
let (all_types, ret_types) = get_all_types(&generics, &decl, cx);
Method {
decl,
generics,
header: self.0.header,
defaultness: self.3,
all_types,
ret_types,
}
}
}
#[derive(Clone, Debug)]
pub struct TyMethod {
pub header: hir::FnHeader,
pub decl: FnDecl,
pub generics: Generics,
pub all_types: Vec<Type>,
pub ret_types: Vec<Type>,
}
#[derive(Clone, Debug)]
pub struct Function {
pub decl: FnDecl,
pub generics: Generics,
pub header: hir::FnHeader,
pub all_types: Vec<Type>,
pub ret_types: Vec<Type>,
}
impl Clean<Item> for doctree::Function<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let (generics, decl) = enter_impl_trait(cx, || {
(self.generics.clean(cx), (self.decl, self.body).clean(cx))
});
let did = cx.tcx.hir().local_def_id(self.id);
let constness = if cx.tcx.is_min_const_fn(did) {
hir::Constness::Const
} else {
hir::Constness::NotConst
};
let (all_types, ret_types) = get_all_types(&generics, &decl, cx);
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
def_id: did,
inner: FunctionItem(Function {
decl,
generics,
header: hir::FnHeader { constness, ..self.header },
all_types,
ret_types,
}),
}
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct FnDecl {
pub inputs: Arguments,
pub output: FunctionRetTy,
pub attrs: Attributes,
}
impl FnDecl {
pub fn self_type(&self) -> Option<SelfTy> {
self.inputs.values.get(0).and_then(|v| v.to_self())
}
/// Returns the sugared return type for an async function.
///
/// For example, if the return type is `impl std::future::Future<Output = i32>`, this function
/// will return `i32`.
///
/// # Panics
///
/// This function will panic if the return type does not match the expected sugaring for async
/// functions.
pub fn sugared_async_return_type(&self) -> FunctionRetTy {
match &self.output {
FunctionRetTy::Return(Type::ImplTrait(bounds)) => {
match &bounds[0] {
GenericBound::TraitBound(PolyTrait { trait_, .. }, ..) => {
let bindings = trait_.bindings().unwrap();
FunctionRetTy::Return(bindings[0].ty().clone())
}
_ => panic!("unexpected desugaring of async function"),
}
}
_ => panic!("unexpected desugaring of async function"),
}
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct Arguments {
pub values: Vec<Argument>,
}
impl<'a> Clean<Arguments> for (&'a [hir::Ty], &'a [ast::Ident]) {
fn clean(&self, cx: &DocContext<'_>) -> Arguments {
Arguments {
values: self.0.iter().enumerate().map(|(i, ty)| {
let mut name = self.1.get(i).map(|ident| ident.to_string())
.unwrap_or(String::new());
if name.is_empty() {
name = "_".to_string();
}
Argument {
name,
type_: ty.clean(cx),
}
}).collect()
}
}
}
impl<'a> Clean<Arguments> for (&'a [hir::Ty], hir::BodyId) {
fn clean(&self, cx: &DocContext<'_>) -> Arguments {
let body = cx.tcx.hir().body(self.1);
Arguments {
values: self.0.iter().enumerate().map(|(i, ty)| {
Argument {
name: name_from_pat(&body.params[i].pat),
type_: ty.clean(cx),
}
}).collect()
}
}
}
impl<'a, A: Copy> Clean<FnDecl> for (&'a hir::FnDecl, A)
where (&'a [hir::Ty], A): Clean<Arguments>
{
fn clean(&self, cx: &DocContext<'_>) -> FnDecl {
FnDecl {
inputs: (&self.0.inputs[..], self.1).clean(cx),
output: self.0.output.clean(cx),
attrs: Attributes::default(),
}
}
}
impl<'tcx> Clean<FnDecl> for (DefId, ty::PolyFnSig<'tcx>) {
fn clean(&self, cx: &DocContext<'_>) -> FnDecl {
let (did, sig) = *self;
let mut names = if cx.tcx.hir().as_local_hir_id(did).is_some() {
vec![].into_iter()
} else {
cx.tcx.fn_arg_names(did).into_iter()
};
FnDecl {
output: Return(sig.skip_binder().output().clean(cx)),
attrs: Attributes::default(),
inputs: Arguments {
values: sig.skip_binder().inputs().iter().map(|t| {
Argument {
type_: t.clean(cx),
name: names.next().map_or(String::new(), |name| name.to_string()),
}
}).collect(),
},
}
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct Argument {
pub type_: Type,
pub name: String,
}
#[derive(Clone, PartialEq, Debug)]
pub enum SelfTy {
SelfValue,
SelfBorrowed(Option<Lifetime>, Mutability),
SelfExplicit(Type),
}
impl Argument {
pub fn to_self(&self) -> Option<SelfTy> {
if self.name != "self" {
return None;
}
if self.type_.is_self_type() {
return Some(SelfValue);
}
match self.type_ {
BorrowedRef{ref lifetime, mutability, ref type_} if type_.is_self_type() => {
Some(SelfBorrowed(lifetime.clone(), mutability))
}
_ => Some(SelfExplicit(self.type_.clone()))
}
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum FunctionRetTy {
Return(Type),
DefaultReturn,
}
impl Clean<FunctionRetTy> for hir::FunctionRetTy {
fn clean(&self, cx: &DocContext<'_>) -> FunctionRetTy {
match *self {
hir::Return(ref typ) => Return(typ.clean(cx)),
hir::DefaultReturn(..) => DefaultReturn,
}
}
}
impl GetDefId for FunctionRetTy {
fn def_id(&self) -> Option<DefId> {
match *self {
Return(ref ty) => ty.def_id(),
DefaultReturn => None,
}
}
}
#[derive(Clone, Debug)]
pub struct Trait {
pub auto: bool,
pub unsafety: hir::Unsafety,
pub items: Vec<Item>,
pub generics: Generics,
pub bounds: Vec<GenericBound>,
pub is_spotlight: bool,
pub is_auto: bool,
}
impl Clean<Item> for doctree::Trait<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let attrs = self.attrs.clean(cx);
let is_spotlight = attrs.has_doc_flag(sym::spotlight);
Item {
name: Some(self.name.clean(cx)),
attrs: attrs,
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: TraitItem(Trait {
auto: self.is_auto.clean(cx),
unsafety: self.unsafety,
items: self.items.iter().map(|ti| ti.clean(cx)).collect(),
generics: self.generics.clean(cx),
bounds: self.bounds.clean(cx),
is_spotlight,
is_auto: self.is_auto.clean(cx),
}),
}
}
}
#[derive(Clone, Debug)]
pub struct TraitAlias {
pub generics: Generics,
pub bounds: Vec<GenericBound>,
}
impl Clean<Item> for doctree::TraitAlias<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let attrs = self.attrs.clean(cx);
Item {
name: Some(self.name.clean(cx)),
attrs,
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: TraitAliasItem(TraitAlias {
generics: self.generics.clean(cx),
bounds: self.bounds.clean(cx),
}),
}
}
}
impl Clean<bool> for hir::IsAuto {
fn clean(&self, _: &DocContext<'_>) -> bool {
match *self {
hir::IsAuto::Yes => true,
hir::IsAuto::No => false,
}
}
}
impl Clean<Type> for hir::TraitRef {
fn clean(&self, cx: &DocContext<'_>) -> Type {
resolve_type(cx, self.path.clean(cx), self.hir_ref_id)
}
}
impl Clean<PolyTrait> for hir::PolyTraitRef {
fn clean(&self, cx: &DocContext<'_>) -> PolyTrait {
PolyTrait {
trait_: self.trait_ref.clean(cx),
generic_params: self.bound_generic_params.clean(cx)
}
}
}
impl Clean<Item> for hir::TraitItem {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let inner = match self.node {
hir::TraitItemKind::Const(ref ty, default) => {
AssocConstItem(ty.clean(cx),
default.map(|e| print_const_expr(cx, e)))
}
hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Provided(body)) => {
MethodItem((sig, &self.generics, body, None).clean(cx))
}
hir::TraitItemKind::Method(ref sig, hir::TraitMethod::Required(ref names)) => {
let (generics, decl) = enter_impl_trait(cx, || {
(self.generics.clean(cx), (&*sig.decl, &names[..]).clean(cx))
});
let (all_types, ret_types) = get_all_types(&generics, &decl, cx);
TyMethodItem(TyMethod {
header: sig.header,
decl,
generics,
all_types,
ret_types,
})
}
hir::TraitItemKind::Type(ref bounds, ref default) => {
AssocTypeItem(bounds.clean(cx), default.clean(cx))
}
};
let local_did = cx.tcx.hir().local_def_id(self.hir_id);
Item {
name: Some(self.ident.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.span.clean(cx),
def_id: local_did,
visibility: None,
stability: get_stability(cx, local_did),
deprecation: get_deprecation(cx, local_did),
inner,
}
}
}
impl Clean<Item> for hir::ImplItem {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let inner = match self.node {
hir::ImplItemKind::Const(ref ty, expr) => {
AssocConstItem(ty.clean(cx),
Some(print_const_expr(cx, expr)))
}
hir::ImplItemKind::Method(ref sig, body) => {
MethodItem((sig, &self.generics, body, Some(self.defaultness)).clean(cx))
}
hir::ImplItemKind::TyAlias(ref ty) => TypedefItem(Typedef {
type_: ty.clean(cx),
generics: Generics::default(),
}, true),
hir::ImplItemKind::OpaqueTy(ref bounds) => OpaqueTyItem(OpaqueTy {
bounds: bounds.clean(cx),
generics: Generics::default(),
}, true),
};
let local_did = cx.tcx.hir().local_def_id(self.hir_id);
Item {
name: Some(self.ident.name.clean(cx)),
source: self.span.clean(cx),
attrs: self.attrs.clean(cx),
def_id: local_did,
visibility: self.vis.clean(cx),
stability: get_stability(cx, local_did),
deprecation: get_deprecation(cx, local_did),
inner,
}
}
}
impl Clean<Item> for ty::AssocItem {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let inner = match self.kind {
ty::AssocKind::Const => {
let ty = cx.tcx.type_of(self.def_id);
let default = if self.defaultness.has_value() {
Some(inline::print_inlined_const(cx, self.def_id))
} else {
None
};
AssocConstItem(ty.clean(cx), default)
}
ty::AssocKind::Method => {
let generics = (cx.tcx.generics_of(self.def_id),
&cx.tcx.explicit_predicates_of(self.def_id)).clean(cx);
let sig = cx.tcx.fn_sig(self.def_id);
let mut decl = (self.def_id, sig).clean(cx);
if self.method_has_self_argument {
let self_ty = match self.container {
ty::ImplContainer(def_id) => {
cx.tcx.type_of(def_id)
}
ty::TraitContainer(_) => cx.tcx.types.self_param,
};
let self_arg_ty = *sig.input(0).skip_binder();
if self_arg_ty == self_ty {
decl.inputs.values[0].type_ = Generic(String::from("Self"));
} else if let ty::Ref(_, ty, _) = self_arg_ty.sty {
if ty == self_ty {
match decl.inputs.values[0].type_ {
BorrowedRef{ref mut type_, ..} => {
**type_ = Generic(String::from("Self"))
}
_ => unreachable!(),
}
}
}
}
let provided = match self.container {
ty::ImplContainer(_) => true,
ty::TraitContainer(_) => self.defaultness.has_value()
};
let (all_types, ret_types) = get_all_types(&generics, &decl, cx);
if provided {
let constness = if cx.tcx.is_min_const_fn(self.def_id) {
hir::Constness::Const
} else {
hir::Constness::NotConst
};
let defaultness = match self.container {
ty::ImplContainer(_) => Some(self.defaultness),
ty::TraitContainer(_) => None,
};
MethodItem(Method {
generics,
decl,
header: hir::FnHeader {
unsafety: sig.unsafety(),
abi: sig.abi(),
constness,
asyncness: hir::IsAsync::NotAsync,
},
defaultness,
all_types,
ret_types,
})
} else {
TyMethodItem(TyMethod {
generics,
decl,
header: hir::FnHeader {
unsafety: sig.unsafety(),
abi: sig.abi(),
constness: hir::Constness::NotConst,
asyncness: hir::IsAsync::NotAsync,
},
all_types,
ret_types,
})
}
}
ty::AssocKind::Type => {
let my_name = self.ident.name.clean(cx);
if let ty::TraitContainer(did) = self.container {
// When loading a cross-crate associated type, the bounds for this type
// are actually located on the trait/impl itself, so we need to load
// all of the generics from there and then look for bounds that are
// applied to this associated type in question.
let predicates = cx.tcx.explicit_predicates_of(did);
let generics = (cx.tcx.generics_of(did), &predicates).clean(cx);
let mut bounds = generics.where_predicates.iter().filter_map(|pred| {
let (name, self_type, trait_, bounds) = match *pred {
WherePredicate::BoundPredicate {
ty: QPath { ref name, ref self_type, ref trait_ },
ref bounds
} => (name, self_type, trait_, bounds),
_ => return None,
};
if *name != my_name { return None }
match **trait_ {
ResolvedPath { did, .. } if did == self.container.id() => {}
_ => return None,
}
match **self_type {
Generic(ref s) if *s == "Self" => {}
_ => return None,
}
Some(bounds)
}).flat_map(|i| i.iter().cloned()).collect::<Vec<_>>();
// Our Sized/?Sized bound didn't get handled when creating the generics
// because we didn't actually get our whole set of bounds until just now
// (some of them may have come from the trait). If we do have a sized
// bound, we remove it, and if we don't then we add the `?Sized` bound
// at the end.
match bounds.iter().position(|b| b.is_sized_bound(cx)) {
Some(i) => { bounds.remove(i); }
None => bounds.push(GenericBound::maybe_sized(cx)),
}
let ty = if self.defaultness.has_value() {
Some(cx.tcx.type_of(self.def_id))
} else {
None
};
AssocTypeItem(bounds, ty.clean(cx))
} else {
TypedefItem(Typedef {
type_: cx.tcx.type_of(self.def_id).clean(cx),
generics: Generics {
params: Vec::new(),
where_predicates: Vec::new(),
},
}, true)
}
}
ty::AssocKind::OpaqueTy => unimplemented!(),
};
let visibility = match self.container {
ty::ImplContainer(_) => self.vis.clean(cx),
ty::TraitContainer(_) => None,
};
Item {
name: Some(self.ident.name.clean(cx)),
visibility,
stability: get_stability(cx, self.def_id),
deprecation: get_deprecation(cx, self.def_id),
def_id: self.def_id,
attrs: inline::load_attrs(cx, self.def_id).clean(cx),
source: cx.tcx.def_span(self.def_id).clean(cx),
inner,
}
}
}
/// A trait reference, which may have higher ranked lifetimes.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct PolyTrait {
pub trait_: Type,
pub generic_params: Vec<GenericParamDef>,
}
/// A representation of a type suitable for hyperlinking purposes. Ideally, one can get the original
/// type out of the AST/`TyCtxt` given one of these, if more information is needed. Most
/// importantly, it does not preserve mutability or boxes.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum Type {
/// Structs/enums/traits (most that would be an `hir::TyKind::Path`).
ResolvedPath {
path: Path,
param_names: Option<Vec<GenericBound>>,
did: DefId,
/// `true` if is a `T::Name` path for associated types.
is_generic: bool,
},
/// For parameterized types, so the consumer of the JSON don't go
/// looking for types which don't exist anywhere.
Generic(String),
/// Primitives are the fixed-size numeric types (plus int/usize/float), char,
/// arrays, slices, and tuples.
Primitive(PrimitiveType),
/// `extern "ABI" fn`
BareFunction(Box<BareFunctionDecl>),
Tuple(Vec<Type>),
Slice(Box<Type>),
Array(Box<Type>, String),
Never,
CVarArgs,
RawPointer(Mutability, Box<Type>),
BorrowedRef {
lifetime: Option<Lifetime>,
mutability: Mutability,
type_: Box<Type>,
},
// `<Type as Trait>::Name`
QPath {
name: String,
self_type: Box<Type>,
trait_: Box<Type>
},
// `_`
Infer,
// `impl TraitA + TraitB + ...`
ImplTrait(Vec<GenericBound>),
}
#[derive(Clone, PartialEq, Eq, Hash, Copy, Debug)]
pub enum PrimitiveType {
Isize, I8, I16, I32, I64, I128,
Usize, U8, U16, U32, U64, U128,
F32, F64,
Char,
Bool,
Str,
Slice,
Array,
Tuple,
Unit,
RawPointer,
Reference,
Fn,
Never,
CVarArgs,
}
#[derive(Clone, Copy, Debug)]
pub enum TypeKind {
Enum,
Function,
Module,
Const,
Static,
Struct,
Union,
Trait,
Typedef,
Foreign,
Macro,
Attr,
Derive,
TraitAlias,
}
pub trait GetDefId {
fn def_id(&self) -> Option<DefId>;
}
impl<T: GetDefId> GetDefId for Option<T> {
fn def_id(&self) -> Option<DefId> {
self.as_ref().and_then(|d| d.def_id())
}
}
impl Type {
pub fn primitive_type(&self) -> Option<PrimitiveType> {
match *self {
Primitive(p) | BorrowedRef { type_: box Primitive(p), ..} => Some(p),
Slice(..) | BorrowedRef { type_: box Slice(..), .. } => Some(PrimitiveType::Slice),
Array(..) | BorrowedRef { type_: box Array(..), .. } => Some(PrimitiveType::Array),
Tuple(ref tys) => if tys.is_empty() {
Some(PrimitiveType::Unit)
} else {
Some(PrimitiveType::Tuple)
},
RawPointer(..) => Some(PrimitiveType::RawPointer),
BorrowedRef { type_: box Generic(..), .. } => Some(PrimitiveType::Reference),
BareFunction(..) => Some(PrimitiveType::Fn),
Never => Some(PrimitiveType::Never),
_ => None,
}
}
pub fn is_generic(&self) -> bool {
match *self {
ResolvedPath { is_generic, .. } => is_generic,
_ => false,
}
}
pub fn is_self_type(&self) -> bool {
match *self {
Generic(ref name) => name == "Self",
_ => false
}
}
pub fn generics(&self) -> Option<Vec<Type>> {
match *self {
ResolvedPath { ref path, .. } => {
path.segments.last().and_then(|seg| {
if let GenericArgs::AngleBracketed { ref args, .. } = seg.args {
Some(args.iter().filter_map(|arg| match arg {
GenericArg::Type(ty) => Some(ty.clone()),
_ => None,
}).collect())
} else {
None
}
})
}
_ => None,
}
}
pub fn bindings(&self) -> Option<&[TypeBinding]> {
match *self {
ResolvedPath { ref path, .. } => {
path.segments.last().and_then(|seg| {
if let GenericArgs::AngleBracketed { ref bindings, .. } = seg.args {
Some(&**bindings)
} else {
None
}
})
}
_ => None
}
}
pub fn is_full_generic(&self) -> bool {
match *self {
Type::Generic(_) => true,
_ => false,
}
}
pub fn projection(&self) -> Option<(&Type, DefId, &str)> {
let (self_, trait_, name) = match self {
QPath { ref self_type, ref trait_, ref name } => {
(self_type, trait_, name)
}
_ => return None,
};
let trait_did = match **trait_ {
ResolvedPath { did, .. } => did,
_ => return None,
};
Some((&self_, trait_did, name))
}
}
impl GetDefId for Type {
fn def_id(&self) -> Option<DefId> {
match *self {
ResolvedPath { did, .. } => Some(did),
Primitive(p) => crate::html::render::cache().primitive_locations.get(&p).cloned(),
BorrowedRef { type_: box Generic(..), .. } =>
Primitive(PrimitiveType::Reference).def_id(),
BorrowedRef { ref type_, .. } => type_.def_id(),
Tuple(ref tys) => if tys.is_empty() {
Primitive(PrimitiveType::Unit).def_id()
} else {
Primitive(PrimitiveType::Tuple).def_id()
},
BareFunction(..) => Primitive(PrimitiveType::Fn).def_id(),
Never => Primitive(PrimitiveType::Never).def_id(),
Slice(..) => Primitive(PrimitiveType::Slice).def_id(),
Array(..) => Primitive(PrimitiveType::Array).def_id(),
RawPointer(..) => Primitive(PrimitiveType::RawPointer).def_id(),
QPath { ref self_type, .. } => self_type.def_id(),
_ => None,
}
}
}
impl PrimitiveType {
fn from_str(s: &str) -> Option<PrimitiveType> {
match s {
"isize" => Some(PrimitiveType::Isize),
"i8" => Some(PrimitiveType::I8),
"i16" => Some(PrimitiveType::I16),
"i32" => Some(PrimitiveType::I32),
"i64" => Some(PrimitiveType::I64),
"i128" => Some(PrimitiveType::I128),
"usize" => Some(PrimitiveType::Usize),
"u8" => Some(PrimitiveType::U8),
"u16" => Some(PrimitiveType::U16),
"u32" => Some(PrimitiveType::U32),
"u64" => Some(PrimitiveType::U64),
"u128" => Some(PrimitiveType::U128),
"bool" => Some(PrimitiveType::Bool),
"char" => Some(PrimitiveType::Char),
"str" => Some(PrimitiveType::Str),
"f32" => Some(PrimitiveType::F32),
"f64" => Some(PrimitiveType::F64),
"array" => Some(PrimitiveType::Array),
"slice" => Some(PrimitiveType::Slice),
"tuple" => Some(PrimitiveType::Tuple),
"unit" => Some(PrimitiveType::Unit),
"pointer" => Some(PrimitiveType::RawPointer),
"reference" => Some(PrimitiveType::Reference),
"fn" => Some(PrimitiveType::Fn),
"never" => Some(PrimitiveType::Never),
_ => None,
}
}
pub fn as_str(&self) -> &'static str {
use self::PrimitiveType::*;
match *self {
Isize => "isize",
I8 => "i8",
I16 => "i16",
I32 => "i32",
I64 => "i64",
I128 => "i128",
Usize => "usize",
U8 => "u8",
U16 => "u16",
U32 => "u32",
U64 => "u64",
U128 => "u128",
F32 => "f32",
F64 => "f64",
Str => "str",
Bool => "bool",
Char => "char",
Array => "array",
Slice => "slice",
Tuple => "tuple",
Unit => "unit",
RawPointer => "pointer",
Reference => "reference",
Fn => "fn",
Never => "never",
CVarArgs => "...",
}
}
pub fn to_url_str(&self) -> &'static str {
self.as_str()
}
}
impl From<ast::IntTy> for PrimitiveType {
fn from(int_ty: ast::IntTy) -> PrimitiveType {
match int_ty {
ast::IntTy::Isize => PrimitiveType::Isize,
ast::IntTy::I8 => PrimitiveType::I8,
ast::IntTy::I16 => PrimitiveType::I16,
ast::IntTy::I32 => PrimitiveType::I32,
ast::IntTy::I64 => PrimitiveType::I64,
ast::IntTy::I128 => PrimitiveType::I128,
}
}
}
impl From<ast::UintTy> for PrimitiveType {
fn from(uint_ty: ast::UintTy) -> PrimitiveType {
match uint_ty {
ast::UintTy::Usize => PrimitiveType::Usize,
ast::UintTy::U8 => PrimitiveType::U8,
ast::UintTy::U16 => PrimitiveType::U16,
ast::UintTy::U32 => PrimitiveType::U32,
ast::UintTy::U64 => PrimitiveType::U64,
ast::UintTy::U128 => PrimitiveType::U128,
}
}
}
impl From<ast::FloatTy> for PrimitiveType {
fn from(float_ty: ast::FloatTy) -> PrimitiveType {
match float_ty {
ast::FloatTy::F32 => PrimitiveType::F32,
ast::FloatTy::F64 => PrimitiveType::F64,
}
}
}
impl Clean<Type> for hir::Ty {
fn clean(&self, cx: &DocContext<'_>) -> Type {
use rustc::hir::*;
match self.node {
TyKind::Never => Never,
TyKind::Ptr(ref m) => RawPointer(m.mutbl.clean(cx), box m.ty.clean(cx)),
TyKind::Rptr(ref l, ref m) => {
let lifetime = if l.is_elided() {
None
} else {
Some(l.clean(cx))
};
BorrowedRef {lifetime: lifetime, mutability: m.mutbl.clean(cx),
type_: box m.ty.clean(cx)}
}
TyKind::Slice(ref ty) => Slice(box ty.clean(cx)),
TyKind::Array(ref ty, ref length) => {
let def_id = cx.tcx.hir().local_def_id(length.hir_id);
let param_env = cx.tcx.param_env(def_id);
let substs = InternalSubsts::identity_for_item(cx.tcx, def_id);
let cid = GlobalId {
instance: ty::Instance::new(def_id, substs),
promoted: None
};
let length = match cx.tcx.const_eval(param_env.and(cid)) {
Ok(length) => print_const(cx, length),
Err(_) => cx.sess()
.source_map()
.span_to_snippet(cx.tcx.def_span(def_id))
.unwrap_or_else(|_| "_".to_string()),
};
Array(box ty.clean(cx), length)
},
TyKind::Tup(ref tys) => Tuple(tys.clean(cx)),
TyKind::Def(item_id, _) => {
let item = cx.tcx.hir().expect_item(item_id.id);
if let hir::ItemKind::OpaqueTy(ref ty) = item.node {
ImplTrait(ty.bounds.clean(cx))
} else {
unreachable!()
}
}
TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
if let Res::Def(DefKind::TyParam, did) = path.res {
if let Some(new_ty) = cx.ty_substs.borrow().get(&did).cloned() {
return new_ty;
}
if let Some(bounds) = cx.impl_trait_bounds.borrow_mut().remove(&did.into()) {
return ImplTrait(bounds);
}
}
let mut alias = None;
if let Res::Def(DefKind::TyAlias, def_id) = path.res {
// Substitute private type aliases
if let Some(hir_id) = cx.tcx.hir().as_local_hir_id(def_id) {
if !cx.renderinfo.borrow().access_levels.is_exported(def_id) {
alias = Some(&cx.tcx.hir().expect_item(hir_id).node);
}
}
};
if let Some(&hir::ItemKind::TyAlias(ref ty, ref generics)) = alias {
let provided_params = &path.segments.last().expect("segments were empty");
let mut ty_substs = FxHashMap::default();
let mut lt_substs = FxHashMap::default();
let mut ct_substs = FxHashMap::default();
let generic_args = provided_params.generic_args();
{
let mut indices: GenericParamCount = Default::default();
for param in generics.params.iter() {
match param.kind {
hir::GenericParamKind::Lifetime { .. } => {
let mut j = 0;
let lifetime = generic_args.args.iter().find_map(|arg| {
match arg {
hir::GenericArg::Lifetime(lt) => {
if indices.lifetimes == j {
return Some(lt);
}
j += 1;
None
}
_ => None,
}
});
if let Some(lt) = lifetime.cloned() {
if !lt.is_elided() {
let lt_def_id =
cx.tcx.hir().local_def_id(param.hir_id);
lt_substs.insert(lt_def_id, lt.clean(cx));
}
}
indices.lifetimes += 1;
}
hir::GenericParamKind::Type { ref default, .. } => {
let ty_param_def_id =
cx.tcx.hir().local_def_id(param.hir_id);
let mut j = 0;
let type_ = generic_args.args.iter().find_map(|arg| {
match arg {
hir::GenericArg::Type(ty) => {
if indices.types == j {
return Some(ty);
}
j += 1;
None
}
_ => None,
}
});
if let Some(ty) = type_ {
ty_substs.insert(ty_param_def_id, ty.clean(cx));
} else if let Some(default) = default.clone() {
ty_substs.insert(ty_param_def_id,
default.clean(cx));
}
indices.types += 1;
}
hir::GenericParamKind::Const { .. } => {
let const_param_def_id =
cx.tcx.hir().local_def_id(param.hir_id);
let mut j = 0;
let const_ = generic_args.args.iter().find_map(|arg| {
match arg {
hir::GenericArg::Const(ct) => {
if indices.consts == j {
return Some(ct);
}
j += 1;
None
}
_ => None,
}
});
if let Some(ct) = const_ {
ct_substs.insert(const_param_def_id, ct.clean(cx));
}
// FIXME(const_generics:defaults)
indices.consts += 1;
}
}
}
}
return cx.enter_alias(ty_substs, lt_substs, ct_substs, || ty.clean(cx));
}
resolve_type(cx, path.clean(cx), self.hir_id)
}
TyKind::Path(hir::QPath::Resolved(Some(ref qself), ref p)) => {
let segments = if p.is_global() { &p.segments[1..] } else { &p.segments };
let trait_segments = &segments[..segments.len() - 1];
let trait_path = self::Path {
global: p.is_global(),
res: Res::Def(
DefKind::Trait,
cx.tcx.associated_item(p.res.def_id()).container.id(),
),
segments: trait_segments.clean(cx),
};
Type::QPath {
name: p.segments.last().expect("segments were empty").ident.name.clean(cx),
self_type: box qself.clean(cx),
trait_: box resolve_type(cx, trait_path, self.hir_id)
}
}
TyKind::Path(hir::QPath::TypeRelative(ref qself, ref segment)) => {
let mut res = Res::Err;
let ty = hir_ty_to_ty(cx.tcx, self);
if let ty::Projection(proj) = ty.sty {
res = Res::Def(DefKind::Trait, proj.trait_ref(cx.tcx).def_id);
}
let trait_path = hir::Path {
span: self.span,
res,
segments: vec![].into(),
};
Type::QPath {
name: segment.ident.name.clean(cx),
self_type: box qself.clean(cx),
trait_: box resolve_type(cx, trait_path.clean(cx), self.hir_id)
}
}
TyKind::TraitObject(ref bounds, ref lifetime) => {
match bounds[0].clean(cx).trait_ {
ResolvedPath { path, param_names: None, did, is_generic } => {
let mut bounds: Vec<self::GenericBound> = bounds[1..].iter().map(|bound| {
self::GenericBound::TraitBound(bound.clean(cx),
hir::TraitBoundModifier::None)
}).collect();
if !lifetime.is_elided() {
bounds.push(self::GenericBound::Outlives(lifetime.clean(cx)));
}
ResolvedPath { path, param_names: Some(bounds), did, is_generic, }
}
_ => Infer, // shouldn't happen
}
}
TyKind::BareFn(ref barefn) => BareFunction(box barefn.clean(cx)),
TyKind::Infer | TyKind::Err => Infer,
TyKind::Typeof(..) => panic!("unimplemented type {:?}", self.node),
TyKind::CVarArgs(_) => CVarArgs,
}
}
}
impl<'tcx> Clean<Type> for Ty<'tcx> {
fn clean(&self, cx: &DocContext<'_>) -> Type {
debug!("cleaning type: {:?}", self);
match self.sty {
ty::Never => Never,
ty::Bool => Primitive(PrimitiveType::Bool),
ty::Char => Primitive(PrimitiveType::Char),
ty::Int(int_ty) => Primitive(int_ty.into()),
ty::Uint(uint_ty) => Primitive(uint_ty.into()),
ty::Float(float_ty) => Primitive(float_ty.into()),
ty::Str => Primitive(PrimitiveType::Str),
ty::Slice(ty) => Slice(box ty.clean(cx)),
ty::Array(ty, n) => {
let mut n = cx.tcx.lift(&n).expect("array lift failed");
if let ConstValue::Unevaluated(def_id, substs) = n.val {
let param_env = cx.tcx.param_env(def_id);
let cid = GlobalId {
instance: ty::Instance::new(def_id, substs),
promoted: None
};
if let Ok(new_n) = cx.tcx.const_eval(param_env.and(cid)) {
n = new_n;
}
};
let n = print_const(cx, n);
Array(box ty.clean(cx), n)
}
ty::RawPtr(mt) => RawPointer(mt.mutbl.clean(cx), box mt.ty.clean(cx)),
ty::Ref(r, ty, mutbl) => BorrowedRef {
lifetime: r.clean(cx),
mutability: mutbl.clean(cx),
type_: box ty.clean(cx),
},
ty::FnDef(..) |
ty::FnPtr(_) => {
let ty = cx.tcx.lift(self).expect("FnPtr lift failed");
let sig = ty.fn_sig(cx.tcx);
let local_def_id = cx.tcx.hir().local_def_id_from_node_id(ast::CRATE_NODE_ID);
BareFunction(box BareFunctionDecl {
unsafety: sig.unsafety(),
generic_params: Vec::new(),
decl: (local_def_id, sig).clean(cx),
abi: sig.abi(),
})
}
ty::Adt(def, substs) => {
let did = def.did;
let kind = match def.adt_kind() {
AdtKind::Struct => TypeKind::Struct,
AdtKind::Union => TypeKind::Union,
AdtKind::Enum => TypeKind::Enum,
};
inline::record_extern_fqn(cx, did, kind);
let path = external_path(cx, &cx.tcx.item_name(did).as_str(),
None, false, vec![], substs);
ResolvedPath {
path,
param_names: None,
did,
is_generic: false,
}
}
ty::Foreign(did) => {
inline::record_extern_fqn(cx, did, TypeKind::Foreign);
let path = external_path(cx, &cx.tcx.item_name(did).as_str(),
None, false, vec![], InternalSubsts::empty());
ResolvedPath {
path: path,
param_names: None,
did: did,
is_generic: false,
}
}
ty::Dynamic(ref obj, ref reg) => {
// HACK: pick the first `did` as the `did` of the trait object. Someone
// might want to implement "native" support for marker-trait-only
// trait objects.
let mut dids = obj.principal_def_id().into_iter().chain(obj.auto_traits());
let did = dids.next().unwrap_or_else(|| {
panic!("found trait object `{:?}` with no traits?", self)
});
let substs = match obj.principal() {
Some(principal) => principal.skip_binder().substs,
// marker traits have no substs.
_ => cx.tcx.intern_substs(&[])
};
inline::record_extern_fqn(cx, did, TypeKind::Trait);
let mut param_names = vec![];
reg.clean(cx).map(|b| param_names.push(GenericBound::Outlives(b)));
for did in dids {
let empty = cx.tcx.intern_substs(&[]);
let path = external_path(cx, &cx.tcx.item_name(did).as_str(),
Some(did), false, vec![], empty);
inline::record_extern_fqn(cx, did, TypeKind::Trait);
let bound = GenericBound::TraitBound(PolyTrait {
trait_: ResolvedPath {
path,
param_names: None,
did,
is_generic: false,
},
generic_params: Vec::new(),
}, hir::TraitBoundModifier::None);
param_names.push(bound);
}
let mut bindings = vec![];
for pb in obj.projection_bounds() {
bindings.push(TypeBinding {
name: cx.tcx.associated_item(pb.item_def_id()).ident.name.clean(cx),
kind: TypeBindingKind::Equality {
ty: pb.skip_binder().ty.clean(cx)
},
});
}
let path = external_path(cx, &cx.tcx.item_name(did).as_str(), Some(did),
false, bindings, substs);
ResolvedPath {
path,
param_names: Some(param_names),
did,
is_generic: false,
}
}
ty::Tuple(ref t) => {
Tuple(t.iter().map(|t| t.expect_ty()).collect::<Vec<_>>().clean(cx))
}
ty::Projection(ref data) => data.clean(cx),
ty::Param(ref p) => {
if let Some(bounds) = cx.impl_trait_bounds.borrow_mut().remove(&p.index.into()) {
ImplTrait(bounds)
} else {
Generic(p.name.to_string())
}
}
ty::Opaque(def_id, substs) => {
// Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
// by looking up the projections associated with the def_id.
let predicates_of = cx.tcx.explicit_predicates_of(def_id);
let substs = cx.tcx.lift(&substs).expect("Opaque lift failed");
let bounds = predicates_of.instantiate(cx.tcx, substs);
let mut regions = vec![];
let mut has_sized = false;
let mut bounds = bounds.predicates.iter().filter_map(|predicate| {
let trait_ref = if let Some(tr) = predicate.to_opt_poly_trait_ref() {
tr
} else if let ty::Predicate::TypeOutlives(pred) = *predicate {
// these should turn up at the end
pred.skip_binder().1.clean(cx).map(|r| {
regions.push(GenericBound::Outlives(r))
});
return None;
} else {
return None;
};
if let Some(sized) = cx.tcx.lang_items().sized_trait() {
if trait_ref.def_id() == sized {
has_sized = true;
return None;
}
}
let bounds = bounds.predicates.iter().filter_map(|pred|
if let ty::Predicate::Projection(proj) = *pred {
let proj = proj.skip_binder();
if proj.projection_ty.trait_ref(cx.tcx) == *trait_ref.skip_binder() {
Some(TypeBinding {
name: cx.tcx.associated_item(proj.projection_ty.item_def_id)
.ident.name.clean(cx),
kind: TypeBindingKind::Equality {
ty: proj.ty.clean(cx),
},
})
} else {
None
}
} else {
None
}
).collect();
Some((trait_ref.skip_binder(), bounds).clean(cx))
}).collect::<Vec<_>>();
bounds.extend(regions);
if !has_sized && !bounds.is_empty() {
bounds.insert(0, GenericBound::maybe_sized(cx));
}
ImplTrait(bounds)
}
ty::Closure(..) | ty::Generator(..) => Tuple(vec![]), // FIXME(pcwalton)
ty::Bound(..) => panic!("Bound"),
ty::Placeholder(..) => panic!("Placeholder"),
ty::UnnormalizedProjection(..) => panic!("UnnormalizedProjection"),
ty::GeneratorWitness(..) => panic!("GeneratorWitness"),
ty::Infer(..) => panic!("Infer"),
ty::Error => panic!("Error"),
}
}
}
impl<'tcx> Clean<Constant> for ty::Const<'tcx> {
fn clean(&self, cx: &DocContext<'_>) -> Constant {
Constant {
type_: self.ty.clean(cx),
expr: format!("{}", self),
}
}
}
impl Clean<Item> for hir::StructField {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let local_did = cx.tcx.hir().local_def_id(self.hir_id);
Item {
name: Some(self.ident.name).clean(cx),
attrs: self.attrs.clean(cx),
source: self.span.clean(cx),
visibility: self.vis.clean(cx),
stability: get_stability(cx, local_did),
deprecation: get_deprecation(cx, local_did),
def_id: local_did,
inner: StructFieldItem(self.ty.clean(cx)),
}
}
}
impl Clean<Item> for ty::FieldDef {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.ident.name).clean(cx),
attrs: cx.tcx.get_attrs(self.did).clean(cx),
source: cx.tcx.def_span(self.did).clean(cx),
visibility: self.vis.clean(cx),
stability: get_stability(cx, self.did),
deprecation: get_deprecation(cx, self.did),
def_id: self.did,
inner: StructFieldItem(cx.tcx.type_of(self.did).clean(cx)),
}
}
}
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Visibility {
Public,
Inherited,
Crate,
Restricted(DefId, Path),
}
impl Clean<Option<Visibility>> for hir::Visibility {
fn clean(&self, cx: &DocContext<'_>) -> Option<Visibility> {
Some(match self.node {
hir::VisibilityKind::Public => Visibility::Public,
hir::VisibilityKind::Inherited => Visibility::Inherited,
hir::VisibilityKind::Crate(_) => Visibility::Crate,
hir::VisibilityKind::Restricted { ref path, .. } => {
let path = path.clean(cx);
let did = register_res(cx, path.res);
Visibility::Restricted(did, path)
}
})
}
}
impl Clean<Option<Visibility>> for ty::Visibility {
fn clean(&self, _: &DocContext<'_>) -> Option<Visibility> {
Some(if *self == ty::Visibility::Public { Public } else { Inherited })
}
}
#[derive(Clone, Debug)]
pub struct Struct {
pub struct_type: doctree::StructType,
pub generics: Generics,
pub fields: Vec<Item>,
pub fields_stripped: bool,
}
#[derive(Clone, Debug)]
pub struct Union {
pub struct_type: doctree::StructType,
pub generics: Generics,
pub fields: Vec<Item>,
pub fields_stripped: bool,
}
impl Clean<Item> for doctree::Struct<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: StructItem(Struct {
struct_type: self.struct_type,
generics: self.generics.clean(cx),
fields: self.fields.clean(cx),
fields_stripped: false,
}),
}
}
}
impl Clean<Item> for doctree::Union<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: UnionItem(Union {
struct_type: self.struct_type,
generics: self.generics.clean(cx),
fields: self.fields.clean(cx),
fields_stripped: false,
}),
}
}
}
/// This is a more limited form of the standard Struct, different in that
/// it lacks the things most items have (name, id, parameterization). Found
/// only as a variant in an enum.
#[derive(Clone, Debug)]
pub struct VariantStruct {
pub struct_type: doctree::StructType,
pub fields: Vec<Item>,
pub fields_stripped: bool,
}
impl Clean<VariantStruct> for ::rustc::hir::VariantData {
fn clean(&self, cx: &DocContext<'_>) -> VariantStruct {
VariantStruct {
struct_type: doctree::struct_type_from_def(self),
fields: self.fields().iter().map(|x| x.clean(cx)).collect(),
fields_stripped: false,
}
}
}
#[derive(Clone, Debug)]
pub struct Enum {
pub variants: IndexVec<VariantIdx, Item>,
pub generics: Generics,
pub variants_stripped: bool,
}
impl Clean<Item> for doctree::Enum<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: EnumItem(Enum {
variants: self.variants.iter().map(|v| v.clean(cx)).collect(),
generics: self.generics.clean(cx),
variants_stripped: false,
}),
}
}
}
#[derive(Clone, Debug)]
pub struct Variant {
pub kind: VariantKind,
}
impl Clean<Item> for doctree::Variant<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: None,
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
inner: VariantItem(Variant {
kind: self.def.clean(cx),
}),
}
}
}
impl Clean<Item> for ty::VariantDef {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let kind = match self.ctor_kind {
CtorKind::Const => VariantKind::CLike,
CtorKind::Fn => {
VariantKind::Tuple(
self.fields.iter().map(|f| cx.tcx.type_of(f.did).clean(cx)).collect()
)
}
CtorKind::Fictive => {
VariantKind::Struct(VariantStruct {
struct_type: doctree::Plain,
fields_stripped: false,
fields: self.fields.iter().map(|field| {
Item {
source: cx.tcx.def_span(field.did).clean(cx),
name: Some(field.ident.name.clean(cx)),
attrs: cx.tcx.get_attrs(field.did).clean(cx),
visibility: field.vis.clean(cx),
def_id: field.did,
stability: get_stability(cx, field.did),
deprecation: get_deprecation(cx, field.did),
inner: StructFieldItem(cx.tcx.type_of(field.did).clean(cx))
}
}).collect()
})
}
};
Item {
name: Some(self.ident.clean(cx)),
attrs: inline::load_attrs(cx, self.def_id).clean(cx),
source: cx.tcx.def_span(self.def_id).clean(cx),
visibility: Some(Inherited),
def_id: self.def_id,
inner: VariantItem(Variant { kind }),
stability: get_stability(cx, self.def_id),
deprecation: get_deprecation(cx, self.def_id),
}
}
}
#[derive(Clone, Debug)]
pub enum VariantKind {
CLike,
Tuple(Vec<Type>),
Struct(VariantStruct),
}
impl Clean<VariantKind> for hir::VariantData {
fn clean(&self, cx: &DocContext<'_>) -> VariantKind {
match self {
hir::VariantData::Struct(..) => VariantKind::Struct(self.clean(cx)),
hir::VariantData::Tuple(..) =>
VariantKind::Tuple(self.fields().iter().map(|x| x.ty.clean(cx)).collect()),
hir::VariantData::Unit(..) => VariantKind::CLike,
}
}
}
#[derive(Clone, Debug)]
pub struct Span {
pub filename: FileName,
pub loline: usize,
pub locol: usize,
pub hiline: usize,
pub hicol: usize,
pub original: syntax_pos::Span,
}
impl Span {
pub fn empty() -> Span {
Span {
filename: FileName::Anon(0),
loline: 0, locol: 0,
hiline: 0, hicol: 0,
original: syntax_pos::DUMMY_SP,
}
}
pub fn span(&self) -> syntax_pos::Span {
self.original
}
}
impl Clean<Span> for syntax_pos::Span {
fn clean(&self, cx: &DocContext<'_>) -> Span {
if self.is_dummy() {
return Span::empty();
}
let cm = cx.sess().source_map();
let filename = cm.span_to_filename(*self);
let lo = cm.lookup_char_pos(self.lo());
let hi = cm.lookup_char_pos(self.hi());
Span {
filename,
loline: lo.line,
locol: lo.col.to_usize(),
hiline: hi.line,
hicol: hi.col.to_usize(),
original: *self,
}
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct Path {
pub global: bool,
pub res: Res,
pub segments: Vec<PathSegment>,
}
impl Path {
pub fn last_name(&self) -> &str {
self.segments.last().expect("segments were empty").name.as_str()
}
}
impl Clean<Path> for hir::Path {
fn clean(&self, cx: &DocContext<'_>) -> Path {
Path {
global: self.is_global(),
res: self.res,
segments: if self.is_global() { &self.segments[1..] } else { &self.segments }.clean(cx),
}
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum GenericArg {
Lifetime(Lifetime),
Type(Type),
Const(Constant),
}
impl fmt::Display for GenericArg {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
GenericArg::Lifetime(lt) => lt.fmt(f),
GenericArg::Type(ty) => ty.fmt(f),
GenericArg::Const(ct) => ct.fmt(f),
}
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum GenericArgs {
AngleBracketed {
args: Vec<GenericArg>,
bindings: Vec<TypeBinding>,
},
Parenthesized {
inputs: Vec<Type>,
output: Option<Type>,
}
}
impl Clean<GenericArgs> for hir::GenericArgs {
fn clean(&self, cx: &DocContext<'_>) -> GenericArgs {
if self.parenthesized {
let output = self.bindings[0].ty().clean(cx);
GenericArgs::Parenthesized {
inputs: self.inputs().clean(cx),
output: if output != Type::Tuple(Vec::new()) { Some(output) } else { None }
}
} else {
let elide_lifetimes = self.args.iter().all(|arg| match arg {
hir::GenericArg::Lifetime(lt) => lt.is_elided(),
_ => true,
});
GenericArgs::AngleBracketed {
args: self.args.iter().filter_map(|arg| match arg {
hir::GenericArg::Lifetime(lt) if !elide_lifetimes => {
Some(GenericArg::Lifetime(lt.clean(cx)))
}
hir::GenericArg::Lifetime(_) => None,
hir::GenericArg::Type(ty) => Some(GenericArg::Type(ty.clean(cx))),
hir::GenericArg::Const(ct) => Some(GenericArg::Const(ct.clean(cx))),
}).collect(),
bindings: self.bindings.clean(cx),
}
}
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct PathSegment {
pub name: String,
pub args: GenericArgs,
}
impl Clean<PathSegment> for hir::PathSegment {
fn clean(&self, cx: &DocContext<'_>) -> PathSegment {
PathSegment {
name: self.ident.name.clean(cx),
args: self.generic_args().clean(cx),
}
}
}
fn strip_type(ty: Type) -> Type {
match ty {
Type::ResolvedPath { path, param_names, did, is_generic } => {
Type::ResolvedPath { path: strip_path(&path), param_names, did, is_generic }
}
Type::Tuple(inner_tys) => {
Type::Tuple(inner_tys.iter().map(|t| strip_type(t.clone())).collect())
}
Type::Slice(inner_ty) => Type::Slice(Box::new(strip_type(*inner_ty))),
Type::Array(inner_ty, s) => Type::Array(Box::new(strip_type(*inner_ty)), s),
Type::RawPointer(m, inner_ty) => Type::RawPointer(m, Box::new(strip_type(*inner_ty))),
Type::BorrowedRef { lifetime, mutability, type_ } => {
Type::BorrowedRef { lifetime, mutability, type_: Box::new(strip_type(*type_)) }
}
Type::QPath { name, self_type, trait_ } => {
Type::QPath {
name,
self_type: Box::new(strip_type(*self_type)), trait_: Box::new(strip_type(*trait_))
}
}
_ => ty
}
}
fn strip_path(path: &Path) -> Path {
let segments = path.segments.iter().map(|s| {
PathSegment {
name: s.name.clone(),
args: GenericArgs::AngleBracketed {
args: vec![],
bindings: vec![],
}
}
}).collect();
Path {
global: path.global,
res: path.res.clone(),
segments,
}
}
fn qpath_to_string(p: &hir::QPath) -> String {
let segments = match *p {
hir::QPath::Resolved(_, ref path) => &path.segments,
hir::QPath::TypeRelative(_, ref segment) => return segment.ident.to_string(),
};
let mut s = String::new();
for (i, seg) in segments.iter().enumerate() {
if i > 0 {
s.push_str("::");
}
if seg.ident.name != kw::PathRoot {
s.push_str(&*seg.ident.as_str());
}
}
s
}
impl Clean<String> for Ident {
#[inline]
fn clean(&self, cx: &DocContext<'_>) -> String {
self.name.clean(cx)
}
}
impl Clean<String> for ast::Name {
#[inline]
fn clean(&self, _: &DocContext<'_>) -> String {
self.to_string()
}
}
impl Clean<String> for InternedString {
#[inline]
fn clean(&self, _: &DocContext<'_>) -> String {
self.to_string()
}
}
#[derive(Clone, Debug)]
pub struct Typedef {
pub type_: Type,
pub generics: Generics,
}
impl Clean<Item> for doctree::Typedef<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: TypedefItem(Typedef {
type_: self.ty.clean(cx),
generics: self.gen.clean(cx),
}, false),
}
}
}
#[derive(Clone, Debug)]
pub struct OpaqueTy {
pub bounds: Vec<GenericBound>,
pub generics: Generics,
}
impl Clean<Item> for doctree::OpaqueTy<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: OpaqueTyItem(OpaqueTy {
bounds: self.opaque_ty.bounds.clean(cx),
generics: self.opaque_ty.generics.clean(cx),
}, false),
}
}
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct BareFunctionDecl {
pub unsafety: hir::Unsafety,
pub generic_params: Vec<GenericParamDef>,
pub decl: FnDecl,
pub abi: Abi,
}
impl Clean<BareFunctionDecl> for hir::BareFnTy {
fn clean(&self, cx: &DocContext<'_>) -> BareFunctionDecl {
let (generic_params, decl) = enter_impl_trait(cx, || {
(self.generic_params.clean(cx), (&*self.decl, &self.param_names[..]).clean(cx))
});
BareFunctionDecl {
unsafety: self.unsafety,
abi: self.abi,
decl,
generic_params,
}
}
}
#[derive(Clone, Debug)]
pub struct Static {
pub type_: Type,
pub mutability: Mutability,
/// It's useful to have the value of a static documented, but I have no
/// desire to represent expressions (that'd basically be all of the AST,
/// which is huge!). So, have a string.
pub expr: String,
}
impl Clean<Item> for doctree::Static<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
debug!("cleaning static {}: {:?}", self.name.clean(cx), self);
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: StaticItem(Static {
type_: self.type_.clean(cx),
mutability: self.mutability.clean(cx),
expr: print_const_expr(cx, self.expr),
}),
}
}
}
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Constant {
pub type_: Type,
pub expr: String,
}
impl Clean<Item> for doctree::Constant<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: ConstantItem(Constant {
type_: self.type_.clean(cx),
expr: print_const_expr(cx, self.expr),
}),
}
}
}
#[derive(Debug, Clone, PartialEq, Eq, Copy, Hash)]
pub enum Mutability {
Mutable,
Immutable,
}
impl Clean<Mutability> for hir::Mutability {
fn clean(&self, _: &DocContext<'_>) -> Mutability {
match self {
&hir::MutMutable => Mutable,
&hir::MutImmutable => Immutable,
}
}
}
#[derive(Clone, PartialEq, Eq, Copy, Debug, Hash)]
pub enum ImplPolarity {
Positive,
Negative,
}
impl Clean<ImplPolarity> for hir::ImplPolarity {
fn clean(&self, _: &DocContext<'_>) -> ImplPolarity {
match self {
&hir::ImplPolarity::Positive => ImplPolarity::Positive,
&hir::ImplPolarity::Negative => ImplPolarity::Negative,
}
}
}
#[derive(Clone, Debug)]
pub struct Impl {
pub unsafety: hir::Unsafety,
pub generics: Generics,
pub provided_trait_methods: FxHashSet<String>,
pub trait_: Option<Type>,
pub for_: Type,
pub items: Vec<Item>,
pub polarity: Option<ImplPolarity>,
pub synthetic: bool,
pub blanket_impl: Option<Type>,
}
pub fn get_auto_trait_and_blanket_impls(
cx: &DocContext<'tcx>,
ty: Ty<'tcx>,
param_env_def_id: DefId,
) -> impl Iterator<Item = Item> {
AutoTraitFinder::new(cx).get_auto_trait_impls(ty, param_env_def_id).into_iter()
.chain(BlanketImplFinder::new(cx).get_blanket_impls(ty, param_env_def_id))
}
impl Clean<Vec<Item>> for doctree::Impl<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Vec<Item> {
let mut ret = Vec::new();
let trait_ = self.trait_.clean(cx);
let items = self.items.iter().map(|ii| ii.clean(cx)).collect::<Vec<_>>();
// If this impl block is an implementation of the Deref trait, then we
// need to try inlining the target's inherent impl blocks as well.
if trait_.def_id() == cx.tcx.lang_items().deref_trait() {
build_deref_target_impls(cx, &items, &mut ret);
}
let provided = trait_.def_id().map(|did| {
cx.tcx.provided_trait_methods(did)
.into_iter()
.map(|meth| meth.ident.to_string())
.collect()
}).unwrap_or_default();
ret.push(Item {
name: None,
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner: ImplItem(Impl {
unsafety: self.unsafety,
generics: self.generics.clean(cx),
provided_trait_methods: provided,
trait_,
for_: self.for_.clean(cx),
items,
polarity: Some(self.polarity.clean(cx)),
synthetic: false,
blanket_impl: None,
})
});
ret
}
}
fn build_deref_target_impls(cx: &DocContext<'_>,
items: &[Item],
ret: &mut Vec<Item>) {
use self::PrimitiveType::*;
let tcx = cx.tcx;
for item in items {
let target = match item.inner {
TypedefItem(ref t, true) => &t.type_,
_ => continue,
};
let primitive = match *target {
ResolvedPath { did, .. } if did.is_local() => continue,
ResolvedPath { did, .. } => {
ret.extend(inline::build_impls(cx, did, None));
continue
}
_ => match target.primitive_type() {
Some(prim) => prim,
None => continue,
}
};
let did = match primitive {
Isize => tcx.lang_items().isize_impl(),
I8 => tcx.lang_items().i8_impl(),
I16 => tcx.lang_items().i16_impl(),
I32 => tcx.lang_items().i32_impl(),
I64 => tcx.lang_items().i64_impl(),
I128 => tcx.lang_items().i128_impl(),
Usize => tcx.lang_items().usize_impl(),
U8 => tcx.lang_items().u8_impl(),
U16 => tcx.lang_items().u16_impl(),
U32 => tcx.lang_items().u32_impl(),
U64 => tcx.lang_items().u64_impl(),
U128 => tcx.lang_items().u128_impl(),
F32 => tcx.lang_items().f32_impl(),
F64 => tcx.lang_items().f64_impl(),
Char => tcx.lang_items().char_impl(),
Bool => tcx.lang_items().bool_impl(),
Str => tcx.lang_items().str_impl(),
Slice => tcx.lang_items().slice_impl(),
Array => tcx.lang_items().slice_impl(),
Tuple => None,
Unit => None,
RawPointer => tcx.lang_items().const_ptr_impl(),
Reference => None,
Fn => None,
Never => None,
CVarArgs => tcx.lang_items().va_list(),
};
if let Some(did) = did {
if !did.is_local() {
inline::build_impl(cx, did, None, ret);
}
}
}
}
impl Clean<Vec<Item>> for doctree::ExternCrate<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Vec<Item> {
let please_inline = self.vis.node.is_pub() && self.attrs.iter().any(|a| {
a.check_name(sym::doc) && match a.meta_item_list() {
Some(l) => attr::list_contains_name(&l, sym::inline),
None => false,
}
});
if please_inline {
let mut visited = FxHashSet::default();
let res = Res::Def(
DefKind::Mod,
DefId {
krate: self.cnum,
index: CRATE_DEF_INDEX,
},
);
if let Some(items) = inline::try_inline(
cx, res, self.name,
Some(rustc::ty::Attributes::Borrowed(self.attrs)),
&mut visited
) {
return items;
}
}
vec![Item {
name: None,
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: DefId { krate: self.cnum, index: CRATE_DEF_INDEX },
visibility: self.vis.clean(cx),
stability: None,
deprecation: None,
inner: ExternCrateItem(self.name.clean(cx), self.path.clone())
}]
}
}
impl Clean<Vec<Item>> for doctree::Import<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Vec<Item> {
// We consider inlining the documentation of `pub use` statements, but we
// forcefully don't inline if this is not public or if the
// #[doc(no_inline)] attribute is present.
// Don't inline doc(hidden) imports so they can be stripped at a later stage.
let mut denied = !self.vis.node.is_pub() || self.attrs.iter().any(|a| {
a.check_name(sym::doc) && match a.meta_item_list() {
Some(l) => attr::list_contains_name(&l, sym::no_inline) ||
attr::list_contains_name(&l, sym::hidden),
None => false,
}
});
// Also check whether imports were asked to be inlined, in case we're trying to re-export a
// crate in Rust 2018+
let please_inline = self.attrs.lists(sym::doc).has_word(sym::inline);
let path = self.path.clean(cx);
let inner = if self.glob {
if !denied {
let mut visited = FxHashSet::default();
if let Some(items) = inline::try_inline_glob(cx, path.res, &mut visited) {
return items;
}
}
Import::Glob(resolve_use_source(cx, path))
} else {
let name = self.name;
if !please_inline {
match path.res {
Res::Def(DefKind::Mod, did) => {
if !did.is_local() && did.index == CRATE_DEF_INDEX {
// if we're `pub use`ing an extern crate root, don't inline it unless we
// were specifically asked for it
denied = true;
}
}
_ => {}
}
}
if !denied {
let mut visited = FxHashSet::default();
if let Some(items) = inline::try_inline(
cx, path.res, name,
Some(rustc::ty::Attributes::Borrowed(self.attrs)),
&mut visited
) {
return items;
}
}
Import::Simple(name.clean(cx), resolve_use_source(cx, path))
};
vec![Item {
name: None,
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id_from_node_id(ast::CRATE_NODE_ID),
visibility: self.vis.clean(cx),
stability: None,
deprecation: None,
inner: ImportItem(inner)
}]
}
}
#[derive(Clone, Debug)]
pub enum Import {
// use source as str;
Simple(String, ImportSource),
// use source::*;
Glob(ImportSource)
}
#[derive(Clone, Debug)]
pub struct ImportSource {
pub path: Path,
pub did: Option<DefId>,
}
impl Clean<Item> for doctree::ForeignItem<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let inner = match self.kind {
hir::ForeignItemKind::Fn(ref decl, ref names, ref generics) => {
let abi = cx.tcx.hir().get_foreign_abi(self.id);
let (generics, decl) = enter_impl_trait(cx, || {
(generics.clean(cx), (&**decl, &names[..]).clean(cx))
});
let (all_types, ret_types) = get_all_types(&generics, &decl, cx);
ForeignFunctionItem(Function {
decl,
generics,
header: hir::FnHeader {
unsafety: hir::Unsafety::Unsafe,
abi,
constness: hir::Constness::NotConst,
asyncness: hir::IsAsync::NotAsync,
},
all_types,
ret_types,
})
}
hir::ForeignItemKind::Static(ref ty, mutbl) => {
ForeignStaticItem(Static {
type_: ty.clean(cx),
mutability: mutbl.clean(cx),
expr: String::new(),
})
}
hir::ForeignItemKind::Type => {
ForeignTypeItem
}
};
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
visibility: self.vis.clean(cx),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
inner,
}
}
}
// Utilities
pub trait ToSource {
fn to_src(&self, cx: &DocContext<'_>) -> String;
}
impl ToSource for syntax_pos::Span {
fn to_src(&self, cx: &DocContext<'_>) -> String {
debug!("converting span {:?} to snippet", self.clean(cx));
let sn = match cx.sess().source_map().span_to_snippet(*self) {
Ok(x) => x,
Err(_) => String::new()
};
debug!("got snippet {}", sn);
sn
}
}
fn name_from_pat(p: &hir::Pat) -> String {
use rustc::hir::*;
debug!("trying to get a name from pattern: {:?}", p);
match p.node {
PatKind::Wild => "_".to_string(),
PatKind::Binding(_, _, ident, _) => ident.to_string(),
PatKind::TupleStruct(ref p, ..) | PatKind::Path(ref p) => qpath_to_string(p),
PatKind::Struct(ref name, ref fields, etc) => {
format!("{} {{ {}{} }}", qpath_to_string(name),
fields.iter().map(|fp| format!("{}: {}", fp.ident, name_from_pat(&fp.pat)))
.collect::<Vec<String>>().join(", "),
if etc { ", .." } else { "" }
)
}
PatKind::Or(ref pats) => {
pats.iter().map(|p| name_from_pat(&**p)).collect::<Vec<String>>().join(" | ")
}
PatKind::Tuple(ref elts, _) => format!("({})", elts.iter().map(|p| name_from_pat(&**p))
.collect::<Vec<String>>().join(", ")),
PatKind::Box(ref p) => name_from_pat(&**p),
PatKind::Ref(ref p, _) => name_from_pat(&**p),
PatKind::Lit(..) => {
warn!("tried to get argument name from PatKind::Lit, \
which is silly in function arguments");
"()".to_string()
},
PatKind::Range(..) => panic!("tried to get argument name from PatKind::Range, \
which is not allowed in function arguments"),
PatKind::Slice(ref begin, ref mid, ref end) => {
let begin = begin.iter().map(|p| name_from_pat(&**p));
let mid = mid.as_ref().map(|p| format!("..{}", name_from_pat(&**p))).into_iter();
let end = end.iter().map(|p| name_from_pat(&**p));
format!("[{}]", begin.chain(mid).chain(end).collect::<Vec<_>>().join(", "))
},
}
}
fn print_const(cx: &DocContext<'_>, n: &ty::Const<'_>) -> String {
match n.val {
ConstValue::Unevaluated(def_id, _) => {
if let Some(hir_id) = cx.tcx.hir().as_local_hir_id(def_id) {
print_const_expr(cx, cx.tcx.hir().body_owned_by(hir_id))
} else {
inline::print_inlined_const(cx, def_id)
}
},
_ => {
let mut s = n.to_string();
// array lengths are obviously usize
if s.ends_with("usize") {
let n = s.len() - "usize".len();
s.truncate(n);
if s.ends_with(": ") {
let n = s.len() - ": ".len();
s.truncate(n);
}
}
s
},
}
}
fn print_const_expr(cx: &DocContext<'_>, body: hir::BodyId) -> String {
cx.tcx.hir().hir_to_pretty_string(body.hir_id)
}
/// Given a type Path, resolve it to a Type using the TyCtxt
fn resolve_type(cx: &DocContext<'_>,
path: Path,
id: hir::HirId) -> Type {
if id == hir::DUMMY_HIR_ID {
debug!("resolve_type({:?})", path);
} else {
debug!("resolve_type({:?},{:?})", path, id);
}
let is_generic = match path.res {
Res::PrimTy(p) => match p {
hir::Str => return Primitive(PrimitiveType::Str),
hir::Bool => return Primitive(PrimitiveType::Bool),
hir::Char => return Primitive(PrimitiveType::Char),
hir::Int(int_ty) => return Primitive(int_ty.into()),
hir::Uint(uint_ty) => return Primitive(uint_ty.into()),
hir::Float(float_ty) => return Primitive(float_ty.into()),
},
Res::SelfTy(..) if path.segments.len() == 1 => {
return Generic(kw::SelfUpper.to_string());
}
Res::Def(DefKind::TyParam, _) if path.segments.len() == 1 => {
return Generic(format!("{:#}", path));
}
Res::SelfTy(..)
| Res::Def(DefKind::TyParam, _)
| Res::Def(DefKind::AssocTy, _) => true,
_ => false,
};
let did = register_res(&*cx, path.res);
ResolvedPath { path: path, param_names: None, did: did, is_generic: is_generic }
}
pub fn register_res(cx: &DocContext<'_>, res: Res) -> DefId {
debug!("register_res({:?})", res);
let (did, kind) = match res {
Res::Def(DefKind::Fn, i) => (i, TypeKind::Function),
Res::Def(DefKind::TyAlias, i) => (i, TypeKind::Typedef),
Res::Def(DefKind::Enum, i) => (i, TypeKind::Enum),
Res::Def(DefKind::Trait, i) => (i, TypeKind::Trait),
Res::Def(DefKind::Struct, i) => (i, TypeKind::Struct),
Res::Def(DefKind::Union, i) => (i, TypeKind::Union),
Res::Def(DefKind::Mod, i) => (i, TypeKind::Module),
Res::Def(DefKind::ForeignTy, i) => (i, TypeKind::Foreign),
Res::Def(DefKind::Const, i) => (i, TypeKind::Const),
Res::Def(DefKind::Static, i) => (i, TypeKind::Static),
Res::Def(DefKind::Variant, i) => (cx.tcx.parent(i).expect("cannot get parent def id"),
TypeKind::Enum),
Res::Def(DefKind::Macro(mac_kind), i) => match mac_kind {
MacroKind::Bang => (i, TypeKind::Macro),
MacroKind::Attr => (i, TypeKind::Attr),
MacroKind::Derive => (i, TypeKind::Derive),
},
Res::Def(DefKind::TraitAlias, i) => (i, TypeKind::TraitAlias),
Res::SelfTy(Some(def_id), _) => (def_id, TypeKind::Trait),
Res::SelfTy(_, Some(impl_def_id)) => return impl_def_id,
_ => return res.def_id()
};
if did.is_local() { return did }
inline::record_extern_fqn(cx, did, kind);
if let TypeKind::Trait = kind {
inline::record_extern_trait(cx, did);
}
did
}
fn resolve_use_source(cx: &DocContext<'_>, path: Path) -> ImportSource {
ImportSource {
did: if path.res.opt_def_id().is_none() {
None
} else {
Some(register_res(cx, path.res))
},
path,
}
}
#[derive(Clone, Debug)]
pub struct Macro {
pub source: String,
pub imported_from: Option<String>,
}
impl Clean<Item> for doctree::Macro<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
let name = self.name.clean(cx);
Item {
name: Some(name.clone()),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: Some(Public),
stability: cx.stability(self.hid).clean(cx),
deprecation: cx.deprecation(self.hid).clean(cx),
def_id: self.def_id,
inner: MacroItem(Macro {
source: format!("macro_rules! {} {{\n{}}}",
name,
self.matchers.iter().map(|span| {
format!(" {} => {{ ... }};\n", span.to_src(cx))
}).collect::<String>()),
imported_from: self.imported_from.clean(cx),
}),
}
}
}
#[derive(Clone, Debug)]
pub struct ProcMacro {
pub kind: MacroKind,
pub helpers: Vec<String>,
}
impl Clean<Item> for doctree::ProcMacro<'_> {
fn clean(&self, cx: &DocContext<'_>) -> Item {
Item {
name: Some(self.name.clean(cx)),
attrs: self.attrs.clean(cx),
source: self.whence.clean(cx),
visibility: Some(Public),
stability: cx.stability(self.id).clean(cx),
deprecation: cx.deprecation(self.id).clean(cx),
def_id: cx.tcx.hir().local_def_id(self.id),
inner: ProcMacroItem(ProcMacro {
kind: self.kind,
helpers: self.helpers.clean(cx),
}),
}
}
}
#[derive(Clone, Debug)]
pub struct Stability {
pub level: stability::StabilityLevel,
pub feature: Option<String>,
pub since: String,
pub deprecation: Option<Deprecation>,
pub unstable_reason: Option<String>,
pub issue: Option<u32>,
}
#[derive(Clone, Debug)]
pub struct Deprecation {
pub since: Option<String>,
pub note: Option<String>,
}
impl Clean<Stability> for attr::Stability {
fn clean(&self, _: &DocContext<'_>) -> Stability {
Stability {
level: stability::StabilityLevel::from_attr_level(&self.level),
feature: Some(self.feature.to_string()).filter(|f| !f.is_empty()),
since: match self.level {
attr::Stable {ref since} => since.to_string(),
_ => String::new(),
},
deprecation: self.rustc_depr.as_ref().map(|d| {
Deprecation {
note: Some(d.reason.to_string()).filter(|r| !r.is_empty()),
since: Some(d.since.to_string()).filter(|d| !d.is_empty()),
}
}),
unstable_reason: match self.level {
attr::Unstable { reason: Some(ref reason), .. } => Some(reason.to_string()),
_ => None,
},
issue: match self.level {
attr::Unstable {issue, ..} => Some(issue),
_ => None,
}
}
}
}
impl<'a> Clean<Stability> for &'a attr::Stability {
fn clean(&self, dc: &DocContext<'_>) -> Stability {
(**self).clean(dc)
}
}
impl Clean<Deprecation> for attr::Deprecation {
fn clean(&self, _: &DocContext<'_>) -> Deprecation {
Deprecation {
since: self.since.map(|s| s.to_string()).filter(|s| !s.is_empty()),
note: self.note.map(|n| n.to_string()).filter(|n| !n.is_empty()),
}
}
}
/// An type binding on an associated type (e.g., `A = Bar` in `Foo<A = Bar>` or
/// `A: Send + Sync` in `Foo<A: Send + Sync>`).
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TypeBinding {
pub name: String,
pub kind: TypeBindingKind,
}
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub enum TypeBindingKind {
Equality {
ty: Type,
},
Constraint {
bounds: Vec<GenericBound>,
},
}
impl TypeBinding {
pub fn ty(&self) -> &Type {
match self.kind {
TypeBindingKind::Equality { ref ty } => ty,
_ => panic!("expected equality type binding for parenthesized generic args"),
}
}
}
impl Clean<TypeBinding> for hir::TypeBinding {
fn clean(&self, cx: &DocContext<'_>) -> TypeBinding {
TypeBinding {
name: self.ident.name.clean(cx),
kind: self.kind.clean(cx),
}
}
}
impl Clean<TypeBindingKind> for hir::TypeBindingKind {
fn clean(&self, cx: &DocContext<'_>) -> TypeBindingKind {
match *self {
hir::TypeBindingKind::Equality { ref ty } =>
TypeBindingKind::Equality {
ty: ty.clean(cx),
},
hir::TypeBindingKind::Constraint { ref bounds } =>
TypeBindingKind::Constraint {
bounds: bounds.into_iter().map(|b| b.clean(cx)).collect(),
},
}
}
}
pub fn enter_impl_trait<F, R>(cx: &DocContext<'_>, f: F) -> R
where
F: FnOnce() -> R,
{
let old_bounds = mem::take(&mut *cx.impl_trait_bounds.borrow_mut());
let r = f();
assert!(cx.impl_trait_bounds.borrow().is_empty());
*cx.impl_trait_bounds.borrow_mut() = old_bounds;
r
}
#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
enum RegionTarget<'tcx> {
Region(Region<'tcx>),
RegionVid(RegionVid)
}
#[derive(Default, Debug, Clone)]
struct RegionDeps<'tcx> {
larger: FxHashSet<RegionTarget<'tcx>>,
smaller: FxHashSet<RegionTarget<'tcx>>
}
#[derive(Eq, PartialEq, Hash, Debug)]
enum SimpleBound {
TraitBound(Vec<PathSegment>, Vec<SimpleBound>, Vec<GenericParamDef>, hir::TraitBoundModifier),
Outlives(Lifetime),
}
impl From<GenericBound> for SimpleBound {
fn from(bound: GenericBound) -> Self {
match bound.clone() {
GenericBound::Outlives(l) => SimpleBound::Outlives(l),
GenericBound::TraitBound(t, mod_) => match t.trait_ {
Type::ResolvedPath { path, param_names, .. } => {
SimpleBound::TraitBound(path.segments,
param_names
.map_or_else(|| Vec::new(), |v| v.iter()
.map(|p| SimpleBound::from(p.clone()))
.collect()),
t.generic_params,
mod_)
}
_ => panic!("Unexpected bound {:?}", bound),
}
}
}
}