blob: a08c82a0ae82fdd7a559b14a7520d1f7dacd1263 [file] [log] [blame]
//! Miscellaneous type-system utilities that are too small to deserve their own modules.
use crate::hir;
use crate::hir::def::DefKind;
use crate::hir::def_id::DefId;
use crate::hir::map::DefPathData;
use crate::mir::interpret::{sign_extend, truncate};
use crate::ich::NodeIdHashingMode;
use crate::traits::{self, ObligationCause};
use crate::ty::{self, DefIdTree, Ty, TyCtxt, GenericParamDefKind, TypeFoldable};
use crate::ty::subst::{Subst, InternalSubsts, SubstsRef, UnpackedKind};
use crate::ty::query::TyCtxtAt;
use crate::ty::TyKind::*;
use crate::ty::layout::{Integer, IntegerExt};
use crate::mir::interpret::ConstValue;
use crate::util::common::ErrorReported;
use crate::middle::lang_items;
use rustc_data_structures::stable_hasher::{StableHasher, HashStable};
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_macros::HashStable;
use std::{cmp, fmt};
use syntax::ast;
use syntax::attr::{self, SignedInt, UnsignedInt};
use syntax_pos::{Span, DUMMY_SP};
#[derive(Copy, Clone, Debug)]
pub struct Discr<'tcx> {
/// Bit representation of the discriminant (e.g., `-128i8` is `0xFF_u128`).
pub val: u128,
pub ty: Ty<'tcx>
}
impl<'tcx> fmt::Display for Discr<'tcx> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.ty.sty {
ty::Int(ity) => {
let size = ty::tls::with(|tcx| {
Integer::from_attr(&tcx, SignedInt(ity)).size()
});
let x = self.val;
// sign extend the raw representation to be an i128
let x = sign_extend(x, size) as i128;
write!(fmt, "{}", x)
},
_ => write!(fmt, "{}", self.val),
}
}
}
impl<'tcx> Discr<'tcx> {
/// Adds `1` to the value and wraps around if the maximum for the type is reached.
pub fn wrap_incr(self, tcx: TyCtxt<'tcx>) -> Self {
self.checked_add(tcx, 1).0
}
pub fn checked_add(self, tcx: TyCtxt<'tcx>, n: u128) -> (Self, bool) {
let (int, signed) = match self.ty.sty {
Int(ity) => (Integer::from_attr(&tcx, SignedInt(ity)), true),
Uint(uty) => (Integer::from_attr(&tcx, UnsignedInt(uty)), false),
_ => bug!("non integer discriminant"),
};
let size = int.size();
let bit_size = int.size().bits();
let shift = 128 - bit_size;
if signed {
let sext = |u| {
sign_extend(u, size) as i128
};
let min = sext(1_u128 << (bit_size - 1));
let max = i128::max_value() >> shift;
let val = sext(self.val);
assert!(n < (i128::max_value() as u128));
let n = n as i128;
let oflo = val > max - n;
let val = if oflo {
min + (n - (max - val) - 1)
} else {
val + n
};
// zero the upper bits
let val = val as u128;
let val = truncate(val, size);
(Self {
val: val as u128,
ty: self.ty,
}, oflo)
} else {
let max = u128::max_value() >> shift;
let val = self.val;
let oflo = val > max - n;
let val = if oflo {
n - (max - val) - 1
} else {
val + n
};
(Self {
val: val,
ty: self.ty,
}, oflo)
}
}
}
pub trait IntTypeExt {
fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>;
fn disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>>;
fn initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx>;
}
impl IntTypeExt for attr::IntType {
fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
match *self {
SignedInt(ast::IntTy::I8) => tcx.types.i8,
SignedInt(ast::IntTy::I16) => tcx.types.i16,
SignedInt(ast::IntTy::I32) => tcx.types.i32,
SignedInt(ast::IntTy::I64) => tcx.types.i64,
SignedInt(ast::IntTy::I128) => tcx.types.i128,
SignedInt(ast::IntTy::Isize) => tcx.types.isize,
UnsignedInt(ast::UintTy::U8) => tcx.types.u8,
UnsignedInt(ast::UintTy::U16) => tcx.types.u16,
UnsignedInt(ast::UintTy::U32) => tcx.types.u32,
UnsignedInt(ast::UintTy::U64) => tcx.types.u64,
UnsignedInt(ast::UintTy::U128) => tcx.types.u128,
UnsignedInt(ast::UintTy::Usize) => tcx.types.usize,
}
}
fn initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx> {
Discr {
val: 0,
ty: self.to_ty(tcx)
}
}
fn disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>> {
if let Some(val) = val {
assert_eq!(self.to_ty(tcx), val.ty);
let (new, oflo) = val.checked_add(tcx, 1);
if oflo {
None
} else {
Some(new)
}
} else {
Some(self.initial_discriminant(tcx))
}
}
}
#[derive(Clone)]
pub enum CopyImplementationError<'tcx> {
InfrigingFields(Vec<&'tcx ty::FieldDef>),
NotAnAdt,
HasDestructor,
}
/// Describes whether a type is representable. For types that are not
/// representable, 'SelfRecursive' and 'ContainsRecursive' are used to
/// distinguish between types that are recursive with themselves and types that
/// contain a different recursive type. These cases can therefore be treated
/// differently when reporting errors.
///
/// The ordering of the cases is significant. They are sorted so that cmp::max
/// will keep the "more erroneous" of two values.
#[derive(Clone, PartialOrd, Ord, Eq, PartialEq, Debug)]
pub enum Representability {
Representable,
ContainsRecursive,
SelfRecursive(Vec<Span>),
}
impl<'tcx> ty::ParamEnv<'tcx> {
pub fn can_type_implement_copy(
self,
tcx: TyCtxt<'tcx>,
self_type: Ty<'tcx>,
) -> Result<(), CopyImplementationError<'tcx>> {
// FIXME: (@jroesch) float this code up
tcx.infer_ctxt().enter(|infcx| {
let (adt, substs) = match self_type.sty {
// These types used to have a builtin impl.
// Now libcore provides that impl.
ty::Uint(_) | ty::Int(_) | ty::Bool | ty::Float(_) |
ty::Char | ty::RawPtr(..) | ty::Never |
ty::Ref(_, _, hir::MutImmutable) => return Ok(()),
ty::Adt(adt, substs) => (adt, substs),
_ => return Err(CopyImplementationError::NotAnAdt),
};
let mut infringing = Vec::new();
for variant in &adt.variants {
for field in &variant.fields {
let ty = field.ty(tcx, substs);
if ty.references_error() {
continue;
}
let span = tcx.def_span(field.did);
let cause = ObligationCause { span, ..ObligationCause::dummy() };
let ctx = traits::FulfillmentContext::new();
match traits::fully_normalize(&infcx, ctx, cause, self, &ty) {
Ok(ty) => if !infcx.type_is_copy_modulo_regions(self, ty, span) {
infringing.push(field);
}
Err(errors) => {
infcx.report_fulfillment_errors(&errors, None, false);
}
};
}
}
if !infringing.is_empty() {
return Err(CopyImplementationError::InfrigingFields(infringing));
}
if adt.has_dtor(tcx) {
return Err(CopyImplementationError::HasDestructor);
}
Ok(())
})
}
}
impl<'tcx> TyCtxt<'tcx> {
/// Creates a hash of the type `Ty` which will be the same no matter what crate
/// context it's calculated within. This is used by the `type_id` intrinsic.
pub fn type_id_hash(self, ty: Ty<'tcx>) -> u64 {
let mut hasher = StableHasher::new();
let mut hcx = self.create_stable_hashing_context();
// We want the type_id be independent of the types free regions, so we
// erase them. The erase_regions() call will also anonymize bound
// regions, which is desirable too.
let ty = self.erase_regions(&ty);
hcx.while_hashing_spans(false, |hcx| {
hcx.with_node_id_hashing_mode(NodeIdHashingMode::HashDefPath, |hcx| {
ty.hash_stable(hcx, &mut hasher);
});
});
hasher.finish()
}
}
impl<'tcx> TyCtxt<'tcx> {
pub fn has_error_field(self, ty: Ty<'tcx>) -> bool {
if let ty::Adt(def, substs) = ty.sty {
for field in def.all_fields() {
let field_ty = field.ty(self, substs);
if let Error = field_ty.sty {
return true;
}
}
}
false
}
/// Attempts to returns the deeply last field of nested structures, but
/// does not apply any normalization in its search. Returns the same type
/// if input `ty` is not a structure at all.
pub fn struct_tail_without_normalization(self, ty: Ty<'tcx>) -> Ty<'tcx>
{
let tcx = self;
tcx.struct_tail_with_normalize(ty, |ty| ty)
}
/// Returns the deeply last field of nested structures, or the same type if
/// not a structure at all. Corresponds to the only possible unsized field,
/// and its type can be used to determine unsizing strategy.
///
/// Should only be called if `ty` has no inference variables and does not
/// need its lifetimes preserved (e.g. as part of codegen); otherwise
/// normalization attempt may cause compiler bugs.
pub fn struct_tail_erasing_lifetimes(self,
ty: Ty<'tcx>,
param_env: ty::ParamEnv<'tcx>)
-> Ty<'tcx>
{
let tcx = self;
tcx.struct_tail_with_normalize(ty, |ty| tcx.normalize_erasing_regions(param_env, ty))
}
/// Returns the deeply last field of nested structures, or the same type if
/// not a structure at all. Corresponds to the only possible unsized field,
/// and its type can be used to determine unsizing strategy.
///
/// This is parameterized over the normalization strategy (i.e. how to
/// handle `<T as Trait>::Assoc` and `impl Trait`); pass the identity
/// function to indicate no normalization should take place.
///
/// See also `struct_tail_erasing_lifetimes`, which is suitable for use
/// during codegen.
pub fn struct_tail_with_normalize(self,
mut ty: Ty<'tcx>,
normalize: impl Fn(Ty<'tcx>) -> Ty<'tcx>)
-> Ty<'tcx>
{
loop {
match ty.sty {
ty::Adt(def, substs) => {
if !def.is_struct() {
break;
}
match def.non_enum_variant().fields.last() {
Some(f) => ty = f.ty(self, substs),
None => break,
}
}
ty::Tuple(tys) => {
if let Some((&last_ty, _)) = tys.split_last() {
ty = last_ty.expect_ty();
} else {
break;
}
}
ty::Projection(_) | ty::Opaque(..) => {
let normalized = normalize(ty);
if ty == normalized {
return ty;
} else {
ty = normalized;
}
}
_ => {
break;
}
}
}
ty
}
/// Same as applying struct_tail on `source` and `target`, but only
/// keeps going as long as the two types are instances of the same
/// structure definitions.
/// For `(Foo<Foo<T>>, Foo<dyn Trait>)`, the result will be `(Foo<T>, Trait)`,
/// whereas struct_tail produces `T`, and `Trait`, respectively.
///
/// Should only be called if the types have no inference variables and do
/// not need their lifetimes preserved (e.g. as part of codegen); otherwise
/// normalization attempt may cause compiler bugs.
pub fn struct_lockstep_tails_erasing_lifetimes(self,
source: Ty<'tcx>,
target: Ty<'tcx>,
param_env: ty::ParamEnv<'tcx>)
-> (Ty<'tcx>, Ty<'tcx>)
{
let tcx = self;
tcx.struct_lockstep_tails_with_normalize(
source, target, |ty| tcx.normalize_erasing_regions(param_env, ty))
}
/// Same as applying struct_tail on `source` and `target`, but only
/// keeps going as long as the two types are instances of the same
/// structure definitions.
/// For `(Foo<Foo<T>>, Foo<dyn Trait>)`, the result will be `(Foo<T>, Trait)`,
/// whereas struct_tail produces `T`, and `Trait`, respectively.
///
/// See also `struct_lockstep_tails_erasing_lifetimes`, which is suitable for use
/// during codegen.
pub fn struct_lockstep_tails_with_normalize(self,
source: Ty<'tcx>,
target: Ty<'tcx>,
normalize: impl Fn(Ty<'tcx>) -> Ty<'tcx>)
-> (Ty<'tcx>, Ty<'tcx>)
{
let (mut a, mut b) = (source, target);
loop {
match (&a.sty, &b.sty) {
(&Adt(a_def, a_substs), &Adt(b_def, b_substs))
if a_def == b_def && a_def.is_struct() => {
if let Some(f) = a_def.non_enum_variant().fields.last() {
a = f.ty(self, a_substs);
b = f.ty(self, b_substs);
} else {
break;
}
},
(&Tuple(a_tys), &Tuple(b_tys))
if a_tys.len() == b_tys.len() => {
if let Some(a_last) = a_tys.last() {
a = a_last.expect_ty();
b = b_tys.last().unwrap().expect_ty();
} else {
break;
}
},
(ty::Projection(_), _) | (ty::Opaque(..), _) |
(_, ty::Projection(_)) | (_, ty::Opaque(..)) => {
// If either side is a projection, attempt to
// progress via normalization. (Should be safe to
// apply to both sides as normalization is
// idempotent.)
let a_norm = normalize(a);
let b_norm = normalize(b);
if a == a_norm && b == b_norm {
break;
} else {
a = a_norm;
b = b_norm;
}
}
_ => break,
}
}
(a, b)
}
/// Given a set of predicates that apply to an object type, returns
/// the region bounds that the (erased) `Self` type must
/// outlive. Precisely *because* the `Self` type is erased, the
/// parameter `erased_self_ty` must be supplied to indicate what type
/// has been used to represent `Self` in the predicates
/// themselves. This should really be a unique type; `FreshTy(0)` is a
/// popular choice.
///
/// N.B., in some cases, particularly around higher-ranked bounds,
/// this function returns a kind of conservative approximation.
/// That is, all regions returned by this function are definitely
/// required, but there may be other region bounds that are not
/// returned, as well as requirements like `for<'a> T: 'a`.
///
/// Requires that trait definitions have been processed so that we can
/// elaborate predicates and walk supertraits.
//
// FIXME: callers may only have a `&[Predicate]`, not a `Vec`, so that's
// what this code should accept.
pub fn required_region_bounds(self,
erased_self_ty: Ty<'tcx>,
predicates: Vec<ty::Predicate<'tcx>>)
-> Vec<ty::Region<'tcx>> {
debug!("required_region_bounds(erased_self_ty={:?}, predicates={:?})",
erased_self_ty,
predicates);
assert!(!erased_self_ty.has_escaping_bound_vars());
traits::elaborate_predicates(self, predicates)
.filter_map(|predicate| {
match predicate {
ty::Predicate::Projection(..) |
ty::Predicate::Trait(..) |
ty::Predicate::Subtype(..) |
ty::Predicate::WellFormed(..) |
ty::Predicate::ObjectSafe(..) |
ty::Predicate::ClosureKind(..) |
ty::Predicate::RegionOutlives(..) |
ty::Predicate::ConstEvaluatable(..) => {
None
}
ty::Predicate::TypeOutlives(predicate) => {
// Search for a bound of the form `erased_self_ty
// : 'a`, but be wary of something like `for<'a>
// erased_self_ty : 'a` (we interpret a
// higher-ranked bound like that as 'static,
// though at present the code in `fulfill.rs`
// considers such bounds to be unsatisfiable, so
// it's kind of a moot point since you could never
// construct such an object, but this seems
// correct even if that code changes).
let ty::OutlivesPredicate(ref t, ref r) = predicate.skip_binder();
if t == &erased_self_ty && !r.has_escaping_bound_vars() {
Some(*r)
} else {
None
}
}
}
})
.collect()
}
/// Calculate the destructor of a given type.
pub fn calculate_dtor(
self,
adt_did: DefId,
validate: &mut dyn FnMut(Self, DefId) -> Result<(), ErrorReported>
) -> Option<ty::Destructor> {
let drop_trait = if let Some(def_id) = self.lang_items().drop_trait() {
def_id
} else {
return None;
};
self.ensure().coherent_trait(drop_trait);
let mut dtor_did = None;
let ty = self.type_of(adt_did);
self.for_each_relevant_impl(drop_trait, ty, |impl_did| {
if let Some(item) = self.associated_items(impl_did).next() {
if validate(self, impl_did).is_ok() {
dtor_did = Some(item.def_id);
}
}
});
Some(ty::Destructor { did: dtor_did? })
}
/// Returns the set of types that are required to be alive in
/// order to run the destructor of `def` (see RFCs 769 and
/// 1238).
///
/// Note that this returns only the constraints for the
/// destructor of `def` itself. For the destructors of the
/// contents, you need `adt_dtorck_constraint`.
pub fn destructor_constraints(self, def: &'tcx ty::AdtDef)
-> Vec<ty::subst::Kind<'tcx>>
{
let dtor = match def.destructor(self) {
None => {
debug!("destructor_constraints({:?}) - no dtor", def.did);
return vec![]
}
Some(dtor) => dtor.did
};
let impl_def_id = self.associated_item(dtor).container.id();
let impl_generics = self.generics_of(impl_def_id);
// We have a destructor - all the parameters that are not
// pure_wrt_drop (i.e, don't have a #[may_dangle] attribute)
// must be live.
// We need to return the list of parameters from the ADTs
// generics/substs that correspond to impure parameters on the
// impl's generics. This is a bit ugly, but conceptually simple:
//
// Suppose our ADT looks like the following
//
// struct S<X, Y, Z>(X, Y, Z);
//
// and the impl is
//
// impl<#[may_dangle] P0, P1, P2> Drop for S<P1, P2, P0>
//
// We want to return the parameters (X, Y). For that, we match
// up the item-substs <X, Y, Z> with the substs on the impl ADT,
// <P1, P2, P0>, and then look up which of the impl substs refer to
// parameters marked as pure.
let impl_substs = match self.type_of(impl_def_id).sty {
ty::Adt(def_, substs) if def_ == def => substs,
_ => bug!()
};
let item_substs = match self.type_of(def.did).sty {
ty::Adt(def_, substs) if def_ == def => substs,
_ => bug!()
};
let result = item_substs.iter().zip(impl_substs.iter())
.filter(|&(_, &k)| {
match k.unpack() {
UnpackedKind::Lifetime(&ty::RegionKind::ReEarlyBound(ref ebr)) => {
!impl_generics.region_param(ebr, self).pure_wrt_drop
}
UnpackedKind::Type(&ty::TyS {
sty: ty::Param(ref pt), ..
}) => {
!impl_generics.type_param(pt, self).pure_wrt_drop
}
UnpackedKind::Const(&ty::Const {
val: ConstValue::Param(ref pc),
..
}) => {
!impl_generics.const_param(pc, self).pure_wrt_drop
}
UnpackedKind::Lifetime(_) |
UnpackedKind::Type(_) |
UnpackedKind::Const(_) => {
// Not a type, const or region param: this should be reported
// as an error.
false
}
}
})
.map(|(&item_param, _)| item_param)
.collect();
debug!("destructor_constraint({:?}) = {:?}", def.did, result);
result
}
/// Returns `true` if `def_id` refers to a closure (e.g., `|x| x * 2`). Note
/// that closures have a `DefId`, but the closure *expression* also
/// has a `HirId` that is located within the context where the
/// closure appears (and, sadly, a corresponding `NodeId`, since
/// those are not yet phased out). The parent of the closure's
/// `DefId` will also be the context where it appears.
pub fn is_closure(self, def_id: DefId) -> bool {
self.def_key(def_id).disambiguated_data.data == DefPathData::ClosureExpr
}
/// Returns `true` if `def_id` refers to a trait (i.e., `trait Foo { ... }`).
pub fn is_trait(self, def_id: DefId) -> bool {
self.def_kind(def_id) == Some(DefKind::Trait)
}
/// Returns `true` if `def_id` refers to a trait alias (i.e., `trait Foo = ...;`),
/// and `false` otherwise.
pub fn is_trait_alias(self, def_id: DefId) -> bool {
self.def_kind(def_id) == Some(DefKind::TraitAlias)
}
/// Returns `true` if this `DefId` refers to the implicit constructor for
/// a tuple struct like `struct Foo(u32)`, and `false` otherwise.
pub fn is_constructor(self, def_id: DefId) -> bool {
self.def_key(def_id).disambiguated_data.data == DefPathData::Ctor
}
/// Given the def-ID of a fn or closure, returns the def-ID of
/// the innermost fn item that the closure is contained within.
/// This is a significant `DefId` because, when we do
/// type-checking, we type-check this fn item and all of its
/// (transitive) closures together. Therefore, when we fetch the
/// `typeck_tables_of` the closure, for example, we really wind up
/// fetching the `typeck_tables_of` the enclosing fn item.
pub fn closure_base_def_id(self, def_id: DefId) -> DefId {
let mut def_id = def_id;
while self.is_closure(def_id) {
def_id = self.parent(def_id).unwrap_or_else(|| {
bug!("closure {:?} has no parent", def_id);
});
}
def_id
}
/// Given the `DefId` and substs a closure, creates the type of
/// `self` argument that the closure expects. For example, for a
/// `Fn` closure, this would return a reference type `&T` where
/// `T = closure_ty`.
///
/// Returns `None` if this closure's kind has not yet been inferred.
/// This should only be possible during type checking.
///
/// Note that the return value is a late-bound region and hence
/// wrapped in a binder.
pub fn closure_env_ty(self,
closure_def_id: DefId,
closure_substs: ty::ClosureSubsts<'tcx>)
-> Option<ty::Binder<Ty<'tcx>>>
{
let closure_ty = self.mk_closure(closure_def_id, closure_substs);
let env_region = ty::ReLateBound(ty::INNERMOST, ty::BrEnv);
let closure_kind_ty = closure_substs.closure_kind_ty(closure_def_id, self);
let closure_kind = closure_kind_ty.to_opt_closure_kind()?;
let env_ty = match closure_kind {
ty::ClosureKind::Fn => self.mk_imm_ref(self.mk_region(env_region), closure_ty),
ty::ClosureKind::FnMut => self.mk_mut_ref(self.mk_region(env_region), closure_ty),
ty::ClosureKind::FnOnce => closure_ty,
};
Some(ty::Binder::bind(env_ty))
}
/// Given the `DefId` of some item that has no type or const parameters, make
/// a suitable "empty substs" for it.
pub fn empty_substs_for_def_id(self, item_def_id: DefId) -> SubstsRef<'tcx> {
InternalSubsts::for_item(self, item_def_id, |param, _| {
match param.kind {
GenericParamDefKind::Lifetime => self.lifetimes.re_erased.into(),
GenericParamDefKind::Type { .. } => {
bug!("empty_substs_for_def_id: {:?} has type parameters", item_def_id)
}
GenericParamDefKind::Const { .. } => {
bug!("empty_substs_for_def_id: {:?} has const parameters", item_def_id)
}
}
})
}
/// Returns `true` if the node pointed to by `def_id` is a `static` item.
pub fn is_static(&self, def_id: DefId) -> bool {
self.static_mutability(def_id).is_some()
}
/// Returns `true` if the node pointed to by `def_id` is a mutable `static` item.
pub fn is_mutable_static(&self, def_id: DefId) -> bool {
self.static_mutability(def_id) == Some(hir::MutMutable)
}
/// Expands the given impl trait type, stopping if the type is recursive.
pub fn try_expand_impl_trait_type(
self,
def_id: DefId,
substs: SubstsRef<'tcx>,
) -> Result<Ty<'tcx>, Ty<'tcx>> {
use crate::ty::fold::TypeFolder;
struct OpaqueTypeExpander<'tcx> {
// Contains the DefIds of the opaque types that are currently being
// expanded. When we expand an opaque type we insert the DefId of
// that type, and when we finish expanding that type we remove the
// its DefId.
seen_opaque_tys: FxHashSet<DefId>,
primary_def_id: DefId,
found_recursion: bool,
tcx: TyCtxt<'tcx>,
}
impl<'tcx> OpaqueTypeExpander<'tcx> {
fn expand_opaque_ty(
&mut self,
def_id: DefId,
substs: SubstsRef<'tcx>,
) -> Option<Ty<'tcx>> {
if self.found_recursion {
return None;
}
let substs = substs.fold_with(self);
if self.seen_opaque_tys.insert(def_id) {
let generic_ty = self.tcx.type_of(def_id);
let concrete_ty = generic_ty.subst(self.tcx, substs);
let expanded_ty = self.fold_ty(concrete_ty);
self.seen_opaque_tys.remove(&def_id);
Some(expanded_ty)
} else {
// If another opaque type that we contain is recursive, then it
// will report the error, so we don't have to.
self.found_recursion = def_id == self.primary_def_id;
None
}
}
}
impl<'tcx> TypeFolder<'tcx> for OpaqueTypeExpander<'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
if let ty::Opaque(def_id, substs) = t.sty {
self.expand_opaque_ty(def_id, substs).unwrap_or(t)
} else {
t.super_fold_with(self)
}
}
}
let mut visitor = OpaqueTypeExpander {
seen_opaque_tys: FxHashSet::default(),
primary_def_id: def_id,
found_recursion: false,
tcx: self,
};
let expanded_type = visitor.expand_opaque_ty(def_id, substs).unwrap();
if visitor.found_recursion {
Err(expanded_type)
} else {
Ok(expanded_type)
}
}
}
impl<'tcx> ty::TyS<'tcx> {
/// Checks whether values of this type `T` are *moved* or *copied*
/// when referenced -- this amounts to a check for whether `T:
/// Copy`, but note that we **don't** consider lifetimes when
/// doing this check. This means that we may generate MIR which
/// does copies even when the type actually doesn't satisfy the
/// full requirements for the `Copy` trait (cc #29149) -- this
/// winds up being reported as an error during NLL borrow check.
pub fn is_copy_modulo_regions(
&'tcx self,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
span: Span,
) -> bool {
tcx.at(span).is_copy_raw(param_env.and(self))
}
/// Checks whether values of this type `T` have a size known at
/// compile time (i.e., whether `T: Sized`). Lifetimes are ignored
/// for the purposes of this check, so it can be an
/// over-approximation in generic contexts, where one can have
/// strange rules like `<T as Foo<'static>>::Bar: Sized` that
/// actually carry lifetime requirements.
pub fn is_sized(&'tcx self, tcx_at: TyCtxtAt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
tcx_at.is_sized_raw(param_env.and(self))
}
/// Checks whether values of this type `T` implement the `Freeze`
/// trait -- frozen types are those that do not contain a
/// `UnsafeCell` anywhere. This is a language concept used to
/// distinguish "true immutability", which is relevant to
/// optimization as well as the rules around static values. Note
/// that the `Freeze` trait is not exposed to end users and is
/// effectively an implementation detail.
pub fn is_freeze(
&'tcx self,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
span: Span,
) -> bool {
tcx.at(span).is_freeze_raw(param_env.and(self))
}
/// If `ty.needs_drop(...)` returns `true`, then `ty` is definitely
/// non-copy and *might* have a destructor attached; if it returns
/// `false`, then `ty` definitely has no destructor (i.e., no drop glue).
///
/// (Note that this implies that if `ty` has a destructor attached,
/// then `needs_drop` will definitely return `true` for `ty`.)
#[inline]
pub fn needs_drop(&'tcx self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
tcx.needs_drop_raw(param_env.and(self)).0
}
pub fn same_type(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match (&a.sty, &b.sty) {
(&Adt(did_a, substs_a), &Adt(did_b, substs_b)) => {
if did_a != did_b {
return false;
}
substs_a.types().zip(substs_b.types()).all(|(a, b)| Self::same_type(a, b))
}
_ => a == b,
}
}
/// Check whether a type is representable. This means it cannot contain unboxed
/// structural recursion. This check is needed for structs and enums.
pub fn is_representable(&'tcx self, tcx: TyCtxt<'tcx>, sp: Span) -> Representability {
// Iterate until something non-representable is found
fn fold_repr<It: Iterator<Item=Representability>>(iter: It) -> Representability {
iter.fold(Representability::Representable, |r1, r2| {
match (r1, r2) {
(Representability::SelfRecursive(v1),
Representability::SelfRecursive(v2)) => {
Representability::SelfRecursive(v1.into_iter().chain(v2).collect())
}
(r1, r2) => cmp::max(r1, r2)
}
})
}
fn are_inner_types_recursive<'tcx>(
tcx: TyCtxt<'tcx>,
sp: Span,
seen: &mut Vec<Ty<'tcx>>,
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
ty: Ty<'tcx>,
) -> Representability {
match ty.sty {
Tuple(..) => {
// Find non representable
fold_repr(ty.tuple_fields().map(|ty| {
is_type_structurally_recursive(
tcx,
sp,
seen,
representable_cache,
ty,
)
}))
}
// Fixed-length vectors.
// FIXME(#11924) Behavior undecided for zero-length vectors.
Array(ty, _) => {
is_type_structurally_recursive(tcx, sp, seen, representable_cache, ty)
}
Adt(def, substs) => {
// Find non representable fields with their spans
fold_repr(def.all_fields().map(|field| {
let ty = field.ty(tcx, substs);
let span = tcx.hir().span_if_local(field.did).unwrap_or(sp);
match is_type_structurally_recursive(tcx, span, seen,
representable_cache, ty)
{
Representability::SelfRecursive(_) => {
Representability::SelfRecursive(vec![span])
}
x => x,
}
}))
}
Closure(..) => {
// this check is run on type definitions, so we don't expect
// to see closure types
bug!("requires check invoked on inapplicable type: {:?}", ty)
}
_ => Representability::Representable,
}
}
fn same_struct_or_enum<'tcx>(ty: Ty<'tcx>, def: &'tcx ty::AdtDef) -> bool {
match ty.sty {
Adt(ty_def, _) => {
ty_def == def
}
_ => false
}
}
// Does the type `ty` directly (without indirection through a pointer)
// contain any types on stack `seen`?
fn is_type_structurally_recursive<'tcx>(
tcx: TyCtxt<'tcx>,
sp: Span,
seen: &mut Vec<Ty<'tcx>>,
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
ty: Ty<'tcx>,
) -> Representability {
debug!("is_type_structurally_recursive: {:?} {:?}", ty, sp);
if let Some(representability) = representable_cache.get(ty) {
debug!("is_type_structurally_recursive: {:?} {:?} - (cached) {:?}",
ty, sp, representability);
return representability.clone();
}
let representability = is_type_structurally_recursive_inner(
tcx, sp, seen, representable_cache, ty);
representable_cache.insert(ty, representability.clone());
representability
}
fn is_type_structurally_recursive_inner<'tcx>(
tcx: TyCtxt<'tcx>,
sp: Span,
seen: &mut Vec<Ty<'tcx>>,
representable_cache: &mut FxHashMap<Ty<'tcx>, Representability>,
ty: Ty<'tcx>,
) -> Representability {
match ty.sty {
Adt(def, _) => {
{
// Iterate through stack of previously seen types.
let mut iter = seen.iter();
// The first item in `seen` is the type we are actually curious about.
// We want to return SelfRecursive if this type contains itself.
// It is important that we DON'T take generic parameters into account
// for this check, so that Bar<T> in this example counts as SelfRecursive:
//
// struct Foo;
// struct Bar<T> { x: Bar<Foo> }
if let Some(&seen_type) = iter.next() {
if same_struct_or_enum(seen_type, def) {
debug!("SelfRecursive: {:?} contains {:?}",
seen_type,
ty);
return Representability::SelfRecursive(vec![sp]);
}
}
// We also need to know whether the first item contains other types
// that are structurally recursive. If we don't catch this case, we
// will recurse infinitely for some inputs.
//
// It is important that we DO take generic parameters into account
// here, so that code like this is considered SelfRecursive, not
// ContainsRecursive:
//
// struct Foo { Option<Option<Foo>> }
for &seen_type in iter {
if ty::TyS::same_type(ty, seen_type) {
debug!("ContainsRecursive: {:?} contains {:?}",
seen_type,
ty);
return Representability::ContainsRecursive;
}
}
}
// For structs and enums, track all previously seen types by pushing them
// onto the 'seen' stack.
seen.push(ty);
let out = are_inner_types_recursive(tcx, sp, seen, representable_cache, ty);
seen.pop();
out
}
_ => {
// No need to push in other cases.
are_inner_types_recursive(tcx, sp, seen, representable_cache, ty)
}
}
}
debug!("is_type_representable: {:?}", self);
// To avoid a stack overflow when checking an enum variant or struct that
// contains a different, structurally recursive type, maintain a stack
// of seen types and check recursion for each of them (issues #3008, #3779).
let mut seen: Vec<Ty<'_>> = Vec::new();
let mut representable_cache = FxHashMap::default();
let r = is_type_structurally_recursive(
tcx, sp, &mut seen, &mut representable_cache, self);
debug!("is_type_representable: {:?} is {:?}", self, r);
r
}
}
fn is_copy_raw<'tcx>(tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
let (param_env, ty) = query.into_parts();
let trait_def_id = tcx.require_lang_item(lang_items::CopyTraitLangItem, None);
tcx.infer_ctxt()
.enter(|infcx| traits::type_known_to_meet_bound_modulo_regions(
&infcx,
param_env,
ty,
trait_def_id,
DUMMY_SP,
))
}
fn is_sized_raw<'tcx>(tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
let (param_env, ty) = query.into_parts();
let trait_def_id = tcx.require_lang_item(lang_items::SizedTraitLangItem, None);
tcx.infer_ctxt()
.enter(|infcx| traits::type_known_to_meet_bound_modulo_regions(
&infcx,
param_env,
ty,
trait_def_id,
DUMMY_SP,
))
}
fn is_freeze_raw<'tcx>(tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool {
let (param_env, ty) = query.into_parts();
let trait_def_id = tcx.require_lang_item(lang_items::FreezeTraitLangItem, None);
tcx.infer_ctxt()
.enter(|infcx| traits::type_known_to_meet_bound_modulo_regions(
&infcx,
param_env,
ty,
trait_def_id,
DUMMY_SP,
))
}
#[derive(Clone, HashStable)]
pub struct NeedsDrop(pub bool);
fn needs_drop_raw<'tcx>(tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> NeedsDrop {
let (param_env, ty) = query.into_parts();
let needs_drop = |ty: Ty<'tcx>| -> bool {
tcx.needs_drop_raw(param_env.and(ty)).0
};
assert!(!ty.needs_infer());
NeedsDrop(match ty.sty {
// Fast-path for primitive types
ty::Infer(ty::FreshIntTy(_)) | ty::Infer(ty::FreshFloatTy(_)) |
ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Never |
ty::FnDef(..) | ty::FnPtr(_) | ty::Char | ty::GeneratorWitness(..) |
ty::RawPtr(_) | ty::Ref(..) | ty::Str => false,
// Foreign types can never have destructors
ty::Foreign(..) => false,
// `ManuallyDrop` doesn't have a destructor regardless of field types.
ty::Adt(def, _) if Some(def.did) == tcx.lang_items().manually_drop() => false,
// Issue #22536: We first query `is_copy_modulo_regions`. It sees a
// normalized version of the type, and therefore will definitely
// know whether the type implements Copy (and thus needs no
// cleanup/drop/zeroing) ...
_ if ty.is_copy_modulo_regions(tcx, param_env, DUMMY_SP) => false,
// ... (issue #22536 continued) but as an optimization, still use
// prior logic of asking for the structural "may drop".
// FIXME(#22815): Note that this is a conservative heuristic;
// it may report that the type "may drop" when actual type does
// not actually have a destructor associated with it. But since
// the type absolutely did not have the `Copy` bound attached
// (see above), it is sound to treat it as having a destructor.
// User destructors are the only way to have concrete drop types.
ty::Adt(def, _) if def.has_dtor(tcx) => true,
// Can refer to a type which may drop.
// FIXME(eddyb) check this against a ParamEnv.
ty::Dynamic(..) | ty::Projection(..) | ty::Param(_) | ty::Bound(..) |
ty::Placeholder(..) | ty::Opaque(..) | ty::Infer(_) | ty::Error => true,
ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
// Structural recursion.
ty::Array(ty, _) | ty::Slice(ty) => needs_drop(ty),
ty::Closure(def_id, ref substs) => substs.upvar_tys(def_id, tcx).any(needs_drop),
// Pessimistically assume that all generators will require destructors
// as we don't know if a destructor is a noop or not until after the MIR
// state transformation pass
ty::Generator(..) => true,
ty::Tuple(..) => ty.tuple_fields().any(needs_drop),
// unions don't have destructors because of the child types,
// only if they manually implement `Drop` (handled above).
ty::Adt(def, _) if def.is_union() => false,
ty::Adt(def, substs) =>
def.variants.iter().any(
|variant| variant.fields.iter().any(
|field| needs_drop(field.ty(tcx, substs)))),
})
}
pub enum ExplicitSelf<'tcx> {
ByValue,
ByReference(ty::Region<'tcx>, hir::Mutability),
ByRawPointer(hir::Mutability),
ByBox,
Other
}
impl<'tcx> ExplicitSelf<'tcx> {
/// Categorizes an explicit self declaration like `self: SomeType`
/// into either `self`, `&self`, `&mut self`, `Box<self>`, or
/// `Other`.
/// This is mainly used to require the arbitrary_self_types feature
/// in the case of `Other`, to improve error messages in the common cases,
/// and to make `Other` non-object-safe.
///
/// Examples:
///
/// ```
/// impl<'a> Foo for &'a T {
/// // Legal declarations:
/// fn method1(self: &&'a T); // ExplicitSelf::ByReference
/// fn method2(self: &'a T); // ExplicitSelf::ByValue
/// fn method3(self: Box<&'a T>); // ExplicitSelf::ByBox
/// fn method4(self: Rc<&'a T>); // ExplicitSelf::Other
///
/// // Invalid cases will be caught by `check_method_receiver`:
/// fn method_err1(self: &'a mut T); // ExplicitSelf::Other
/// fn method_err2(self: &'static T) // ExplicitSelf::ByValue
/// fn method_err3(self: &&T) // ExplicitSelf::ByReference
/// }
/// ```
///
pub fn determine<P>(
self_arg_ty: Ty<'tcx>,
is_self_ty: P
) -> ExplicitSelf<'tcx>
where
P: Fn(Ty<'tcx>) -> bool
{
use self::ExplicitSelf::*;
match self_arg_ty.sty {
_ if is_self_ty(self_arg_ty) => ByValue,
ty::Ref(region, ty, mutbl) if is_self_ty(ty) => {
ByReference(region, mutbl)
}
ty::RawPtr(ty::TypeAndMut { ty, mutbl }) if is_self_ty(ty) => {
ByRawPointer(mutbl)
}
ty::Adt(def, _) if def.is_box() && is_self_ty(self_arg_ty.boxed_ty()) => {
ByBox
}
_ => Other
}
}
}
pub fn provide(providers: &mut ty::query::Providers<'_>) {
*providers = ty::query::Providers {
is_copy_raw,
is_sized_raw,
is_freeze_raw,
needs_drop_raw,
..*providers
};
}