blob: 333509e18504d9c9a2e11cab81af5f6df36c7b12 [file] [log] [blame]
//! After we obtain a fresh AST fragment from a macro, code in this module helps to integrate
//! that fragment into the module structures that are already partially built.
//!
//! Items from the fragment are placed into modules,
//! unexpanded macros in the fragment are visited and registered.
//! Imports are also considered items and placed into modules here, but not resolved yet.
use crate::macros::{LegacyBinding, LegacyScope};
use crate::resolve_imports::ImportDirective;
use crate::resolve_imports::ImportDirectiveSubclass::{self, GlobImport, SingleImport};
use crate::{Module, ModuleData, ModuleKind, NameBinding, NameBindingKind, Segment, ToNameBinding};
use crate::{ModuleOrUniformRoot, ParentScope, PerNS, Resolver, ResolverArenas, ExternPreludeEntry};
use crate::Namespace::{self, TypeNS, ValueNS, MacroNS};
use crate::{ResolutionError, Determinacy, PathResult, CrateLint};
use rustc::bug;
use rustc::hir::def::{self, *};
use rustc::hir::def_id::{CRATE_DEF_INDEX, LOCAL_CRATE, DefId};
use rustc::hir::map::DefCollector;
use rustc::ty;
use rustc::middle::cstore::CrateStore;
use rustc_metadata::cstore::LoadedMacro;
use std::cell::Cell;
use std::ptr;
use rustc_data_structures::sync::Lrc;
use errors::Applicability;
use syntax::ast::{Name, Ident};
use syntax::attr;
use syntax::ast::{self, Block, ForeignItem, ForeignItemKind, Item, ItemKind, NodeId};
use syntax::ast::{MetaItemKind, StmtKind, TraitItem, TraitItemKind, Variant};
use syntax::ext::base::{MacroKind, SyntaxExtension};
use syntax::ext::expand::AstFragment;
use syntax::ext::hygiene::ExpnId;
use syntax::feature_gate::is_builtin_attr;
use syntax::parse::token::{self, Token};
use syntax::{span_err, struct_span_err};
use syntax::symbol::{kw, sym};
use syntax::visit::{self, Visitor};
use syntax_pos::{Span, DUMMY_SP};
use log::debug;
type Res = def::Res<NodeId>;
impl<'a> ToNameBinding<'a> for (Module<'a>, ty::Visibility, Span, ExpnId) {
fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
arenas.alloc_name_binding(NameBinding {
kind: NameBindingKind::Module(self.0),
ambiguity: None,
vis: self.1,
span: self.2,
expansion: self.3,
})
}
}
impl<'a> ToNameBinding<'a> for (Res, ty::Visibility, Span, ExpnId) {
fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
arenas.alloc_name_binding(NameBinding {
kind: NameBindingKind::Res(self.0, false),
ambiguity: None,
vis: self.1,
span: self.2,
expansion: self.3,
})
}
}
struct IsMacroExport;
impl<'a> ToNameBinding<'a> for (Res, ty::Visibility, Span, ExpnId, IsMacroExport) {
fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> {
arenas.alloc_name_binding(NameBinding {
kind: NameBindingKind::Res(self.0, true),
ambiguity: None,
vis: self.1,
span: self.2,
expansion: self.3,
})
}
}
impl<'a> Resolver<'a> {
/// Defines `name` in namespace `ns` of module `parent` to be `def` if it is not yet defined;
/// otherwise, reports an error.
crate fn define<T>(&mut self, parent: Module<'a>, ident: Ident, ns: Namespace, def: T)
where T: ToNameBinding<'a>,
{
let binding = def.to_name_binding(self.arenas);
if let Err(old_binding) = self.try_define(parent, ident, ns, binding) {
self.report_conflict(parent, ident, ns, old_binding, &binding);
}
}
crate fn get_module(&mut self, def_id: DefId) -> Module<'a> {
if def_id.krate == LOCAL_CRATE {
return self.module_map[&def_id]
}
let macros_only = self.cstore.dep_kind_untracked(def_id.krate).macros_only();
if let Some(&module) = self.extern_module_map.get(&(def_id, macros_only)) {
return module;
}
let (name, parent) = if def_id.index == CRATE_DEF_INDEX {
(self.cstore.crate_name_untracked(def_id.krate).as_interned_str(), None)
} else {
let def_key = self.cstore.def_key(def_id);
(def_key.disambiguated_data.data.get_opt_name().unwrap(),
Some(self.get_module(DefId { index: def_key.parent.unwrap(), ..def_id })))
};
let kind = ModuleKind::Def(DefKind::Mod, def_id, name.as_symbol());
let module = self.arenas.alloc_module(ModuleData::new(
parent, kind, def_id, ExpnId::root(), DUMMY_SP
));
self.extern_module_map.insert((def_id, macros_only), module);
module
}
crate fn macro_def_scope(&mut self, expn_id: ExpnId) -> Module<'a> {
let def_id = match self.macro_defs.get(&expn_id) {
Some(def_id) => *def_id,
None => return self.ast_transform_scopes.get(&expn_id)
.unwrap_or(&self.graph_root),
};
if let Some(id) = self.definitions.as_local_node_id(def_id) {
self.local_macro_def_scopes[&id]
} else {
let module_def_id = ty::DefIdTree::parent(&*self, def_id).unwrap();
self.get_module(module_def_id)
}
}
crate fn get_macro(&mut self, res: Res) -> Option<Lrc<SyntaxExtension>> {
match res {
Res::Def(DefKind::Macro(..), def_id) => self.get_macro_by_def_id(def_id),
Res::NonMacroAttr(attr_kind) =>
Some(self.non_macro_attr(attr_kind == NonMacroAttrKind::Tool)),
_ => None,
}
}
crate fn get_macro_by_def_id(&mut self, def_id: DefId) -> Option<Lrc<SyntaxExtension>> {
if let Some(ext) = self.macro_map.get(&def_id) {
return Some(ext.clone());
}
let ext = Lrc::new(match self.cstore.load_macro_untracked(def_id, &self.session) {
LoadedMacro::MacroDef(item) =>
self.compile_macro(&item, self.cstore.crate_edition_untracked(def_id.krate)),
LoadedMacro::ProcMacro(ext) => ext,
});
self.macro_map.insert(def_id, ext.clone());
Some(ext)
}
// FIXME: `extra_placeholders` should be included into the `fragment` as regular placeholders.
crate fn build_reduced_graph(
&mut self,
fragment: &AstFragment,
extra_placeholders: &[NodeId],
parent_scope: ParentScope<'a>,
) -> LegacyScope<'a> {
let mut def_collector = DefCollector::new(&mut self.definitions, parent_scope.expansion);
fragment.visit_with(&mut def_collector);
for placeholder in extra_placeholders {
def_collector.visit_macro_invoc(*placeholder);
}
let mut visitor = BuildReducedGraphVisitor { r: self, parent_scope };
fragment.visit_with(&mut visitor);
for placeholder in extra_placeholders {
visitor.parent_scope.legacy = visitor.visit_invoc(*placeholder);
}
visitor.parent_scope.legacy
}
crate fn build_reduced_graph_external(&mut self, module: Module<'a>) {
let def_id = module.def_id().expect("unpopulated module without a def-id");
for child in self.cstore.item_children_untracked(def_id, self.session) {
let child = child.map_id(|_| panic!("unexpected id"));
BuildReducedGraphVisitor { r: self, parent_scope: ParentScope::module(module) }
.build_reduced_graph_for_external_crate_res(child);
}
}
}
struct BuildReducedGraphVisitor<'a, 'b> {
r: &'b mut Resolver<'a>,
parent_scope: ParentScope<'a>,
}
impl<'a> AsMut<Resolver<'a>> for BuildReducedGraphVisitor<'a, '_> {
fn as_mut(&mut self) -> &mut Resolver<'a> { self.r }
}
impl<'a, 'b> BuildReducedGraphVisitor<'a, 'b> {
fn resolve_visibility(&mut self, vis: &ast::Visibility) -> ty::Visibility {
let parent_scope = &self.parent_scope;
match vis.node {
ast::VisibilityKind::Public => ty::Visibility::Public,
ast::VisibilityKind::Crate(..) => {
ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
}
ast::VisibilityKind::Inherited => {
ty::Visibility::Restricted(parent_scope.module.normal_ancestor_id)
}
ast::VisibilityKind::Restricted { ref path, id, .. } => {
// For visibilities we are not ready to provide correct implementation of "uniform
// paths" right now, so on 2018 edition we only allow module-relative paths for now.
// On 2015 edition visibilities are resolved as crate-relative by default,
// so we are prepending a root segment if necessary.
let ident = path.segments.get(0).expect("empty path in visibility").ident;
let crate_root = if ident.is_path_segment_keyword() {
None
} else if ident.span.rust_2018() {
let msg = "relative paths are not supported in visibilities on 2018 edition";
self.r.session.struct_span_err(ident.span, msg)
.span_suggestion(
path.span,
"try",
format!("crate::{}", path),
Applicability::MaybeIncorrect,
)
.emit();
return ty::Visibility::Public;
} else {
let ctxt = ident.span.ctxt();
Some(Segment::from_ident(Ident::new(
kw::PathRoot, path.span.shrink_to_lo().with_ctxt(ctxt)
)))
};
let segments = crate_root.into_iter()
.chain(path.segments.iter().map(|seg| seg.into())).collect::<Vec<_>>();
let expected_found_error = |this: &Self, res: Res| {
let path_str = Segment::names_to_string(&segments);
struct_span_err!(this.r.session, path.span, E0577,
"expected module, found {} `{}`", res.descr(), path_str)
.span_label(path.span, "not a module").emit();
};
match self.r.resolve_path(
&segments,
Some(TypeNS),
parent_scope,
true,
path.span,
CrateLint::SimplePath(id),
) {
PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
let res = module.res().expect("visibility resolved to unnamed block");
self.r.record_partial_res(id, PartialRes::new(res));
if module.is_normal() {
if res == Res::Err {
ty::Visibility::Public
} else {
let vis = ty::Visibility::Restricted(res.def_id());
if self.r.is_accessible_from(vis, parent_scope.module) {
vis
} else {
let msg =
"visibilities can only be restricted to ancestor modules";
self.r.session.span_err(path.span, msg);
ty::Visibility::Public
}
}
} else {
expected_found_error(self, res);
ty::Visibility::Public
}
}
PathResult::Module(..) => {
self.r.session.span_err(path.span, "visibility must resolve to a module");
ty::Visibility::Public
}
PathResult::NonModule(partial_res) => {
expected_found_error(self, partial_res.base_res());
ty::Visibility::Public
}
PathResult::Failed { span, label, suggestion, .. } => {
self.r.report_error(
span, ResolutionError::FailedToResolve { label, suggestion }
);
ty::Visibility::Public
}
PathResult::Indeterminate => {
span_err!(self.r.session, path.span, E0578,
"cannot determine resolution for the visibility");
ty::Visibility::Public
}
}
}
}
}
fn insert_field_names(&mut self, def_id: DefId, field_names: Vec<Name>) {
if !field_names.is_empty() {
self.r.field_names.insert(def_id, field_names);
}
}
fn block_needs_anonymous_module(&mut self, block: &Block) -> bool {
// If any statements are items, we need to create an anonymous module
block.stmts.iter().any(|statement| match statement.node {
StmtKind::Item(_) | StmtKind::Mac(_) => true,
_ => false,
})
}
// Add an import directive to the current module.
fn add_import_directive(
&mut self,
module_path: Vec<Segment>,
subclass: ImportDirectiveSubclass<'a>,
span: Span,
id: NodeId,
item: &ast::Item,
root_span: Span,
root_id: NodeId,
vis: ty::Visibility,
) {
let current_module = self.parent_scope.module;
let directive = self.r.arenas.alloc_import_directive(ImportDirective {
parent_scope: self.parent_scope,
module_path,
imported_module: Cell::new(None),
subclass,
span,
id,
use_span: item.span,
use_span_with_attributes: item.span_with_attributes(),
has_attributes: !item.attrs.is_empty(),
root_span,
root_id,
vis: Cell::new(vis),
used: Cell::new(false),
});
debug!("add_import_directive({:?})", directive);
self.r.indeterminate_imports.push(directive);
match directive.subclass {
SingleImport { target, type_ns_only, .. } => {
self.r.per_ns(|this, ns| if !type_ns_only || ns == TypeNS {
let mut resolution = this.resolution(current_module, target, ns).borrow_mut();
resolution.add_single_import(directive);
});
}
// We don't add prelude imports to the globs since they only affect lexical scopes,
// which are not relevant to import resolution.
GlobImport { is_prelude: true, .. } => {}
GlobImport { .. } => current_module.globs.borrow_mut().push(directive),
_ => unreachable!(),
}
}
fn build_reduced_graph_for_use_tree(
&mut self,
// This particular use tree
use_tree: &ast::UseTree,
id: NodeId,
parent_prefix: &[Segment],
nested: bool,
// The whole `use` item
item: &Item,
vis: ty::Visibility,
root_span: Span,
) {
debug!("build_reduced_graph_for_use_tree(parent_prefix={:?}, use_tree={:?}, nested={})",
parent_prefix, use_tree, nested);
let mut prefix_iter = parent_prefix.iter().cloned()
.chain(use_tree.prefix.segments.iter().map(|seg| seg.into())).peekable();
// On 2015 edition imports are resolved as crate-relative by default,
// so prefixes are prepended with crate root segment if necessary.
// The root is prepended lazily, when the first non-empty prefix or terminating glob
// appears, so imports in braced groups can have roots prepended independently.
let is_glob = if let ast::UseTreeKind::Glob = use_tree.kind { true } else { false };
let crate_root = match prefix_iter.peek() {
Some(seg) if !seg.ident.is_path_segment_keyword() && seg.ident.span.rust_2015() => {
Some(seg.ident.span.ctxt())
}
None if is_glob && use_tree.span.rust_2015() => {
Some(use_tree.span.ctxt())
}
_ => None,
}.map(|ctxt| Segment::from_ident(Ident::new(
kw::PathRoot, use_tree.prefix.span.shrink_to_lo().with_ctxt(ctxt)
)));
let prefix = crate_root.into_iter().chain(prefix_iter).collect::<Vec<_>>();
debug!("build_reduced_graph_for_use_tree: prefix={:?}", prefix);
let empty_for_self = |prefix: &[Segment]| {
prefix.is_empty() ||
prefix.len() == 1 && prefix[0].ident.name == kw::PathRoot
};
match use_tree.kind {
ast::UseTreeKind::Simple(rename, ..) => {
let mut ident = use_tree.ident().gensym_if_underscore();
let mut module_path = prefix;
let mut source = module_path.pop().unwrap();
let mut type_ns_only = false;
if nested {
// Correctly handle `self`
if source.ident.name == kw::SelfLower {
type_ns_only = true;
if empty_for_self(&module_path) {
self.r.report_error(
use_tree.span,
ResolutionError::
SelfImportOnlyInImportListWithNonEmptyPrefix
);
return;
}
// Replace `use foo::self;` with `use foo;`
source = module_path.pop().unwrap();
if rename.is_none() {
ident = source.ident;
}
}
} else {
// Disallow `self`
if source.ident.name == kw::SelfLower {
self.r.report_error(
use_tree.span, ResolutionError::SelfImportsOnlyAllowedWithin
);
}
// Disallow `use $crate;`
if source.ident.name == kw::DollarCrate && module_path.is_empty() {
let crate_root = self.r.resolve_crate_root(source.ident);
let crate_name = match crate_root.kind {
ModuleKind::Def(.., name) => name,
ModuleKind::Block(..) => unreachable!(),
};
// HACK(eddyb) unclear how good this is, but keeping `$crate`
// in `source` breaks `src/test/compile-fail/import-crate-var.rs`,
// while the current crate doesn't have a valid `crate_name`.
if crate_name != kw::Invalid {
// `crate_name` should not be interpreted as relative.
module_path.push(Segment {
ident: Ident {
name: kw::PathRoot,
span: source.ident.span,
},
id: Some(self.r.session.next_node_id()),
});
source.ident.name = crate_name;
}
if rename.is_none() {
ident.name = crate_name;
}
self.r.session.struct_span_warn(item.span, "`$crate` may not be imported")
.note("`use $crate;` was erroneously allowed and \
will become a hard error in a future release")
.emit();
}
}
if ident.name == kw::Crate {
self.r.session.span_err(ident.span,
"crate root imports need to be explicitly named: \
`use crate as name;`");
}
let subclass = SingleImport {
source: source.ident,
target: ident,
source_bindings: PerNS {
type_ns: Cell::new(Err(Determinacy::Undetermined)),
value_ns: Cell::new(Err(Determinacy::Undetermined)),
macro_ns: Cell::new(Err(Determinacy::Undetermined)),
},
target_bindings: PerNS {
type_ns: Cell::new(None),
value_ns: Cell::new(None),
macro_ns: Cell::new(None),
},
type_ns_only,
nested,
};
self.add_import_directive(
module_path,
subclass,
use_tree.span,
id,
item,
root_span,
item.id,
vis,
);
}
ast::UseTreeKind::Glob => {
let subclass = GlobImport {
is_prelude: attr::contains_name(&item.attrs, sym::prelude_import),
max_vis: Cell::new(ty::Visibility::Invisible),
};
self.add_import_directive(
prefix,
subclass,
use_tree.span,
id,
item,
root_span,
item.id,
vis,
);
}
ast::UseTreeKind::Nested(ref items) => {
// Ensure there is at most one `self` in the list
let self_spans = items.iter().filter_map(|&(ref use_tree, _)| {
if let ast::UseTreeKind::Simple(..) = use_tree.kind {
if use_tree.ident().name == kw::SelfLower {
return Some(use_tree.span);
}
}
None
}).collect::<Vec<_>>();
if self_spans.len() > 1 {
let mut e = self.r.into_struct_error(
self_spans[0],
ResolutionError::SelfImportCanOnlyAppearOnceInTheList);
for other_span in self_spans.iter().skip(1) {
e.span_label(*other_span, "another `self` import appears here");
}
e.emit();
}
for &(ref tree, id) in items {
self.build_reduced_graph_for_use_tree(
// This particular use tree
tree, id, &prefix, true,
// The whole `use` item
item, vis, root_span,
);
}
// Empty groups `a::b::{}` are turned into synthetic `self` imports
// `a::b::c::{self as _}`, so that their prefixes are correctly
// resolved and checked for privacy/stability/etc.
if items.is_empty() && !empty_for_self(&prefix) {
let new_span = prefix[prefix.len() - 1].ident.span;
let tree = ast::UseTree {
prefix: ast::Path::from_ident(
Ident::new(kw::SelfLower, new_span)
),
kind: ast::UseTreeKind::Simple(
Some(Ident::new(kw::Underscore, new_span)),
ast::DUMMY_NODE_ID,
ast::DUMMY_NODE_ID,
),
span: use_tree.span,
};
self.build_reduced_graph_for_use_tree(
// This particular use tree
&tree, id, &prefix, true,
// The whole `use` item
item, ty::Visibility::Invisible, root_span,
);
}
}
}
}
/// Constructs the reduced graph for one item.
fn build_reduced_graph_for_item(&mut self, item: &Item) {
let parent_scope = &self.parent_scope;
let parent = parent_scope.module;
let expansion = parent_scope.expansion;
let ident = item.ident.gensym_if_underscore();
let sp = item.span;
let vis = self.resolve_visibility(&item.vis);
match item.node {
ItemKind::Use(ref use_tree) => {
self.build_reduced_graph_for_use_tree(
// This particular use tree
use_tree, item.id, &[], false,
// The whole `use` item
item, vis, use_tree.span,
);
}
ItemKind::ExternCrate(orig_name) => {
let module = if orig_name.is_none() && ident.name == kw::SelfLower {
self.r.session
.struct_span_err(item.span, "`extern crate self;` requires renaming")
.span_suggestion(
item.span,
"try",
"extern crate self as name;".into(),
Applicability::HasPlaceholders,
)
.emit();
return;
} else if orig_name == Some(kw::SelfLower) {
self.r.graph_root
} else {
let crate_id = self.r.crate_loader.process_extern_crate(
item, &self.r.definitions
);
self.r.get_module(DefId { krate: crate_id, index: CRATE_DEF_INDEX })
};
let used = self.process_legacy_macro_imports(item, module);
let binding =
(module, ty::Visibility::Public, sp, expansion).to_name_binding(self.r.arenas);
let directive = self.r.arenas.alloc_import_directive(ImportDirective {
root_id: item.id,
id: item.id,
parent_scope: self.parent_scope,
imported_module: Cell::new(Some(ModuleOrUniformRoot::Module(module))),
subclass: ImportDirectiveSubclass::ExternCrate {
source: orig_name,
target: ident,
},
has_attributes: !item.attrs.is_empty(),
use_span_with_attributes: item.span_with_attributes(),
use_span: item.span,
root_span: item.span,
span: item.span,
module_path: Vec::new(),
vis: Cell::new(vis),
used: Cell::new(used),
});
self.r.potentially_unused_imports.push(directive);
let imported_binding = self.r.import(binding, directive);
if ptr::eq(parent, self.r.graph_root) {
if let Some(entry) = self.r.extern_prelude.get(&ident.modern()) {
if expansion != ExpnId::root() && orig_name.is_some() &&
entry.extern_crate_item.is_none() {
let msg = "macro-expanded `extern crate` items cannot \
shadow names passed with `--extern`";
self.r.session.span_err(item.span, msg);
}
}
let entry = self.r.extern_prelude.entry(ident.modern())
.or_insert(ExternPreludeEntry {
extern_crate_item: None,
introduced_by_item: true,
});
entry.extern_crate_item = Some(imported_binding);
if orig_name.is_some() {
entry.introduced_by_item = true;
}
}
self.r.define(parent, ident, TypeNS, imported_binding);
}
ItemKind::GlobalAsm(..) => {}
ItemKind::Mod(..) if ident.name == kw::Invalid => {} // Crate root
ItemKind::Mod(..) => {
let def_id = self.r.definitions.local_def_id(item.id);
let module_kind = ModuleKind::Def(DefKind::Mod, def_id, ident.name);
let module = self.r.arenas.alloc_module(ModuleData {
no_implicit_prelude: parent.no_implicit_prelude || {
attr::contains_name(&item.attrs, sym::no_implicit_prelude)
},
..ModuleData::new(Some(parent), module_kind, def_id, expansion, item.span)
});
self.r.define(parent, ident, TypeNS, (module, vis, sp, expansion));
self.r.module_map.insert(def_id, module);
// Descend into the module.
self.parent_scope.module = module;
}
// Handled in `rustc_metadata::{native_libs,link_args}`
ItemKind::ForeignMod(..) => {}
// These items live in the value namespace.
ItemKind::Static(..) => {
let res = Res::Def(DefKind::Static, self.r.definitions.local_def_id(item.id));
self.r.define(parent, ident, ValueNS, (res, vis, sp, expansion));
}
ItemKind::Const(..) => {
let res = Res::Def(DefKind::Const, self.r.definitions.local_def_id(item.id));
self.r.define(parent, ident, ValueNS, (res, vis, sp, expansion));
}
ItemKind::Fn(..) => {
let res = Res::Def(DefKind::Fn, self.r.definitions.local_def_id(item.id));
self.r.define(parent, ident, ValueNS, (res, vis, sp, expansion));
// Functions introducing procedural macros reserve a slot
// in the macro namespace as well (see #52225).
self.define_macro(item);
}
// These items live in the type namespace.
ItemKind::TyAlias(..) => {
let res = Res::Def(DefKind::TyAlias, self.r.definitions.local_def_id(item.id));
self.r.define(parent, ident, TypeNS, (res, vis, sp, expansion));
}
ItemKind::OpaqueTy(_, _) => {
let res = Res::Def(DefKind::OpaqueTy, self.r.definitions.local_def_id(item.id));
self.r.define(parent, ident, TypeNS, (res, vis, sp, expansion));
}
ItemKind::Enum(ref enum_definition, _) => {
let module_kind = ModuleKind::Def(
DefKind::Enum,
self.r.definitions.local_def_id(item.id),
ident.name,
);
let module = self.r.new_module(parent,
module_kind,
parent.normal_ancestor_id,
expansion,
item.span);
self.r.define(parent, ident, TypeNS, (module, vis, sp, expansion));
self.parent_scope.module = module;
for variant in &(*enum_definition).variants {
self.build_reduced_graph_for_variant(variant, vis);
}
}
ItemKind::TraitAlias(..) => {
let res = Res::Def(DefKind::TraitAlias, self.r.definitions.local_def_id(item.id));
self.r.define(parent, ident, TypeNS, (res, vis, sp, expansion));
}
// These items live in both the type and value namespaces.
ItemKind::Struct(ref struct_def, _) => {
// Define a name in the type namespace.
let def_id = self.r.definitions.local_def_id(item.id);
let res = Res::Def(DefKind::Struct, def_id);
self.r.define(parent, ident, TypeNS, (res, vis, sp, expansion));
let mut ctor_vis = vis;
let has_non_exhaustive = attr::contains_name(&item.attrs, sym::non_exhaustive);
// If the structure is marked as non_exhaustive then lower the visibility
// to within the crate.
if has_non_exhaustive && vis == ty::Visibility::Public {
ctor_vis = ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX));
}
// Record field names for error reporting.
let field_names = struct_def.fields().iter().filter_map(|field| {
let field_vis = self.resolve_visibility(&field.vis);
if ctor_vis.is_at_least(field_vis, &*self.r) {
ctor_vis = field_vis;
}
field.ident.map(|ident| ident.name)
}).collect();
let item_def_id = self.r.definitions.local_def_id(item.id);
self.insert_field_names(item_def_id, field_names);
// If this is a tuple or unit struct, define a name
// in the value namespace as well.
if let Some(ctor_node_id) = struct_def.ctor_id() {
let ctor_res = Res::Def(
DefKind::Ctor(CtorOf::Struct, CtorKind::from_ast(struct_def)),
self.r.definitions.local_def_id(ctor_node_id),
);
self.r.define(parent, ident, ValueNS, (ctor_res, ctor_vis, sp, expansion));
self.r.struct_constructors.insert(res.def_id(), (ctor_res, ctor_vis));
}
}
ItemKind::Union(ref vdata, _) => {
let res = Res::Def(DefKind::Union, self.r.definitions.local_def_id(item.id));
self.r.define(parent, ident, TypeNS, (res, vis, sp, expansion));
// Record field names for error reporting.
let field_names = vdata.fields().iter().filter_map(|field| {
self.resolve_visibility(&field.vis);
field.ident.map(|ident| ident.name)
}).collect();
let item_def_id = self.r.definitions.local_def_id(item.id);
self.insert_field_names(item_def_id, field_names);
}
ItemKind::Impl(.., ref impl_items) => {
for impl_item in impl_items {
self.resolve_visibility(&impl_item.vis);
}
}
ItemKind::Trait(..) => {
let def_id = self.r.definitions.local_def_id(item.id);
// Add all the items within to a new module.
let module_kind = ModuleKind::Def(DefKind::Trait, def_id, ident.name);
let module = self.r.new_module(parent,
module_kind,
parent.normal_ancestor_id,
expansion,
item.span);
self.r.define(parent, ident, TypeNS, (module, vis, sp, expansion));
self.parent_scope.module = module;
}
ItemKind::MacroDef(..) | ItemKind::Mac(_) => unreachable!(),
}
}
// Constructs the reduced graph for one variant. Variants exist in the
// type and value namespaces.
fn build_reduced_graph_for_variant(&mut self, variant: &Variant, vis: ty::Visibility) {
let parent = self.parent_scope.module;
let expn_id = self.parent_scope.expansion;
let ident = variant.ident;
// Define a name in the type namespace.
let def_id = self.r.definitions.local_def_id(variant.id);
let res = Res::Def(DefKind::Variant, def_id);
self.r.define(parent, ident, TypeNS, (res, vis, variant.span, expn_id));
// If the variant is marked as non_exhaustive then lower the visibility to within the
// crate.
let mut ctor_vis = vis;
let has_non_exhaustive = attr::contains_name(&variant.attrs, sym::non_exhaustive);
if has_non_exhaustive && vis == ty::Visibility::Public {
ctor_vis = ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX));
}
// Define a constructor name in the value namespace.
// Braced variants, unlike structs, generate unusable names in
// value namespace, they are reserved for possible future use.
// It's ok to use the variant's id as a ctor id since an
// error will be reported on any use of such resolution anyway.
let ctor_node_id = variant.data.ctor_id().unwrap_or(variant.id);
let ctor_def_id = self.r.definitions.local_def_id(ctor_node_id);
let ctor_kind = CtorKind::from_ast(&variant.data);
let ctor_res = Res::Def(DefKind::Ctor(CtorOf::Variant, ctor_kind), ctor_def_id);
self.r.define(parent, ident, ValueNS, (ctor_res, ctor_vis, variant.span, expn_id));
}
/// Constructs the reduced graph for one foreign item.
fn build_reduced_graph_for_foreign_item(&mut self, item: &ForeignItem) {
let (res, ns) = match item.node {
ForeignItemKind::Fn(..) => {
(Res::Def(DefKind::Fn, self.r.definitions.local_def_id(item.id)), ValueNS)
}
ForeignItemKind::Static(..) => {
(Res::Def(DefKind::Static, self.r.definitions.local_def_id(item.id)), ValueNS)
}
ForeignItemKind::Ty => {
(Res::Def(DefKind::ForeignTy, self.r.definitions.local_def_id(item.id)), TypeNS)
}
ForeignItemKind::Macro(_) => unreachable!(),
};
let parent = self.parent_scope.module;
let expansion = self.parent_scope.expansion;
let vis = self.resolve_visibility(&item.vis);
self.r.define(parent, item.ident, ns, (res, vis, item.span, expansion));
}
fn build_reduced_graph_for_block(&mut self, block: &Block) {
let parent = self.parent_scope.module;
let expansion = self.parent_scope.expansion;
if self.block_needs_anonymous_module(block) {
let module = self.r.new_module(parent,
ModuleKind::Block(block.id),
parent.normal_ancestor_id,
expansion,
block.span);
self.r.block_map.insert(block.id, module);
self.parent_scope.module = module; // Descend into the block.
}
}
/// Builds the reduced graph for a single item in an external crate.
fn build_reduced_graph_for_external_crate_res(&mut self, child: Export<NodeId>) {
let parent = self.parent_scope.module;
let Export { ident, res, vis, span } = child;
// FIXME: We shouldn't create the gensym here, it should come from metadata,
// but metadata cannot encode gensyms currently, so we create it here.
// This is only a guess, two equivalent idents may incorrectly get different gensyms here.
let ident = ident.gensym_if_underscore();
let expansion = ExpnId::root(); // FIXME(jseyfried) intercrate hygiene
// Record primary definitions.
match res {
Res::Def(kind @ DefKind::Mod, def_id)
| Res::Def(kind @ DefKind::Enum, def_id)
| Res::Def(kind @ DefKind::Trait, def_id) => {
let module = self.r.new_module(parent,
ModuleKind::Def(kind, def_id, ident.name),
def_id,
expansion,
span);
self.r.define(parent, ident, TypeNS, (module, vis, DUMMY_SP, expansion));
}
Res::Def(DefKind::Struct, _)
| Res::Def(DefKind::Union, _)
| Res::Def(DefKind::Variant, _)
| Res::Def(DefKind::TyAlias, _)
| Res::Def(DefKind::ForeignTy, _)
| Res::Def(DefKind::OpaqueTy, _)
| Res::Def(DefKind::TraitAlias, _)
| Res::Def(DefKind::AssocTy, _)
| Res::Def(DefKind::AssocOpaqueTy, _)
| Res::PrimTy(..)
| Res::ToolMod =>
self.r.define(parent, ident, TypeNS, (res, vis, DUMMY_SP, expansion)),
Res::Def(DefKind::Fn, _)
| Res::Def(DefKind::Method, _)
| Res::Def(DefKind::Static, _)
| Res::Def(DefKind::Const, _)
| Res::Def(DefKind::AssocConst, _)
| Res::Def(DefKind::Ctor(..), _) =>
self.r.define(parent, ident, ValueNS, (res, vis, DUMMY_SP, expansion)),
Res::Def(DefKind::Macro(..), _)
| Res::NonMacroAttr(..) =>
self.r.define(parent, ident, MacroNS, (res, vis, DUMMY_SP, expansion)),
Res::Def(DefKind::TyParam, _) | Res::Def(DefKind::ConstParam, _)
| Res::Local(..) | Res::SelfTy(..) | Res::SelfCtor(..) | Res::Err =>
bug!("unexpected resolution: {:?}", res)
}
// Record some extra data for better diagnostics.
match res {
Res::Def(DefKind::Struct, def_id) | Res::Def(DefKind::Union, def_id) => {
let field_names = self.r.cstore.struct_field_names_untracked(def_id);
self.insert_field_names(def_id, field_names);
}
Res::Def(DefKind::Method, def_id) => {
if self.r.cstore.associated_item_cloned_untracked(def_id).method_has_self_argument {
self.r.has_self.insert(def_id);
}
}
Res::Def(DefKind::Ctor(CtorOf::Struct, ..), def_id) => {
let parent = self.r.cstore.def_key(def_id).parent;
if let Some(struct_def_id) = parent.map(|index| DefId { index, ..def_id }) {
self.r.struct_constructors.insert(struct_def_id, (res, vis));
}
}
_ => {}
}
}
fn legacy_import_macro(&mut self,
name: ast::Name,
binding: &'a NameBinding<'a>,
span: Span,
allow_shadowing: bool) {
if self.r.macro_use_prelude.insert(name, binding).is_some() && !allow_shadowing {
let msg = format!("`{}` is already in scope", name);
let note =
"macro-expanded `#[macro_use]`s may not shadow existing macros (see RFC 1560)";
self.r.session.struct_span_err(span, &msg).note(note).emit();
}
}
/// Returns `true` if we should consider the underlying `extern crate` to be used.
fn process_legacy_macro_imports(&mut self, item: &Item, module: Module<'a>) -> bool {
let mut import_all = None;
let mut single_imports = Vec::new();
for attr in &item.attrs {
if attr.check_name(sym::macro_use) {
if self.parent_scope.module.parent.is_some() {
span_err!(self.r.session, item.span, E0468,
"an `extern crate` loading macros must be at the crate root");
}
if let ItemKind::ExternCrate(Some(orig_name)) = item.node {
if orig_name == kw::SelfLower {
self.r.session.span_err(attr.span,
"`macro_use` is not supported on `extern crate self`");
}
}
let ill_formed = |span| span_err!(self.r.session, span, E0466, "bad macro import");
match attr.meta() {
Some(meta) => match meta.node {
MetaItemKind::Word => {
import_all = Some(meta.span);
break;
}
MetaItemKind::List(nested_metas) => for nested_meta in nested_metas {
match nested_meta.ident() {
Some(ident) if nested_meta.is_word() => single_imports.push(ident),
_ => ill_formed(nested_meta.span()),
}
}
MetaItemKind::NameValue(..) => ill_formed(meta.span),
}
None => ill_formed(attr.span),
}
}
}
let macro_use_directive =
|this: &Self, span| this.r.arenas.alloc_import_directive(ImportDirective {
root_id: item.id,
id: item.id,
parent_scope: this.parent_scope,
imported_module: Cell::new(Some(ModuleOrUniformRoot::Module(module))),
subclass: ImportDirectiveSubclass::MacroUse,
use_span_with_attributes: item.span_with_attributes(),
has_attributes: !item.attrs.is_empty(),
use_span: item.span,
root_span: span,
span,
module_path: Vec::new(),
vis: Cell::new(ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))),
used: Cell::new(false),
});
let allow_shadowing = self.parent_scope.expansion == ExpnId::root();
if let Some(span) = import_all {
let directive = macro_use_directive(self, span);
self.r.potentially_unused_imports.push(directive);
module.for_each_child(self, |this, ident, ns, binding| if ns == MacroNS {
let imported_binding = this.r.import(binding, directive);
this.legacy_import_macro(ident.name, imported_binding, span, allow_shadowing);
});
} else {
for ident in single_imports.iter().cloned() {
let result = self.r.resolve_ident_in_module(
ModuleOrUniformRoot::Module(module),
ident,
MacroNS,
&self.parent_scope,
false,
ident.span,
);
if let Ok(binding) = result {
let directive = macro_use_directive(self, ident.span);
self.r.potentially_unused_imports.push(directive);
let imported_binding = self.r.import(binding, directive);
self.legacy_import_macro(ident.name, imported_binding,
ident.span, allow_shadowing);
} else {
span_err!(self.r.session, ident.span, E0469, "imported macro not found");
}
}
}
import_all.is_some() || !single_imports.is_empty()
}
/// Returns `true` if this attribute list contains `macro_use`.
fn contains_macro_use(&mut self, attrs: &[ast::Attribute]) -> bool {
for attr in attrs {
if attr.check_name(sym::macro_escape) {
let msg = "macro_escape is a deprecated synonym for macro_use";
let mut err = self.r.session.struct_span_warn(attr.span, msg);
if let ast::AttrStyle::Inner = attr.style {
err.help("consider an outer attribute, `#[macro_use]` mod ...").emit();
} else {
err.emit();
}
} else if !attr.check_name(sym::macro_use) {
continue;
}
if !attr.is_word() {
self.r.session.span_err(attr.span, "arguments to macro_use are not allowed here");
}
return true;
}
false
}
fn visit_invoc(&mut self, id: NodeId) -> LegacyScope<'a> {
let invoc_id = id.placeholder_to_expn_id();
self.parent_scope.module.unexpanded_invocations.borrow_mut().insert(invoc_id);
let old_parent_scope = self.r.invocation_parent_scopes.insert(invoc_id, self.parent_scope);
assert!(old_parent_scope.is_none(), "invocation data is reset for an invocation");
LegacyScope::Invocation(invoc_id)
}
fn proc_macro_stub(item: &ast::Item) -> Option<(MacroKind, Ident, Span)> {
if attr::contains_name(&item.attrs, sym::proc_macro) {
return Some((MacroKind::Bang, item.ident, item.span));
} else if attr::contains_name(&item.attrs, sym::proc_macro_attribute) {
return Some((MacroKind::Attr, item.ident, item.span));
} else if let Some(attr) = attr::find_by_name(&item.attrs, sym::proc_macro_derive) {
if let Some(nested_meta) = attr.meta_item_list().and_then(|list| list.get(0).cloned()) {
if let Some(ident) = nested_meta.ident() {
return Some((MacroKind::Derive, ident, ident.span));
}
}
}
None
}
fn define_macro(&mut self, item: &ast::Item) -> LegacyScope<'a> {
let parent_scope = &self.parent_scope;
let expansion = parent_scope.expansion;
let (ext, ident, span, is_legacy) = match &item.node {
ItemKind::MacroDef(def) => {
let ext = Lrc::new(self.r.compile_macro(item, self.r.session.edition()));
(ext, item.ident, item.span, def.legacy)
}
ItemKind::Fn(..) => match Self::proc_macro_stub(item) {
Some((macro_kind, ident, span)) => {
self.r.proc_macro_stubs.insert(item.id);
(self.r.dummy_ext(macro_kind), ident, span, false)
}
None => return parent_scope.legacy,
}
_ => unreachable!(),
};
let def_id = self.r.definitions.local_def_id(item.id);
let res = Res::Def(DefKind::Macro(ext.macro_kind()), def_id);
self.r.macro_map.insert(def_id, ext);
self.r.local_macro_def_scopes.insert(item.id, parent_scope.module);
if is_legacy {
let ident = ident.modern();
self.r.macro_names.insert(ident);
let is_macro_export = attr::contains_name(&item.attrs, sym::macro_export);
let vis = if is_macro_export {
ty::Visibility::Public
} else {
ty::Visibility::Restricted(DefId::local(CRATE_DEF_INDEX))
};
let binding = (res, vis, span, expansion).to_name_binding(self.r.arenas);
self.r.set_binding_parent_module(binding, parent_scope.module);
self.r.all_macros.insert(ident.name, res);
if is_macro_export {
let module = self.r.graph_root;
self.r.define(module, ident, MacroNS,
(res, vis, span, expansion, IsMacroExport));
} else {
self.r.check_reserved_macro_name(ident, res);
self.r.unused_macros.insert(item.id, span);
}
LegacyScope::Binding(self.r.arenas.alloc_legacy_binding(LegacyBinding {
parent_legacy_scope: parent_scope.legacy, binding, ident
}))
} else {
let module = parent_scope.module;
let vis = self.resolve_visibility(&item.vis);
if vis != ty::Visibility::Public {
self.r.unused_macros.insert(item.id, span);
}
self.r.define(module, ident, MacroNS, (res, vis, span, expansion));
self.parent_scope.legacy
}
}
}
macro_rules! method {
($visit:ident: $ty:ty, $invoc:path, $walk:ident) => {
fn $visit(&mut self, node: &'b $ty) {
if let $invoc(..) = node.node {
self.visit_invoc(node.id);
} else {
visit::$walk(self, node);
}
}
}
}
impl<'a, 'b> Visitor<'b> for BuildReducedGraphVisitor<'a, 'b> {
method!(visit_impl_item: ast::ImplItem, ast::ImplItemKind::Macro, walk_impl_item);
method!(visit_expr: ast::Expr, ast::ExprKind::Mac, walk_expr);
method!(visit_pat: ast::Pat, ast::PatKind::Mac, walk_pat);
method!(visit_ty: ast::Ty, ast::TyKind::Mac, walk_ty);
fn visit_item(&mut self, item: &'b Item) {
let macro_use = match item.node {
ItemKind::MacroDef(..) => {
self.parent_scope.legacy = self.define_macro(item);
return
}
ItemKind::Mac(..) => {
self.parent_scope.legacy = self.visit_invoc(item.id);
return
}
ItemKind::Mod(..) => self.contains_macro_use(&item.attrs),
_ => false,
};
let orig_current_module = self.parent_scope.module;
let orig_current_legacy_scope = self.parent_scope.legacy;
self.build_reduced_graph_for_item(item);
visit::walk_item(self, item);
self.parent_scope.module = orig_current_module;
if !macro_use {
self.parent_scope.legacy = orig_current_legacy_scope;
}
}
fn visit_stmt(&mut self, stmt: &'b ast::Stmt) {
if let ast::StmtKind::Mac(..) = stmt.node {
self.parent_scope.legacy = self.visit_invoc(stmt.id);
} else {
visit::walk_stmt(self, stmt);
}
}
fn visit_foreign_item(&mut self, foreign_item: &'b ForeignItem) {
if let ForeignItemKind::Macro(_) = foreign_item.node {
self.visit_invoc(foreign_item.id);
return;
}
self.build_reduced_graph_for_foreign_item(foreign_item);
visit::walk_foreign_item(self, foreign_item);
}
fn visit_block(&mut self, block: &'b Block) {
let orig_current_module = self.parent_scope.module;
let orig_current_legacy_scope = self.parent_scope.legacy;
self.build_reduced_graph_for_block(block);
visit::walk_block(self, block);
self.parent_scope.module = orig_current_module;
self.parent_scope.legacy = orig_current_legacy_scope;
}
fn visit_trait_item(&mut self, item: &'b TraitItem) {
let parent = self.parent_scope.module;
if let TraitItemKind::Macro(_) = item.node {
self.visit_invoc(item.id);
return
}
// Add the item to the trait info.
let item_def_id = self.r.definitions.local_def_id(item.id);
let (res, ns) = match item.node {
TraitItemKind::Const(..) => (Res::Def(DefKind::AssocConst, item_def_id), ValueNS),
TraitItemKind::Method(ref sig, _) => {
if sig.decl.has_self() {
self.r.has_self.insert(item_def_id);
}
(Res::Def(DefKind::Method, item_def_id), ValueNS)
}
TraitItemKind::Type(..) => (Res::Def(DefKind::AssocTy, item_def_id), TypeNS),
TraitItemKind::Macro(_) => bug!(), // handled above
};
let vis = ty::Visibility::Public;
let expansion = self.parent_scope.expansion;
self.r.define(parent, item.ident, ns, (res, vis, item.span, expansion));
visit::walk_trait_item(self, item);
}
fn visit_token(&mut self, t: Token) {
if let token::Interpolated(nt) = t.kind {
if let token::NtExpr(ref expr) = *nt {
if let ast::ExprKind::Mac(..) = expr.node {
self.visit_invoc(expr.id);
}
}
}
}
fn visit_attribute(&mut self, attr: &'b ast::Attribute) {
if !attr.is_sugared_doc && is_builtin_attr(attr) {
self.r.builtin_attrs.push((attr.path.segments[0].ident, self.parent_scope));
}
visit::walk_attribute(self, attr);
}
}