blob: 1a186fa932ddb116e8a40556fbfc18999a6b0d3e [file] [log] [blame]
//! See docs in `build/expr/mod.rs`.
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::indexed_vec::Idx;
use crate::build::expr::category::{Category, RvalueFunc};
use crate::build::{BlockAnd, BlockAndExtension, Builder};
use crate::hair::*;
use rustc::middle::region;
use rustc::mir::interpret::PanicInfo;
use rustc::mir::*;
use rustc::ty::{self, CanonicalUserTypeAnnotation, Ty, UpvarSubsts};
use syntax_pos::Span;
impl<'a, 'tcx> Builder<'a, 'tcx> {
/// See comment on `as_local_operand`
pub fn as_local_rvalue<M>(&mut self, block: BasicBlock, expr: M) -> BlockAnd<Rvalue<'tcx>>
where
M: Mirror<'tcx, Output = Expr<'tcx>>,
{
let local_scope = self.local_scope();
self.as_rvalue(block, local_scope, expr)
}
/// Compile `expr`, yielding an rvalue.
pub fn as_rvalue<M>(
&mut self,
block: BasicBlock,
scope: Option<region::Scope>,
expr: M,
) -> BlockAnd<Rvalue<'tcx>>
where
M: Mirror<'tcx, Output = Expr<'tcx>>,
{
let expr = self.hir.mirror(expr);
self.expr_as_rvalue(block, scope, expr)
}
fn expr_as_rvalue(
&mut self,
mut block: BasicBlock,
scope: Option<region::Scope>,
expr: Expr<'tcx>,
) -> BlockAnd<Rvalue<'tcx>> {
debug!(
"expr_as_rvalue(block={:?}, scope={:?}, expr={:?})",
block, scope, expr
);
let this = self;
let expr_span = expr.span;
let source_info = this.source_info(expr_span);
match expr.kind {
ExprKind::Scope {
region_scope,
lint_level,
value,
} => {
let region_scope = (region_scope, source_info);
this.in_scope(region_scope, lint_level, |this| {
this.as_rvalue(block, scope, value)
})
}
ExprKind::Repeat { value, count } => {
let value_operand = unpack!(block = this.as_operand(block, scope, value));
block.and(Rvalue::Repeat(value_operand, count))
}
ExprKind::Borrow {
borrow_kind,
arg,
} => {
let arg_place = match borrow_kind {
BorrowKind::Shared => unpack!(block = this.as_read_only_place(block, arg)),
_ => unpack!(block = this.as_place(block, arg)),
};
block.and(Rvalue::Ref(this.hir.tcx().lifetimes.re_erased, borrow_kind, arg_place))
}
ExprKind::Binary { op, lhs, rhs } => {
let lhs = unpack!(block = this.as_operand(block, scope, lhs));
let rhs = unpack!(block = this.as_operand(block, scope, rhs));
this.build_binary_op(block, op, expr_span, expr.ty, lhs, rhs)
}
ExprKind::Unary { op, arg } => {
let arg = unpack!(block = this.as_operand(block, scope, arg));
// Check for -MIN on signed integers
if this.hir.check_overflow() && op == UnOp::Neg && expr.ty.is_signed() {
let bool_ty = this.hir.bool_ty();
let minval = this.minval_literal(expr_span, expr.ty);
let is_min = this.temp(bool_ty, expr_span);
this.cfg.push_assign(
block,
source_info,
&is_min,
Rvalue::BinaryOp(BinOp::Eq, arg.to_copy(), minval),
);
block = this.assert(
block,
Operand::Move(is_min),
false,
PanicInfo::OverflowNeg,
expr_span,
);
}
block.and(Rvalue::UnaryOp(op, arg))
}
ExprKind::Box { value } => {
let value = this.hir.mirror(value);
// The `Box<T>` temporary created here is not a part of the HIR,
// and therefore is not considered during generator OIBIT
// determination. See the comment about `box` at `yield_in_scope`.
let result = this
.local_decls
.push(LocalDecl::new_internal(expr.ty, expr_span));
this.cfg.push(
block,
Statement {
source_info,
kind: StatementKind::StorageLive(result),
},
);
if let Some(scope) = scope {
// schedule a shallow free of that memory, lest we unwind:
this.schedule_drop_storage_and_value(
expr_span,
scope,
result,
expr.ty,
);
}
// malloc some memory of suitable type (thus far, uninitialized):
let box_ = Rvalue::NullaryOp(NullOp::Box, value.ty);
this.cfg
.push_assign(block, source_info, &Place::from(result), box_);
// initialize the box contents:
unpack!(
block = this.into(
&Place::from(result).deref(),
block, value
)
);
block.and(Rvalue::Use(Operand::Move(Place::from(result))))
}
ExprKind::Cast { source } => {
let source = unpack!(block = this.as_operand(block, scope, source));
block.and(Rvalue::Cast(CastKind::Misc, source, expr.ty))
}
ExprKind::Pointer { cast, source } => {
let source = unpack!(block = this.as_operand(block, scope, source));
block.and(Rvalue::Cast(CastKind::Pointer(cast), source, expr.ty))
}
ExprKind::Array { fields } => {
// (*) We would (maybe) be closer to codegen if we
// handled this and other aggregate cases via
// `into()`, not `as_rvalue` -- in that case, instead
// of generating
//
// let tmp1 = ...1;
// let tmp2 = ...2;
// dest = Rvalue::Aggregate(Foo, [tmp1, tmp2])
//
// we could just generate
//
// dest.f = ...1;
// dest.g = ...2;
//
// The problem is that then we would need to:
//
// (a) have a more complex mechanism for handling
// partial cleanup;
// (b) distinguish the case where the type `Foo` has a
// destructor, in which case creating an instance
// as a whole "arms" the destructor, and you can't
// write individual fields; and,
// (c) handle the case where the type Foo has no
// fields. We don't want `let x: ();` to compile
// to the same MIR as `let x = ();`.
// first process the set of fields
let el_ty = expr.ty.sequence_element_type(this.hir.tcx());
let fields: Vec<_> = fields
.into_iter()
.map(|f| unpack!(block = this.as_operand(block, scope, f)))
.collect();
block.and(Rvalue::Aggregate(box AggregateKind::Array(el_ty), fields))
}
ExprKind::Tuple { fields } => {
// see (*) above
// first process the set of fields
let fields: Vec<_> = fields
.into_iter()
.map(|f| unpack!(block = this.as_operand(block, scope, f)))
.collect();
block.and(Rvalue::Aggregate(box AggregateKind::Tuple, fields))
}
ExprKind::Closure {
closure_id,
substs,
upvars,
movability,
} => {
// see (*) above
let operands: Vec<_> = upvars
.into_iter()
.map(|upvar| {
let upvar = this.hir.mirror(upvar);
match Category::of(&upvar.kind) {
// Use as_place to avoid creating a temporary when
// moving a variable into a closure, so that
// borrowck knows which variables to mark as being
// used as mut. This is OK here because the upvar
// expressions have no side effects and act on
// disjoint places.
// This occurs when capturing by copy/move, while
// by reference captures use as_operand
Some(Category::Place) => {
let place = unpack!(block = this.as_place(block, upvar));
this.consume_by_copy_or_move(place)
}
_ => {
// Turn mutable borrow captures into unique
// borrow captures when capturing an immutable
// variable. This is sound because the mutation
// that caused the capture will cause an error.
match upvar.kind {
ExprKind::Borrow {
borrow_kind:
BorrowKind::Mut {
allow_two_phase_borrow: false,
},
arg,
} => unpack!(
block = this.limit_capture_mutability(
upvar.span, upvar.ty, scope, block, arg,
)
),
_ => unpack!(block = this.as_operand(block, scope, upvar)),
}
}
}
}).collect();
let result = match substs {
UpvarSubsts::Generator(substs) => {
// We implicitly set the discriminant to 0. See
// librustc_mir/transform/deaggregator.rs for details.
let movability = movability.unwrap();
box AggregateKind::Generator(closure_id, substs, movability)
}
UpvarSubsts::Closure(substs) => box AggregateKind::Closure(closure_id, substs),
};
block.and(Rvalue::Aggregate(result, operands))
}
ExprKind::Adt {
adt_def,
variant_index,
substs,
user_ty,
fields,
base,
} => {
// see (*) above
let is_union = adt_def.is_union();
let active_field_index = if is_union {
Some(fields[0].name.index())
} else {
None
};
// first process the set of fields that were provided
// (evaluating them in order given by user)
let fields_map: FxHashMap<_, _> = fields
.into_iter()
.map(|f| {
(
f.name,
unpack!(block = this.as_operand(block, scope, f.expr)),
)
}).collect();
let field_names = this.hir.all_fields(adt_def, variant_index);
let fields = if let Some(FruInfo { base, field_types }) = base {
let base = unpack!(block = this.as_place(block, base));
// MIR does not natively support FRU, so for each
// base-supplied field, generate an operand that
// reads it from the base.
field_names
.into_iter()
.zip(field_types.into_iter())
.map(|(n, ty)| match fields_map.get(&n) {
Some(v) => v.clone(),
None => this.consume_by_copy_or_move(base.clone().field(n, ty)),
}).collect()
} else {
field_names
.iter()
.filter_map(|n| fields_map.get(n).cloned())
.collect()
};
let inferred_ty = expr.ty;
let user_ty = user_ty.map(|ty| {
this.canonical_user_type_annotations.push(CanonicalUserTypeAnnotation {
span: source_info.span,
user_ty: ty,
inferred_ty,
})
});
let adt = box AggregateKind::Adt(
adt_def,
variant_index,
substs,
user_ty,
active_field_index,
);
block.and(Rvalue::Aggregate(adt, fields))
}
ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => {
block = unpack!(this.stmt_expr(block, expr, None));
block.and(this.unit_rvalue())
}
ExprKind::Yield { value } => {
let value = unpack!(block = this.as_operand(block, scope, value));
let resume = this.cfg.start_new_block();
let cleanup = this.generator_drop_cleanup();
this.cfg.terminate(
block,
source_info,
TerminatorKind::Yield {
value: value,
resume: resume,
drop: cleanup,
},
);
resume.and(this.unit_rvalue())
}
ExprKind::Literal { .. }
| ExprKind::Block { .. }
| ExprKind::Match { .. }
| ExprKind::NeverToAny { .. }
| ExprKind::Use { .. }
| ExprKind::Loop { .. }
| ExprKind::LogicalOp { .. }
| ExprKind::Call { .. }
| ExprKind::Field { .. }
| ExprKind::Deref { .. }
| ExprKind::Index { .. }
| ExprKind::VarRef { .. }
| ExprKind::SelfRef
| ExprKind::Break { .. }
| ExprKind::Continue { .. }
| ExprKind::Return { .. }
| ExprKind::InlineAsm { .. }
| ExprKind::StaticRef { .. }
| ExprKind::PlaceTypeAscription { .. }
| ExprKind::ValueTypeAscription { .. } => {
// these do not have corresponding `Rvalue` variants,
// so make an operand and then return that
debug_assert!(match Category::of(&expr.kind) {
Some(Category::Rvalue(RvalueFunc::AsRvalue)) => false,
_ => true,
});
let operand = unpack!(block = this.as_operand(block, scope, expr));
block.and(Rvalue::Use(operand))
}
}
}
pub fn build_binary_op(
&mut self,
mut block: BasicBlock,
op: BinOp,
span: Span,
ty: Ty<'tcx>,
lhs: Operand<'tcx>,
rhs: Operand<'tcx>,
) -> BlockAnd<Rvalue<'tcx>> {
let source_info = self.source_info(span);
let bool_ty = self.hir.bool_ty();
if self.hir.check_overflow() && op.is_checkable() && ty.is_integral() {
let result_tup = self.hir.tcx().intern_tup(&[ty, bool_ty]);
let result_value = self.temp(result_tup, span);
self.cfg.push_assign(
block,
source_info,
&result_value,
Rvalue::CheckedBinaryOp(op, lhs, rhs),
);
let val_fld = Field::new(0);
let of_fld = Field::new(1);
let val = result_value.clone().field(val_fld, ty);
let of = result_value.field(of_fld, bool_ty);
let err = PanicInfo::Overflow(op);
block = self.assert(block, Operand::Move(of), false, err, span);
block.and(Rvalue::Use(Operand::Move(val)))
} else {
if ty.is_integral() && (op == BinOp::Div || op == BinOp::Rem) {
// Checking division and remainder is more complex, since we 1. always check
// and 2. there are two possible failure cases, divide-by-zero and overflow.
let zero_err = if op == BinOp::Div {
PanicInfo::DivisionByZero
} else {
PanicInfo::RemainderByZero
};
let overflow_err = PanicInfo::Overflow(op);
// Check for / 0
let is_zero = self.temp(bool_ty, span);
let zero = self.zero_literal(span, ty);
self.cfg.push_assign(
block,
source_info,
&is_zero,
Rvalue::BinaryOp(BinOp::Eq, rhs.to_copy(), zero),
);
block = self.assert(block, Operand::Move(is_zero), false, zero_err, span);
// We only need to check for the overflow in one case:
// MIN / -1, and only for signed values.
if ty.is_signed() {
let neg_1 = self.neg_1_literal(span, ty);
let min = self.minval_literal(span, ty);
let is_neg_1 = self.temp(bool_ty, span);
let is_min = self.temp(bool_ty, span);
let of = self.temp(bool_ty, span);
// this does (rhs == -1) & (lhs == MIN). It could short-circuit instead
self.cfg.push_assign(
block,
source_info,
&is_neg_1,
Rvalue::BinaryOp(BinOp::Eq, rhs.to_copy(), neg_1),
);
self.cfg.push_assign(
block,
source_info,
&is_min,
Rvalue::BinaryOp(BinOp::Eq, lhs.to_copy(), min),
);
let is_neg_1 = Operand::Move(is_neg_1);
let is_min = Operand::Move(is_min);
self.cfg.push_assign(
block,
source_info,
&of,
Rvalue::BinaryOp(BinOp::BitAnd, is_neg_1, is_min),
);
block = self.assert(block, Operand::Move(of), false, overflow_err, span);
}
}
block.and(Rvalue::BinaryOp(op, lhs, rhs))
}
}
fn limit_capture_mutability(
&mut self,
upvar_span: Span,
upvar_ty: Ty<'tcx>,
temp_lifetime: Option<region::Scope>,
mut block: BasicBlock,
arg: ExprRef<'tcx>,
) -> BlockAnd<Operand<'tcx>> {
let this = self;
let source_info = this.source_info(upvar_span);
let temp = this
.local_decls
.push(LocalDecl::new_temp(upvar_ty, upvar_span));
this.cfg.push(
block,
Statement {
source_info,
kind: StatementKind::StorageLive(temp),
},
);
let arg_place = unpack!(block = this.as_place(block, arg));
let mutability = match arg_place {
Place {
base: PlaceBase::Local(local),
projection: None,
} => this.local_decls[local].mutability,
Place {
base: PlaceBase::Local(local),
projection: Some(box Projection {
base: None,
elem: ProjectionElem::Deref,
})
} => {
debug_assert!(
this.local_decls[local].is_ref_for_guard(),
"Unexpected capture place",
);
this.local_decls[local].mutability
}
Place {
ref base,
projection: Some(box Projection {
base: ref base_proj,
elem: ProjectionElem::Field(upvar_index, _),
}),
}
| Place {
ref base,
projection: Some(box Projection {
base: Some(box Projection {
base: ref base_proj,
elem: ProjectionElem::Field(upvar_index, _),
}),
elem: ProjectionElem::Deref,
}),
} => {
let place = PlaceRef {
base,
projection: base_proj,
};
// Not projected from the implicit `self` in a closure.
debug_assert!(
match place.local_or_deref_local() {
Some(local) => local == Local::new(1),
None => false,
},
"Unexpected capture place"
);
// Not in a closure
debug_assert!(
this.upvar_mutbls.len() > upvar_index.index(),
"Unexpected capture place"
);
this.upvar_mutbls[upvar_index.index()]
}
_ => bug!("Unexpected capture place"),
};
let borrow_kind = match mutability {
Mutability::Not => BorrowKind::Unique,
Mutability::Mut => BorrowKind::Mut {
allow_two_phase_borrow: false,
},
};
this.cfg.push_assign(
block,
source_info,
&Place::from(temp),
Rvalue::Ref(this.hir.tcx().lifetimes.re_erased, borrow_kind, arg_place),
);
// In constants, temp_lifetime is None. We should not need to drop
// anything because no values with a destructor can be created in
// a constant at this time, even if the type may need dropping.
if let Some(temp_lifetime) = temp_lifetime {
this.schedule_drop_storage_and_value(
upvar_span,
temp_lifetime,
temp,
upvar_ty,
);
}
block.and(Operand::Move(Place::from(temp)))
}
// Helper to get a `-1` value of the appropriate type
fn neg_1_literal(&mut self, span: Span, ty: Ty<'tcx>) -> Operand<'tcx> {
let param_ty = ty::ParamEnv::empty().and(ty);
let bits = self.hir.tcx().layout_of(param_ty).unwrap().size.bits();
let n = (!0u128) >> (128 - bits);
let literal = ty::Const::from_bits(self.hir.tcx(), n, param_ty);
self.literal_operand(span, literal)
}
// Helper to get the minimum value of the appropriate type
fn minval_literal(&mut self, span: Span, ty: Ty<'tcx>) -> Operand<'tcx> {
assert!(ty.is_signed());
let param_ty = ty::ParamEnv::empty().and(ty);
let bits = self.hir.tcx().layout_of(param_ty).unwrap().size.bits();
let n = 1 << (bits - 1);
let literal = ty::Const::from_bits(self.hir.tcx(), n, param_ty);
self.literal_operand(span, literal)
}
}