blob: 217e10ab24f552696be203b2c7a45789cdd341e2 [file] [log] [blame]
#![allow(non_snake_case)]
use rustc::hir::{ExprKind, Node};
use crate::hir::def_id::DefId;
use rustc::hir::lowering::is_range_literal;
use rustc::ty::subst::SubstsRef;
use rustc::ty::{self, AdtKind, ParamEnv, Ty, TyCtxt};
use rustc::ty::layout::{self, IntegerExt, LayoutOf, VariantIdx, SizeSkeleton};
use rustc::{lint, util};
use rustc_data_structures::indexed_vec::Idx;
use util::nodemap::FxHashSet;
use lint::{LateContext, LintContext, LintArray};
use lint::{LintPass, LateLintPass};
use std::cmp;
use std::{i8, i16, i32, i64, u8, u16, u32, u64, f32, f64};
use syntax::{ast, attr, source_map};
use syntax::errors::Applicability;
use syntax::symbol::sym;
use rustc_target::spec::abi::Abi;
use syntax_pos::Span;
use rustc::hir;
use rustc::mir::interpret::{sign_extend, truncate};
use log::debug;
declare_lint! {
UNUSED_COMPARISONS,
Warn,
"comparisons made useless by limits of the types involved"
}
declare_lint! {
OVERFLOWING_LITERALS,
Deny,
"literal out of range for its type"
}
declare_lint! {
VARIANT_SIZE_DIFFERENCES,
Allow,
"detects enums with widely varying variant sizes"
}
#[derive(Copy, Clone)]
pub struct TypeLimits {
/// Id of the last visited negated expression
negated_expr_id: hir::HirId,
}
impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
impl TypeLimits {
pub fn new() -> TypeLimits {
TypeLimits { negated_expr_id: hir::DUMMY_HIR_ID }
}
}
/// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
/// Returns `true` iff the lint was overridden.
fn lint_overflowing_range_endpoint<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
lit: &hir::Lit,
lit_val: u128,
max: u128,
expr: &'tcx hir::Expr,
parent_expr: &'tcx hir::Expr,
ty: impl std::fmt::Debug,
) -> bool {
// We only want to handle exclusive (`..`) ranges,
// which are represented as `ExprKind::Struct`.
if let ExprKind::Struct(_, eps, _) = &parent_expr.node {
if eps.len() != 2 {
return false;
}
// We can suggest using an inclusive range
// (`..=`) instead only if it is the `end` that is
// overflowing and only by 1.
if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
let mut err = cx.struct_span_lint(
OVERFLOWING_LITERALS,
parent_expr.span,
&format!("range endpoint is out of range for `{:?}`", ty),
);
if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
use ast::{LitKind, LitIntType};
// We need to preserve the literal's suffix,
// as it may determine typing information.
let suffix = match lit.node {
LitKind::Int(_, LitIntType::Signed(s)) => format!("{}", s),
LitKind::Int(_, LitIntType::Unsigned(s)) => format!("{}", s),
LitKind::Int(_, LitIntType::Unsuffixed) => "".to_owned(),
_ => bug!(),
};
let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
err.span_suggestion(
parent_expr.span,
&"use an inclusive range instead",
suggestion,
Applicability::MachineApplicable,
);
err.emit();
return true;
}
}
}
false
}
// For `isize` & `usize`, be conservative with the warnings, so that the
// warnings are consistent between 32- and 64-bit platforms.
fn int_ty_range(int_ty: ast::IntTy) -> (i128, i128) {
match int_ty {
ast::IntTy::Isize => (i64::min_value() as i128, i64::max_value() as i128),
ast::IntTy::I8 => (i8::min_value() as i64 as i128, i8::max_value() as i128),
ast::IntTy::I16 => (i16::min_value() as i64 as i128, i16::max_value() as i128),
ast::IntTy::I32 => (i32::min_value() as i64 as i128, i32::max_value() as i128),
ast::IntTy::I64 => (i64::min_value() as i128, i64::max_value() as i128),
ast::IntTy::I128 =>(i128::min_value() as i128, i128::max_value()),
}
}
fn uint_ty_range(uint_ty: ast::UintTy) -> (u128, u128) {
match uint_ty {
ast::UintTy::Usize => (u64::min_value() as u128, u64::max_value() as u128),
ast::UintTy::U8 => (u8::min_value() as u128, u8::max_value() as u128),
ast::UintTy::U16 => (u16::min_value() as u128, u16::max_value() as u128),
ast::UintTy::U32 => (u32::min_value() as u128, u32::max_value() as u128),
ast::UintTy::U64 => (u64::min_value() as u128, u64::max_value() as u128),
ast::UintTy::U128 => (u128::min_value(), u128::max_value()),
}
}
fn get_bin_hex_repr(cx: &LateContext<'_, '_>, lit: &hir::Lit) -> Option<String> {
let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
let firstch = src.chars().next()?;
if firstch == '0' {
match src.chars().nth(1) {
Some('x') | Some('b') => return Some(src),
_ => return None,
}
}
None
}
fn report_bin_hex_error(
cx: &LateContext<'_, '_>,
expr: &hir::Expr,
ty: attr::IntType,
repr_str: String,
val: u128,
negative: bool,
) {
let size = layout::Integer::from_attr(&cx.tcx, ty).size();
let (t, actually) = match ty {
attr::IntType::SignedInt(t) => {
let actually = sign_extend(val, size) as i128;
(format!("{:?}", t), actually.to_string())
}
attr::IntType::UnsignedInt(t) => {
let actually = truncate(val, size);
(format!("{:?}", t), actually.to_string())
}
};
let mut err = cx.struct_span_lint(
OVERFLOWING_LITERALS,
expr.span,
&format!("literal out of range for {}", t),
);
err.note(&format!(
"the literal `{}` (decimal `{}`) does not fit into \
an `{}` and will become `{}{}`",
repr_str, val, t, actually, t
));
if let Some(sugg_ty) =
get_type_suggestion(&cx.tables.node_type(expr.hir_id), val, negative)
{
if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
let (sans_suffix, _) = repr_str.split_at(pos);
err.span_suggestion(
expr.span,
&format!("consider using `{}` instead", sugg_ty),
format!("{}{}", sans_suffix, sugg_ty),
Applicability::MachineApplicable
);
} else {
err.help(&format!("consider using `{}` instead", sugg_ty));
}
}
err.emit();
}
// This function finds the next fitting type and generates a suggestion string.
// It searches for fitting types in the following way (`X < Y`):
// - `iX`: if literal fits in `uX` => `uX`, else => `iY`
// - `-iX` => `iY`
// - `uX` => `uY`
//
// No suggestion for: `isize`, `usize`.
fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<String> {
use syntax::ast::IntTy::*;
use syntax::ast::UintTy::*;
macro_rules! find_fit {
($ty:expr, $val:expr, $negative:expr,
$($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
{
let _neg = if negative { 1 } else { 0 };
match $ty {
$($type => {
$(if !negative && val <= uint_ty_range($utypes).1 {
return Some(format!("{:?}", $utypes))
})*
$(if val <= int_ty_range($itypes).1 as u128 + _neg {
return Some(format!("{:?}", $itypes))
})*
None
},)+
_ => None
}
}
}
}
match t.sty {
ty::Int(i) => find_fit!(i, val, negative,
I8 => [U8] => [I16, I32, I64, I128],
I16 => [U16] => [I32, I64, I128],
I32 => [U32] => [I64, I128],
I64 => [U64] => [I128],
I128 => [U128] => []),
ty::Uint(u) => find_fit!(u, val, negative,
U8 => [U8, U16, U32, U64, U128] => [],
U16 => [U16, U32, U64, U128] => [],
U32 => [U32, U64, U128] => [],
U64 => [U64, U128] => [],
U128 => [U128] => []),
_ => None,
}
}
fn lint_int_literal<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
type_limits: &TypeLimits,
e: &'tcx hir::Expr,
lit: &hir::Lit,
t: ast::IntTy,
v: u128,
) {
let int_type = if let ast::IntTy::Isize = t {
cx.sess().target.isize_ty
} else {
t
};
let (_, max) = int_ty_range(int_type);
let max = max as u128;
let negative = type_limits.negated_expr_id == e.hir_id;
// Detect literal value out of range [min, max] inclusive
// avoiding use of -min to prevent overflow/panic
if (negative && v > max + 1) || (!negative && v > max) {
if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
report_bin_hex_error(
cx,
e,
attr::IntType::SignedInt(t),
repr_str,
v,
negative,
);
return;
}
let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
if let hir::ExprKind::Struct(..) = par_e.node {
if is_range_literal(cx.sess(), par_e)
&& lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t)
{
// The overflowing literal lint was overridden.
return;
}
}
}
cx.span_lint(
OVERFLOWING_LITERALS,
e.span,
&format!("literal out of range for `{:?}`", t),
);
}
}
fn lint_uint_literal<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
e: &'tcx hir::Expr,
lit: &hir::Lit,
t: ast::UintTy,
) {
let uint_type = if let ast::UintTy::Usize = t {
cx.sess().target.usize_ty
} else {
t
};
let (min, max) = uint_ty_range(uint_type);
let lit_val: u128 = match lit.node {
// _v is u8, within range by definition
ast::LitKind::Byte(_v) => return,
ast::LitKind::Int(v, _) => v,
_ => bug!(),
};
if lit_val < min || lit_val > max {
let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
match par_e.node {
hir::ExprKind::Cast(..) => {
if let ty::Char = cx.tables.expr_ty(par_e).sty {
let mut err = cx.struct_span_lint(
OVERFLOWING_LITERALS,
par_e.span,
"only `u8` can be cast into `char`",
);
err.span_suggestion(
par_e.span,
&"use a `char` literal instead",
format!("'\\u{{{:X}}}'", lit_val),
Applicability::MachineApplicable,
);
err.emit();
return;
}
}
hir::ExprKind::Struct(..)
if is_range_literal(cx.sess(), par_e) => {
if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
// The overflowing literal lint was overridden.
return;
}
}
_ => {}
}
}
if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
report_bin_hex_error(cx, e, attr::IntType::UnsignedInt(t), repr_str, lit_val, false);
return;
}
cx.span_lint(
OVERFLOWING_LITERALS,
e.span,
&format!("literal out of range for `{:?}`", t),
);
}
}
fn lint_literal<'a, 'tcx>(
cx: &LateContext<'a, 'tcx>,
type_limits: &TypeLimits,
e: &'tcx hir::Expr,
lit: &hir::Lit,
) {
match cx.tables.node_type(e.hir_id).sty {
ty::Int(t) => {
match lit.node {
ast::LitKind::Int(v, ast::LitIntType::Signed(_)) |
ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => {
lint_int_literal(cx, type_limits, e, lit, t, v)
}
_ => bug!(),
};
}
ty::Uint(t) => {
lint_uint_literal(cx, e, lit, t)
}
ty::Float(t) => {
let is_infinite = match lit.node {
ast::LitKind::Float(v, _) |
ast::LitKind::FloatUnsuffixed(v) => {
match t {
ast::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
ast::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
}
}
_ => bug!(),
};
if is_infinite == Ok(true) {
cx.span_lint(OVERFLOWING_LITERALS,
e.span,
&format!("literal out of range for `{:?}`", t));
}
}
_ => {}
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeLimits {
fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, e: &'tcx hir::Expr) {
match e.node {
hir::ExprKind::Unary(hir::UnNeg, ref expr) => {
// propagate negation, if the negation itself isn't negated
if self.negated_expr_id != e.hir_id {
self.negated_expr_id = expr.hir_id;
}
}
hir::ExprKind::Binary(binop, ref l, ref r) => {
if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
cx.span_lint(UNUSED_COMPARISONS,
e.span,
"comparison is useless due to type limits");
}
}
hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
_ => {}
};
fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
match binop.node {
hir::BinOpKind::Lt => v > min && v <= max,
hir::BinOpKind::Le => v >= min && v < max,
hir::BinOpKind::Gt => v >= min && v < max,
hir::BinOpKind::Ge => v > min && v <= max,
hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
_ => bug!(),
}
}
fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
source_map::respan(binop.span,
match binop.node {
hir::BinOpKind::Lt => hir::BinOpKind::Gt,
hir::BinOpKind::Le => hir::BinOpKind::Ge,
hir::BinOpKind::Gt => hir::BinOpKind::Lt,
hir::BinOpKind::Ge => hir::BinOpKind::Le,
_ => return binop,
})
}
fn check_limits(cx: &LateContext<'_, '_>,
binop: hir::BinOp,
l: &hir::Expr,
r: &hir::Expr)
-> bool {
let (lit, expr, swap) = match (&l.node, &r.node) {
(&hir::ExprKind::Lit(_), _) => (l, r, true),
(_, &hir::ExprKind::Lit(_)) => (r, l, false),
_ => return true,
};
// Normalize the binop so that the literal is always on the RHS in
// the comparison
let norm_binop = if swap { rev_binop(binop) } else { binop };
match cx.tables.node_type(expr.hir_id).sty {
ty::Int(int_ty) => {
let (min, max) = int_ty_range(int_ty);
let lit_val: i128 = match lit.node {
hir::ExprKind::Lit(ref li) => {
match li.node {
ast::LitKind::Int(v, ast::LitIntType::Signed(_)) |
ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => v as i128,
_ => return true
}
},
_ => bug!()
};
is_valid(norm_binop, lit_val, min, max)
}
ty::Uint(uint_ty) => {
let (min, max) :(u128, u128) = uint_ty_range(uint_ty);
let lit_val: u128 = match lit.node {
hir::ExprKind::Lit(ref li) => {
match li.node {
ast::LitKind::Int(v, _) => v,
_ => return true
}
},
_ => bug!()
};
is_valid(norm_binop, lit_val, min, max)
}
_ => true,
}
}
fn is_comparison(binop: hir::BinOp) -> bool {
match binop.node {
hir::BinOpKind::Eq |
hir::BinOpKind::Lt |
hir::BinOpKind::Le |
hir::BinOpKind::Ne |
hir::BinOpKind::Ge |
hir::BinOpKind::Gt => true,
_ => false,
}
}
}
}
declare_lint! {
IMPROPER_CTYPES,
Warn,
"proper use of libc types in foreign modules"
}
declare_lint_pass!(ImproperCTypes => [IMPROPER_CTYPES]);
struct ImproperCTypesVisitor<'a, 'tcx> {
cx: &'a LateContext<'a, 'tcx>,
}
enum FfiResult<'tcx> {
FfiSafe,
FfiPhantom(Ty<'tcx>),
FfiUnsafe {
ty: Ty<'tcx>,
reason: &'static str,
help: Option<&'static str>,
},
}
fn is_zst<'tcx>(tcx: TyCtxt<'tcx>, did: DefId, ty: Ty<'tcx>) -> bool {
tcx.layout_of(tcx.param_env(did).and(ty)).map(|layout| layout.is_zst()).unwrap_or(false)
}
fn ty_is_known_nonnull<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
match ty.sty {
ty::FnPtr(_) => true,
ty::Ref(..) => true,
ty::Adt(field_def, substs) if field_def.repr.transparent() && !field_def.is_union() => {
for field in field_def.all_fields() {
let field_ty = tcx.normalize_erasing_regions(
ParamEnv::reveal_all(),
field.ty(tcx, substs),
);
if is_zst(tcx, field.did, field_ty) {
continue;
}
let attrs = tcx.get_attrs(field_def.did);
if attrs.iter().any(|a| a.check_name(sym::rustc_nonnull_optimization_guaranteed)) ||
ty_is_known_nonnull(tcx, field_ty) {
return true;
}
}
false
}
_ => false,
}
}
/// Check if this enum can be safely exported based on the
/// "nullable pointer optimization". Currently restricted
/// to function pointers, references, core::num::NonZero*,
/// core::ptr::NonNull, and #[repr(transparent)] newtypes.
/// FIXME: This duplicates code in codegen.
fn is_repr_nullable_ptr<'tcx>(
tcx: TyCtxt<'tcx>,
ty: Ty<'tcx>,
ty_def: &'tcx ty::AdtDef,
substs: SubstsRef<'tcx>,
) -> bool {
if ty_def.variants.len() != 2 {
return false;
}
let get_variant_fields = |index| &ty_def.variants[VariantIdx::new(index)].fields;
let variant_fields = [get_variant_fields(0), get_variant_fields(1)];
let fields = if variant_fields[0].is_empty() {
&variant_fields[1]
} else if variant_fields[1].is_empty() {
&variant_fields[0]
} else {
return false;
};
if fields.len() != 1 {
return false;
}
let field_ty = fields[0].ty(tcx, substs);
if !ty_is_known_nonnull(tcx, field_ty) {
return false;
}
// At this point, the field's type is known to be nonnull and the parent enum is Option-like.
// If the computed size for the field and the enum are different, the nonnull optimization isn't
// being applied (and we've got a problem somewhere).
let compute_size_skeleton = |t| SizeSkeleton::compute(t, tcx, ParamEnv::reveal_all()).unwrap();
if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
bug!("improper_ctypes: Option nonnull optimization not applied?");
}
true
}
impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
/// Checks if the given type is "ffi-safe" (has a stable, well-defined
/// representation which can be exported to C code).
fn check_type_for_ffi(&self,
cache: &mut FxHashSet<Ty<'tcx>>,
ty: Ty<'tcx>) -> FfiResult<'tcx> {
use FfiResult::*;
let cx = self.cx.tcx;
// Protect against infinite recursion, for example
// `struct S(*mut S);`.
// FIXME: A recursion limit is necessary as well, for irregular
// recursive types.
if !cache.insert(ty) {
return FfiSafe;
}
match ty.sty {
ty::Adt(def, substs) => {
if def.is_phantom_data() {
return FfiPhantom(ty);
}
match def.adt_kind() {
AdtKind::Struct => {
if !def.repr.c() && !def.repr.transparent() {
return FfiUnsafe {
ty: ty,
reason: "this struct has unspecified layout",
help: Some("consider adding a `#[repr(C)]` or \
`#[repr(transparent)]` attribute to this struct"),
};
}
if def.non_enum_variant().fields.is_empty() {
return FfiUnsafe {
ty: ty,
reason: "this struct has no fields",
help: Some("consider adding a member to this struct"),
};
}
// We can't completely trust repr(C) and repr(transparent) markings;
// make sure the fields are actually safe.
let mut all_phantom = true;
for field in &def.non_enum_variant().fields {
let field_ty = cx.normalize_erasing_regions(
ParamEnv::reveal_all(),
field.ty(cx, substs),
);
// repr(transparent) types are allowed to have arbitrary ZSTs, not just
// PhantomData -- skip checking all ZST fields
if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
continue;
}
let r = self.check_type_for_ffi(cache, field_ty);
match r {
FfiSafe => {
all_phantom = false;
}
FfiPhantom(..) => {}
FfiUnsafe { .. } => {
return r;
}
}
}
if all_phantom { FfiPhantom(ty) } else { FfiSafe }
}
AdtKind::Union => {
if !def.repr.c() && !def.repr.transparent() {
return FfiUnsafe {
ty: ty,
reason: "this union has unspecified layout",
help: Some("consider adding a `#[repr(C)]` or \
`#[repr(transparent)]` attribute to this union"),
};
}
if def.non_enum_variant().fields.is_empty() {
return FfiUnsafe {
ty: ty,
reason: "this union has no fields",
help: Some("consider adding a field to this union"),
};
}
let mut all_phantom = true;
for field in &def.non_enum_variant().fields {
let field_ty = cx.normalize_erasing_regions(
ParamEnv::reveal_all(),
field.ty(cx, substs),
);
// repr(transparent) types are allowed to have arbitrary ZSTs, not just
// PhantomData -- skip checking all ZST fields.
if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
continue;
}
let r = self.check_type_for_ffi(cache, field_ty);
match r {
FfiSafe => {
all_phantom = false;
}
FfiPhantom(..) => {}
FfiUnsafe { .. } => {
return r;
}
}
}
if all_phantom { FfiPhantom(ty) } else { FfiSafe }
}
AdtKind::Enum => {
if def.variants.is_empty() {
// Empty enums are okay... although sort of useless.
return FfiSafe;
}
// Check for a repr() attribute to specify the size of the
// discriminant.
if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
// Special-case types like `Option<extern fn()>`.
if !is_repr_nullable_ptr(cx, ty, def, substs) {
return FfiUnsafe {
ty: ty,
reason: "enum has no representation hint",
help: Some("consider adding a `#[repr(C)]`, \
`#[repr(transparent)]`, or integer `#[repr(...)]` \
attribute to this enum"),
};
}
}
// Check the contained variants.
for variant in &def.variants {
for field in &variant.fields {
let field_ty = cx.normalize_erasing_regions(
ParamEnv::reveal_all(),
field.ty(cx, substs),
);
// repr(transparent) types are allowed to have arbitrary ZSTs, not
// just PhantomData -- skip checking all ZST fields.
if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
continue;
}
let r = self.check_type_for_ffi(cache, field_ty);
match r {
FfiSafe => {}
FfiUnsafe { .. } => {
return r;
}
FfiPhantom(..) => {
return FfiUnsafe {
ty: ty,
reason: "this enum contains a PhantomData field",
help: None,
};
}
}
}
}
FfiSafe
}
}
}
ty::Char => FfiUnsafe {
ty: ty,
reason: "the `char` type has no C equivalent",
help: Some("consider using `u32` or `libc::wchar_t` instead"),
},
ty::Int(ast::IntTy::I128) | ty::Uint(ast::UintTy::U128) => FfiUnsafe {
ty: ty,
reason: "128-bit integers don't currently have a known stable ABI",
help: None,
},
// Primitive types with a stable representation.
ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
ty::Slice(_) => FfiUnsafe {
ty: ty,
reason: "slices have no C equivalent",
help: Some("consider using a raw pointer instead"),
},
ty::Dynamic(..) => FfiUnsafe {
ty: ty,
reason: "trait objects have no C equivalent",
help: None,
},
ty::Str => FfiUnsafe {
ty: ty,
reason: "string slices have no C equivalent",
help: Some("consider using `*const u8` and a length instead"),
},
ty::Tuple(..) => FfiUnsafe {
ty: ty,
reason: "tuples have unspecified layout",
help: Some("consider using a struct instead"),
},
ty::RawPtr(ty::TypeAndMut { ty, .. }) |
ty::Ref(_, ty, _) => self.check_type_for_ffi(cache, ty),
ty::Array(ty, _) => self.check_type_for_ffi(cache, ty),
ty::FnPtr(sig) => {
match sig.abi() {
Abi::Rust | Abi::RustIntrinsic | Abi::PlatformIntrinsic | Abi::RustCall => {
return FfiUnsafe {
ty: ty,
reason: "this function pointer has Rust-specific calling convention",
help: Some("consider using an `extern fn(...) -> ...` \
function pointer instead"),
}
}
_ => {}
}
let sig = cx.erase_late_bound_regions(&sig);
if !sig.output().is_unit() {
let r = self.check_type_for_ffi(cache, sig.output());
match r {
FfiSafe => {}
_ => {
return r;
}
}
}
for arg in sig.inputs() {
let r = self.check_type_for_ffi(cache, arg);
match r {
FfiSafe => {}
_ => {
return r;
}
}
}
FfiSafe
}
ty::Foreign(..) => FfiSafe,
ty::Param(..) |
ty::Infer(..) |
ty::Bound(..) |
ty::Error |
ty::Closure(..) |
ty::Generator(..) |
ty::GeneratorWitness(..) |
ty::Placeholder(..) |
ty::UnnormalizedProjection(..) |
ty::Projection(..) |
ty::Opaque(..) |
ty::FnDef(..) => bug!("Unexpected type in foreign function"),
}
}
fn check_type_for_ffi_and_report_errors(&mut self, sp: Span, ty: Ty<'tcx>) {
// it is only OK to use this function because extern fns cannot have
// any generic types right now:
let ty = self.cx.tcx.normalize_erasing_regions(ParamEnv::reveal_all(), ty);
match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
FfiResult::FfiSafe => {}
FfiResult::FfiPhantom(ty) => {
self.cx.span_lint(IMPROPER_CTYPES,
sp,
&format!("`extern` block uses type `{}` which is not FFI-safe: \
composed only of PhantomData", ty));
}
FfiResult::FfiUnsafe { ty: unsafe_ty, reason, help } => {
let msg = format!("`extern` block uses type `{}` which is not FFI-safe: {}",
unsafe_ty, reason);
let mut diag = self.cx.struct_span_lint(IMPROPER_CTYPES, sp, &msg);
if let Some(s) = help {
diag.help(s);
}
if let ty::Adt(def, _) = unsafe_ty.sty {
if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
diag.span_note(sp, "type defined here");
}
}
diag.emit();
}
}
}
fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl) {
let def_id = self.cx.tcx.hir().local_def_id(id);
let sig = self.cx.tcx.fn_sig(def_id);
let sig = self.cx.tcx.erase_late_bound_regions(&sig);
let inputs = if sig.c_variadic {
// Don't include the spoofed `VaListImpl` in the functions list
// of inputs.
&sig.inputs()[..sig.inputs().len() - 1]
} else {
&sig.inputs()[..]
};
for (input_ty, input_hir) in inputs.iter().zip(&decl.inputs) {
self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty);
}
if let hir::Return(ref ret_hir) = decl.output {
let ret_ty = sig.output();
if !ret_ty.is_unit() {
self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty);
}
}
}
fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
let def_id = self.cx.tcx.hir().local_def_id(id);
let ty = self.cx.tcx.type_of(def_id);
self.check_type_for_ffi_and_report_errors(span, ty);
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ImproperCTypes {
fn check_foreign_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::ForeignItem) {
let mut vis = ImproperCTypesVisitor { cx };
let abi = cx.tcx.hir().get_foreign_abi(it.hir_id);
if abi != Abi::RustIntrinsic && abi != Abi::PlatformIntrinsic {
match it.node {
hir::ForeignItemKind::Fn(ref decl, _, _) => {
vis.check_foreign_fn(it.hir_id, decl);
}
hir::ForeignItemKind::Static(ref ty, _) => {
vis.check_foreign_static(it.hir_id, ty.span);
}
hir::ForeignItemKind::Type => ()
}
}
}
}
declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for VariantSizeDifferences {
fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item) {
if let hir::ItemKind::Enum(ref enum_definition, _) = it.node {
let item_def_id = cx.tcx.hir().local_def_id(it.hir_id);
let t = cx.tcx.type_of(item_def_id);
let ty = cx.tcx.erase_regions(&t);
let layout = match cx.layout_of(ty) {
Ok(layout) => layout,
Err(ty::layout::LayoutError::Unknown(_)) => return,
Err(err @ ty::layout::LayoutError::SizeOverflow(_)) => {
bug!("failed to get layout for `{}`: {}", t, err);
}
};
let (variants, tag) = match layout.variants {
layout::Variants::Multiple {
discr_kind: layout::DiscriminantKind::Tag,
ref discr,
ref variants,
..
} => (variants, discr),
_ => return,
};
let discr_size = tag.value.size(&cx.tcx).bytes();
debug!("enum `{}` is {} bytes large with layout:\n{:#?}",
t, layout.size.bytes(), layout);
let (largest, slargest, largest_index) = enum_definition.variants
.iter()
.zip(variants)
.map(|(variant, variant_layout)| {
// Subtract the size of the enum discriminant.
let bytes = variant_layout.size.bytes().saturating_sub(discr_size);
debug!("- variant `{}` is {} bytes large",
variant.ident,
bytes);
bytes
})
.enumerate()
.fold((0, 0, 0), |(l, s, li), (idx, size)| if size > l {
(size, l, idx)
} else if size > s {
(l, size, li)
} else {
(l, s, li)
});
// We only warn if the largest variant is at least thrice as large as
// the second-largest.
if largest > slargest * 3 && slargest > 0 {
cx.span_lint(VARIANT_SIZE_DIFFERENCES,
enum_definition.variants[largest_index].span,
&format!("enum variant is more than three times \
larger ({} bytes) than the next largest",
largest));
}
}
}
}