blob: 72e6f5971596092ab92b2fa39819ee86265089eb [file] [log] [blame]
//! Give useful errors and suggestions to users when an item can't be
//! found or is otherwise invalid.
use crate::check::FnCtxt;
use crate::middle::lang_items::FnOnceTraitLangItem;
use crate::namespace::Namespace;
use crate::util::nodemap::FxHashSet;
use errors::{Applicability, DiagnosticBuilder};
use rustc::hir::{self, ExprKind, Node, QPath};
use rustc::hir::def::{Res, DefKind};
use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
use rustc::hir::map as hir_map;
use rustc::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc::traits::Obligation;
use rustc::ty::{self, Ty, TyCtxt, ToPolyTraitRef, ToPredicate, TypeFoldable};
use rustc::ty::print::with_crate_prefix;
use syntax_pos::{Span, FileName};
use syntax::ast;
use syntax::util::lev_distance;
use std::cmp::Ordering;
use super::{MethodError, NoMatchData, CandidateSource};
use super::probe::Mode;
impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
fn is_fn_ty(&self, ty: Ty<'tcx>, span: Span) -> bool {
let tcx = self.tcx;
match ty.sty {
// Not all of these (e.g., unsafe fns) implement `FnOnce`,
// so we look for these beforehand.
ty::Closure(..) |
ty::FnDef(..) |
ty::FnPtr(_) => true,
// If it's not a simple function, look for things which implement `FnOnce`.
_ => {
let fn_once = match tcx.lang_items().require(FnOnceTraitLangItem) {
Ok(fn_once) => fn_once,
Err(..) => return false,
};
self.autoderef(span, ty).any(|(ty, _)| {
self.probe(|_| {
let fn_once_substs = tcx.mk_substs_trait(ty, &[
self.next_ty_var(TypeVariableOrigin {
kind: TypeVariableOriginKind::MiscVariable,
span,
}).into()
]);
let trait_ref = ty::TraitRef::new(fn_once, fn_once_substs);
let poly_trait_ref = trait_ref.to_poly_trait_ref();
let obligation =
Obligation::misc(span,
self.body_id,
self.param_env,
poly_trait_ref.to_predicate());
self.predicate_may_hold(&obligation)
})
})
}
}
}
pub fn report_method_error<'b>(
&self,
span: Span,
rcvr_ty: Ty<'tcx>,
item_name: ast::Ident,
source: SelfSource<'b>,
error: MethodError<'tcx>,
args: Option<&'tcx [hir::Expr]>,
) -> Option<DiagnosticBuilder<'_>> {
let orig_span = span;
let mut span = span;
// Avoid suggestions when we don't know what's going on.
if rcvr_ty.references_error() {
return None;
}
let print_disambiguation_help = |
err: &mut DiagnosticBuilder<'_>,
trait_name: String,
| {
err.help(&format!(
"to disambiguate the method call, write `{}::{}({}{})` instead",
trait_name,
item_name,
if rcvr_ty.is_region_ptr() && args.is_some() {
if rcvr_ty.is_mutable_ptr() {
"&mut "
} else {
"&"
}
} else {
""
},
args.map(|arg| arg
.iter()
.map(|arg| self.tcx.sess.source_map().span_to_snippet(arg.span)
.unwrap_or_else(|_| "...".to_owned()))
.collect::<Vec<_>>()
.join(", ")
).unwrap_or_else(|| "...".to_owned())
));
};
let report_candidates = |
span: Span,
err: &mut DiagnosticBuilder<'_>,
mut sources: Vec<CandidateSource>,
| {
sources.sort();
sources.dedup();
// Dynamic limit to avoid hiding just one candidate, which is silly.
let limit = if sources.len() == 5 { 5 } else { 4 };
for (idx, source) in sources.iter().take(limit).enumerate() {
match *source {
CandidateSource::ImplSource(impl_did) => {
// Provide the best span we can. Use the item, if local to crate, else
// the impl, if local to crate (item may be defaulted), else nothing.
let item = match self.associated_item(
impl_did,
item_name,
Namespace::Value,
).or_else(|| {
let impl_trait_ref = self.tcx.impl_trait_ref(impl_did)?;
self.associated_item(
impl_trait_ref.def_id,
item_name,
Namespace::Value,
)
}) {
Some(item) => item,
None => continue,
};
let note_span = self.tcx.hir().span_if_local(item.def_id).or_else(|| {
self.tcx.hir().span_if_local(impl_did)
});
let impl_ty = self.impl_self_ty(span, impl_did).ty;
let insertion = match self.tcx.impl_trait_ref(impl_did) {
None => String::new(),
Some(trait_ref) => {
format!(" of the trait `{}`",
self.tcx.def_path_str(trait_ref.def_id))
}
};
let note_str = if sources.len() > 1 {
format!("candidate #{} is defined in an impl{} for the type `{}`",
idx + 1,
insertion,
impl_ty)
} else {
format!("the candidate is defined in an impl{} for the type `{}`",
insertion,
impl_ty)
};
if let Some(note_span) = note_span {
// We have a span pointing to the method. Show note with snippet.
err.span_note(self.tcx.sess.source_map().def_span(note_span),
&note_str);
} else {
err.note(&note_str);
}
if let Some(trait_ref) = self.tcx.impl_trait_ref(impl_did) {
print_disambiguation_help(err, self.tcx.def_path_str(trait_ref.def_id));
}
}
CandidateSource::TraitSource(trait_did) => {
let item = match self.associated_item(
trait_did,
item_name,
Namespace::Value)
{
Some(item) => item,
None => continue,
};
let item_span = self.tcx.sess.source_map()
.def_span(self.tcx.def_span(item.def_id));
if sources.len() > 1 {
span_note!(err,
item_span,
"candidate #{} is defined in the trait `{}`",
idx + 1,
self.tcx.def_path_str(trait_did));
} else {
span_note!(err,
item_span,
"the candidate is defined in the trait `{}`",
self.tcx.def_path_str(trait_did));
}
print_disambiguation_help(err, self.tcx.def_path_str(trait_did));
}
}
}
if sources.len() > limit {
err.note(&format!("and {} others", sources.len() - limit));
}
};
match error {
MethodError::NoMatch(NoMatchData {
static_candidates: static_sources,
unsatisfied_predicates,
out_of_scope_traits,
lev_candidate,
mode,
}) => {
let tcx = self.tcx;
let actual = self.resolve_vars_if_possible(&rcvr_ty);
let ty_str = self.ty_to_string(actual);
let is_method = mode == Mode::MethodCall;
let item_kind = if is_method {
"method"
} else if actual.is_enum() {
"variant or associated item"
} else {
match (item_name.as_str().chars().next(), actual.is_fresh_ty()) {
(Some(name), false) if name.is_lowercase() => {
"function or associated item"
}
(Some(_), false) => "associated item",
(Some(_), true) | (None, false) => {
"variant or associated item"
}
(None, true) => "variant",
}
};
let mut err = if !actual.references_error() {
// Suggest clamping down the type if the method that is being attempted to
// be used exists at all, and the type is an ambiuous numeric type
// ({integer}/{float}).
let mut candidates = all_traits(self.tcx)
.into_iter()
.filter_map(|info|
self.associated_item(info.def_id, item_name, Namespace::Value)
);
if let (true, false, SelfSource::MethodCall(expr), Some(_)) =
(actual.is_numeric(),
actual.has_concrete_skeleton(),
source,
candidates.next()) {
let mut err = struct_span_err!(
tcx.sess,
span,
E0689,
"can't call {} `{}` on ambiguous numeric type `{}`",
item_kind,
item_name,
ty_str
);
let concrete_type = if actual.is_integral() {
"i32"
} else {
"f32"
};
match expr.node {
ExprKind::Lit(ref lit) => {
// numeric literal
let snippet = tcx.sess.source_map().span_to_snippet(lit.span)
.unwrap_or_else(|_| "<numeric literal>".to_owned());
err.span_suggestion(
lit.span,
&format!("you must specify a concrete type for \
this numeric value, like `{}`", concrete_type),
format!("{}_{}", snippet, concrete_type),
Applicability::MaybeIncorrect,
);
}
ExprKind::Path(ref qpath) => {
// local binding
if let &QPath::Resolved(_, ref path) = &qpath {
if let hir::def::Res::Local(hir_id) = path.res {
let span = tcx.hir().span(hir_id);
let snippet = tcx.sess.source_map().span_to_snippet(span);
let filename = tcx.sess.source_map().span_to_filename(span);
let parent_node = self.tcx.hir().get(
self.tcx.hir().get_parent_node(hir_id),
);
let msg = format!(
"you must specify a type for this binding, like `{}`",
concrete_type,
);
match (filename, parent_node, snippet) {
(FileName::Real(_), Node::Local(hir::Local {
source: hir::LocalSource::Normal,
ty,
..
}), Ok(ref snippet)) => {
err.span_suggestion(
// account for `let x: _ = 42;`
// ^^^^
span.to(ty.as_ref().map(|ty| ty.span)
.unwrap_or(span)),
&msg,
format!("{}: {}", snippet, concrete_type),
Applicability::MaybeIncorrect,
);
}
_ => {
err.span_label(span, msg);
}
}
}
}
}
_ => {}
}
err.emit();
return None;
} else {
span = item_name.span;
let mut err = struct_span_err!(
tcx.sess,
span,
E0599,
"no {} named `{}` found for type `{}` in the current scope",
item_kind,
item_name,
ty_str
);
if let Some(span) = tcx.sess.confused_type_with_std_module.borrow()
.get(&span)
{
if let Ok(snippet) = tcx.sess.source_map().span_to_snippet(*span) {
err.span_suggestion(
*span,
"you are looking for the module in `std`, \
not the primitive type",
format!("std::{}", snippet),
Applicability::MachineApplicable,
);
}
}
if let ty::RawPtr(_) = &actual.sty {
err.note("try using `<*const T>::as_ref()` to get a reference to the \
type behind the pointer: https://doc.rust-lang.org/std/\
primitive.pointer.html#method.as_ref");
err.note("using `<*const T>::as_ref()` on a pointer \
which is unaligned or points to invalid \
or uninitialized memory is undefined behavior");
}
err
}
} else {
tcx.sess.diagnostic().struct_dummy()
};
if let Some(def) = actual.ty_adt_def() {
if let Some(full_sp) = tcx.hir().span_if_local(def.did) {
let def_sp = tcx.sess.source_map().def_span(full_sp);
err.span_label(def_sp, format!("{} `{}` not found {}",
item_kind,
item_name,
if def.is_enum() && !is_method {
"here"
} else {
"for this"
}));
}
}
// If the method name is the name of a field with a function or closure type,
// give a helping note that it has to be called as `(x.f)(...)`.
if let SelfSource::MethodCall(expr) = source {
let field_receiver = self
.autoderef(span, rcvr_ty)
.find_map(|(ty, _)| match ty.sty {
ty::Adt(def, substs) if !def.is_enum() => {
let variant = &def.non_enum_variant();
self.tcx.find_field_index(item_name, variant).map(|index| {
let field = &variant.fields[index];
let field_ty = field.ty(tcx, substs);
(field, field_ty)
})
}
_ => None,
});
if let Some((field, field_ty)) = field_receiver {
let scope = self.tcx.hir().get_module_parent(self.body_id);
let is_accessible = field.vis.is_accessible_from(scope, self.tcx);
if is_accessible {
if self.is_fn_ty(&field_ty, span) {
let expr_span = expr.span.to(item_name.span);
err.multipart_suggestion(
&format!(
"to call the function stored in `{}`, \
surround the field access with parentheses",
item_name,
),
vec![
(expr_span.shrink_to_lo(), '('.to_string()),
(expr_span.shrink_to_hi(), ')'.to_string()),
],
Applicability::MachineApplicable,
);
} else {
let call_expr = self.tcx.hir().expect_expr(
self.tcx.hir().get_parent_node(expr.hir_id),
);
if let Some(span) = call_expr.span.trim_start(item_name.span) {
err.span_suggestion(
span,
"remove the arguments",
String::new(),
Applicability::MaybeIncorrect,
);
}
}
}
let field_kind = if is_accessible {
"field"
} else {
"private field"
};
err.span_label(item_name.span, format!("{}, not a method", field_kind));
}
} else {
err.span_label(span, format!("{} not found in `{}`", item_kind, ty_str));
self.tcx.sess.trait_methods_not_found.borrow_mut().insert(orig_span);
}
if self.is_fn_ty(&rcvr_ty, span) {
macro_rules! report_function {
($span:expr, $name:expr) => {
err.note(&format!("{} is a function, perhaps you wish to call it",
$name));
}
}
if let SelfSource::MethodCall(expr) = source {
if let Ok(expr_string) = tcx.sess.source_map().span_to_snippet(expr.span) {
report_function!(expr.span, expr_string);
} else if let ExprKind::Path(QPath::Resolved(_, ref path)) =
expr.node
{
if let Some(segment) = path.segments.last() {
report_function!(expr.span, segment.ident);
}
}
}
}
if !static_sources.is_empty() {
err.note("found the following associated functions; to be used as methods, \
functions must have a `self` parameter");
err.span_label(span, "this is an associated function, not a method");
}
if static_sources.len() == 1 {
if let SelfSource::MethodCall(expr) = source {
err.span_suggestion(expr.span.to(span),
"use associated function syntax instead",
format!("{}::{}",
self.ty_to_string(actual),
item_name),
Applicability::MachineApplicable);
} else {
err.help(&format!("try with `{}::{}`",
self.ty_to_string(actual), item_name));
}
report_candidates(span, &mut err, static_sources);
} else if static_sources.len() > 1 {
report_candidates(span, &mut err, static_sources);
}
if !unsatisfied_predicates.is_empty() {
let mut bound_list = unsatisfied_predicates.iter()
.map(|p| format!("`{} : {}`", p.self_ty(), p))
.collect::<Vec<_>>();
bound_list.sort();
bound_list.dedup(); // #35677
let bound_list = bound_list.join("\n");
err.note(&format!("the method `{}` exists but the following trait bounds \
were not satisfied:\n{}",
item_name,
bound_list));
}
if actual.is_numeric() && actual.is_fresh() {
} else {
self.suggest_traits_to_import(&mut err,
span,
rcvr_ty,
item_name,
source,
out_of_scope_traits);
}
if actual.is_enum() {
let adt_def = actual.ty_adt_def().expect("enum is not an ADT");
if let Some(suggestion) = lev_distance::find_best_match_for_name(
adt_def.variants.iter().map(|s| &s.ident.name),
&item_name.as_str(),
None,
) {
err.span_suggestion(
span,
"there is a variant with a similar name",
suggestion.to_string(),
Applicability::MaybeIncorrect,
);
}
}
if let Some(lev_candidate) = lev_candidate {
let def_kind = lev_candidate.def_kind();
err.span_suggestion(
span,
&format!(
"there is {} {} with a similar name",
def_kind.article(),
def_kind.descr(lev_candidate.def_id),
),
lev_candidate.ident.to_string(),
Applicability::MaybeIncorrect,
);
}
return Some(err);
}
MethodError::Ambiguity(sources) => {
let mut err = struct_span_err!(self.sess(),
span,
E0034,
"multiple applicable items in scope");
err.span_label(span, format!("multiple `{}` found", item_name));
report_candidates(span, &mut err, sources);
err.emit();
}
MethodError::PrivateMatch(kind, def_id, out_of_scope_traits) => {
let mut err = struct_span_err!(self.tcx.sess, span, E0624,
"{} `{}` is private", kind.descr(def_id), item_name);
self.suggest_valid_traits(&mut err, out_of_scope_traits);
err.emit();
}
MethodError::IllegalSizedBound(candidates) => {
let msg = format!("the `{}` method cannot be invoked on a trait object", item_name);
let mut err = self.sess().struct_span_err(span, &msg);
if !candidates.is_empty() {
let help = format!("{an}other candidate{s} {were} found in the following \
trait{s}, perhaps add a `use` for {one_of_them}:",
an = if candidates.len() == 1 {"an" } else { "" },
s = if candidates.len() == 1 { "" } else { "s" },
were = if candidates.len() == 1 { "was" } else { "were" },
one_of_them = if candidates.len() == 1 {
"it"
} else {
"one_of_them"
});
self.suggest_use_candidates(&mut err, help, candidates);
}
err.emit();
}
MethodError::BadReturnType => {
bug!("no return type expectations but got BadReturnType")
}
}
None
}
fn suggest_use_candidates(&self,
err: &mut DiagnosticBuilder<'_>,
mut msg: String,
candidates: Vec<DefId>) {
let module_did = self.tcx.hir().get_module_parent(self.body_id);
let module_id = self.tcx.hir().as_local_hir_id(module_did).unwrap();
let krate = self.tcx.hir().krate();
let (span, found_use) = UsePlacementFinder::check(self.tcx, krate, module_id);
if let Some(span) = span {
let path_strings = candidates.iter().map(|did| {
// Produce an additional newline to separate the new use statement
// from the directly following item.
let additional_newline = if found_use {
""
} else {
"\n"
};
format!(
"use {};\n{}",
with_crate_prefix(|| self.tcx.def_path_str(*did)),
additional_newline
)
});
err.span_suggestions(span, &msg, path_strings, Applicability::MaybeIncorrect);
} else {
let limit = if candidates.len() == 5 { 5 } else { 4 };
for (i, trait_did) in candidates.iter().take(limit).enumerate() {
if candidates.len() > 1 {
msg.push_str(
&format!(
"\ncandidate #{}: `use {};`",
i + 1,
with_crate_prefix(|| self.tcx.def_path_str(*trait_did))
)
);
} else {
msg.push_str(
&format!(
"\n`use {};`",
with_crate_prefix(|| self.tcx.def_path_str(*trait_did))
)
);
}
}
if candidates.len() > limit {
msg.push_str(&format!("\nand {} others", candidates.len() - limit));
}
err.note(&msg[..]);
}
}
fn suggest_valid_traits(&self,
err: &mut DiagnosticBuilder<'_>,
valid_out_of_scope_traits: Vec<DefId>) -> bool {
if !valid_out_of_scope_traits.is_empty() {
let mut candidates = valid_out_of_scope_traits;
candidates.sort();
candidates.dedup();
err.help("items from traits can only be used if the trait is in scope");
let msg = format!("the following {traits_are} implemented but not in scope, \
perhaps add a `use` for {one_of_them}:",
traits_are = if candidates.len() == 1 {
"trait is"
} else {
"traits are"
},
one_of_them = if candidates.len() == 1 {
"it"
} else {
"one of them"
});
self.suggest_use_candidates(err, msg, candidates);
true
} else {
false
}
}
fn suggest_traits_to_import<'b>(
&self,
err: &mut DiagnosticBuilder<'_>,
span: Span,
rcvr_ty: Ty<'tcx>,
item_name: ast::Ident,
source: SelfSource<'b>,
valid_out_of_scope_traits: Vec<DefId>,
) {
if self.suggest_valid_traits(err, valid_out_of_scope_traits) {
return;
}
let type_is_local = self.type_derefs_to_local(span, rcvr_ty, source);
// There are no traits implemented, so lets suggest some traits to
// implement, by finding ones that have the item name, and are
// legal to implement.
let mut candidates = all_traits(self.tcx)
.into_iter()
.filter(|info| {
// We approximate the coherence rules to only suggest
// traits that are legal to implement by requiring that
// either the type or trait is local. Multi-dispatch means
// this isn't perfect (that is, there are cases when
// implementing a trait would be legal but is rejected
// here).
(type_is_local || info.def_id.is_local()) &&
self.associated_item(info.def_id, item_name, Namespace::Value)
.filter(|item| {
// We only want to suggest public or local traits (#45781).
item.vis == ty::Visibility::Public || info.def_id.is_local()
})
.is_some()
})
.collect::<Vec<_>>();
if !candidates.is_empty() {
// Sort from most relevant to least relevant.
candidates.sort_by(|a, b| a.cmp(b).reverse());
candidates.dedup();
let param_type = match rcvr_ty.sty {
ty::Param(param) => Some(param),
ty::Ref(_, ty, _) => match ty.sty {
ty::Param(param) => Some(param),
_ => None,
}
_ => None,
};
err.help(if param_type.is_some() {
"items from traits can only be used if the type parameter is bounded by the trait"
} else {
"items from traits can only be used if the trait is implemented and in scope"
});
let mut msg = format!(
"the following {traits_define} an item `{name}`, perhaps you need to {action} \
{one_of_them}:",
traits_define = if candidates.len() == 1 {
"trait defines"
} else {
"traits define"
},
action = if let Some(param) = param_type {
format!("restrict type parameter `{}` with", param)
} else {
"implement".to_string()
},
one_of_them = if candidates.len() == 1 {
"it"
} else {
"one of them"
},
name = item_name,
);
// Obtain the span for `param` and use it for a structured suggestion.
let mut suggested = false;
if let (Some(ref param), Some(ref table)) = (param_type, self.in_progress_tables) {
let table = table.borrow();
if let Some(did) = table.local_id_root {
let generics = self.tcx.generics_of(did);
let type_param = generics.type_param(param, self.tcx);
let hir = &self.tcx.hir();
if let Some(id) = hir.as_local_hir_id(type_param.def_id) {
// Get the `hir::Param` to verify whether it already has any bounds.
// We do this to avoid suggesting code that ends up as `T: FooBar`,
// instead we suggest `T: Foo + Bar` in that case.
let mut has_bounds = false;
let mut impl_trait = false;
if let Node::GenericParam(ref param) = hir.get(id) {
match param.kind {
hir::GenericParamKind::Type { synthetic: Some(_), .. } => {
// We've found `fn foo(x: impl Trait)` instead of
// `fn foo<T>(x: T)`. We want to suggest the correct
// `fn foo(x: impl Trait + TraitBound)` instead of
// `fn foo<T: TraitBound>(x: T)`. (#63706)
impl_trait = true;
has_bounds = param.bounds.len() > 1;
}
_ => {
has_bounds = !param.bounds.is_empty();
}
}
}
let sp = hir.span(id);
// `sp` only covers `T`, change it so that it covers
// `T:` when appropriate
let sp = if has_bounds {
sp.to(self.tcx
.sess
.source_map()
.next_point(self.tcx.sess.source_map().next_point(sp)))
} else {
sp
};
// FIXME: contrast `t.def_id` against `param.bounds` to not suggest traits
// already there. That can happen when the cause is that we're in a const
// scope or associated function used as a method.
err.span_suggestions(
sp,
&msg[..],
candidates.iter().map(|t| format!(
"{}{} {}{}",
param,
if impl_trait { " +" } else { ":" },
self.tcx.def_path_str(t.def_id),
if has_bounds { " +"} else { "" },
)),
Applicability::MaybeIncorrect,
);
suggested = true;
}
};
}
if !suggested {
for (i, trait_info) in candidates.iter().enumerate() {
msg.push_str(&format!(
"\ncandidate #{}: `{}`",
i + 1,
self.tcx.def_path_str(trait_info.def_id),
));
}
err.note(&msg[..]);
}
}
}
/// Checks whether there is a local type somewhere in the chain of
/// autoderefs of `rcvr_ty`.
fn type_derefs_to_local(&self,
span: Span,
rcvr_ty: Ty<'tcx>,
source: SelfSource<'_>) -> bool {
fn is_local(ty: Ty<'_>) -> bool {
match ty.sty {
ty::Adt(def, _) => def.did.is_local(),
ty::Foreign(did) => did.is_local(),
ty::Dynamic(ref tr, ..) =>
tr.principal().map(|d| d.def_id().is_local()).unwrap_or(false),
ty::Param(_) => true,
// Everything else (primitive types, etc.) is effectively
// non-local (there are "edge" cases, e.g., `(LocalType,)`, but
// the noise from these sort of types is usually just really
// annoying, rather than any sort of help).
_ => false,
}
}
// This occurs for UFCS desugaring of `T::method`, where there is no
// receiver expression for the method call, and thus no autoderef.
if let SelfSource::QPath(_) = source {
return is_local(self.resolve_type_vars_with_obligations(rcvr_ty));
}
self.autoderef(span, rcvr_ty).any(|(ty, _)| is_local(ty))
}
}
#[derive(Copy, Clone)]
pub enum SelfSource<'a> {
QPath(&'a hir::Ty),
MethodCall(&'a hir::Expr /* rcvr */),
}
#[derive(Copy, Clone)]
pub struct TraitInfo {
pub def_id: DefId,
}
impl PartialEq for TraitInfo {
fn eq(&self, other: &TraitInfo) -> bool {
self.cmp(other) == Ordering::Equal
}
}
impl Eq for TraitInfo {}
impl PartialOrd for TraitInfo {
fn partial_cmp(&self, other: &TraitInfo) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for TraitInfo {
fn cmp(&self, other: &TraitInfo) -> Ordering {
// Local crates are more important than remote ones (local:
// `cnum == 0`), and otherwise we throw in the defid for totality.
let lhs = (other.def_id.krate, other.def_id);
let rhs = (self.def_id.krate, self.def_id);
lhs.cmp(&rhs)
}
}
/// Retrieves all traits in this crate and any dependent crates.
pub fn all_traits(tcx: TyCtxt<'_>) -> Vec<TraitInfo> {
tcx.all_traits(LOCAL_CRATE).iter().map(|&def_id| TraitInfo { def_id }).collect()
}
/// Computes all traits in this crate and any dependent crates.
fn compute_all_traits(tcx: TyCtxt<'_>) -> Vec<DefId> {
use hir::itemlikevisit;
let mut traits = vec![];
// Crate-local:
struct Visitor<'a, 'tcx> {
map: &'a hir_map::Map<'tcx>,
traits: &'a mut Vec<DefId>,
}
impl<'v, 'a, 'tcx> itemlikevisit::ItemLikeVisitor<'v> for Visitor<'a, 'tcx> {
fn visit_item(&mut self, i: &'v hir::Item) {
match i.node {
hir::ItemKind::Trait(..) |
hir::ItemKind::TraitAlias(..) => {
let def_id = self.map.local_def_id(i.hir_id);
self.traits.push(def_id);
}
_ => ()
}
}
fn visit_trait_item(&mut self, _trait_item: &hir::TraitItem) {}
fn visit_impl_item(&mut self, _impl_item: &hir::ImplItem) {}
}
tcx.hir().krate().visit_all_item_likes(&mut Visitor {
map: &tcx.hir(),
traits: &mut traits,
});
// Cross-crate:
let mut external_mods = FxHashSet::default();
fn handle_external_res(
tcx: TyCtxt<'_>,
traits: &mut Vec<DefId>,
external_mods: &mut FxHashSet<DefId>,
res: Res,
) {
match res {
Res::Def(DefKind::Trait, def_id) |
Res::Def(DefKind::TraitAlias, def_id) => {
traits.push(def_id);
}
Res::Def(DefKind::Mod, def_id) => {
if !external_mods.insert(def_id) {
return;
}
for child in tcx.item_children(def_id).iter() {
handle_external_res(tcx, traits, external_mods, child.res)
}
}
_ => {}
}
}
for &cnum in tcx.crates().iter() {
let def_id = DefId {
krate: cnum,
index: CRATE_DEF_INDEX,
};
handle_external_res(tcx, &mut traits, &mut external_mods, Res::Def(DefKind::Mod, def_id));
}
traits
}
pub fn provide(providers: &mut ty::query::Providers<'_>) {
providers.all_traits = |tcx, cnum| {
assert_eq!(cnum, LOCAL_CRATE);
&tcx.arena.alloc(compute_all_traits(tcx))[..]
}
}
struct UsePlacementFinder<'tcx> {
target_module: hir::HirId,
span: Option<Span>,
found_use: bool,
tcx: TyCtxt<'tcx>,
}
impl UsePlacementFinder<'tcx> {
fn check(
tcx: TyCtxt<'tcx>,
krate: &'tcx hir::Crate,
target_module: hir::HirId,
) -> (Option<Span>, bool) {
let mut finder = UsePlacementFinder {
target_module,
span: None,
found_use: false,
tcx,
};
hir::intravisit::walk_crate(&mut finder, krate);
(finder.span, finder.found_use)
}
}
impl hir::intravisit::Visitor<'tcx> for UsePlacementFinder<'tcx> {
fn visit_mod(
&mut self,
module: &'tcx hir::Mod,
_: Span,
hir_id: hir::HirId,
) {
if self.span.is_some() {
return;
}
if hir_id != self.target_module {
hir::intravisit::walk_mod(self, module, hir_id);
return;
}
// Find a `use` statement.
for item_id in &module.item_ids {
let item = self.tcx.hir().expect_item(item_id.id);
match item.node {
hir::ItemKind::Use(..) => {
// Don't suggest placing a `use` before the prelude
// import or other generated ones.
if !item.span.from_expansion() {
self.span = Some(item.span.shrink_to_lo());
self.found_use = true;
return;
}
},
// Don't place `use` before `extern crate`...
hir::ItemKind::ExternCrate(_) => {}
// ...but do place them before the first other item.
_ => if self.span.map_or(true, |span| item.span < span ) {
if !item.span.from_expansion() {
// Don't insert between attributes and an item.
if item.attrs.is_empty() {
self.span = Some(item.span.shrink_to_lo());
} else {
// Find the first attribute on the item.
for attr in &item.attrs {
if self.span.map_or(true, |span| attr.span < span) {
self.span = Some(attr.span.shrink_to_lo());
}
}
}
}
},
}
}
}
fn nested_visit_map<'this>(
&'this mut self
) -> hir::intravisit::NestedVisitorMap<'this, 'tcx> {
hir::intravisit::NestedVisitorMap::None
}
}