blob: dc56de47fbf63c902d4bd1d1bded7f98980aa6ab [file] [log] [blame]
use std::collections::VecDeque;
use std::ptr;
use rustc::hir::def_id::DefId;
use rustc::ty::Instance;
use rustc::ty::ParamEnv;
use rustc::ty::maps::TyCtxtAt;
use rustc::ty::layout::{self, Align, TargetDataLayout, Size};
use syntax::ast::Mutability;
use rustc::middle::const_val::{ConstVal, ErrKind};
use rustc_data_structures::fx::{FxHashSet, FxHashMap};
use rustc::mir::interpret::{Pointer, AllocId, Allocation, AccessKind, Value,
EvalResult, Scalar, EvalErrorKind, GlobalId, AllocType};
pub use rustc::mir::interpret::{write_target_uint, write_target_int, read_target_uint};
use super::{EvalContext, Machine};
////////////////////////////////////////////////////////////////////////////////
// Allocations and pointers
////////////////////////////////////////////////////////////////////////////////
#[derive(Debug, PartialEq, Copy, Clone)]
pub enum MemoryKind<T> {
/// Error if deallocated except during a stack pop
Stack,
/// Additional memory kinds a machine wishes to distinguish from the builtin ones
Machine(T),
}
////////////////////////////////////////////////////////////////////////////////
// Top-level interpreter memory
////////////////////////////////////////////////////////////////////////////////
pub struct Memory<'a, 'mir, 'tcx: 'a + 'mir, M: Machine<'mir, 'tcx>> {
/// Additional data required by the Machine
pub data: M::MemoryData,
/// Helps guarantee that stack allocations aren't deallocated via `rust_deallocate`
alloc_kind: FxHashMap<AllocId, MemoryKind<M::MemoryKinds>>,
/// Actual memory allocations (arbitrary bytes, may contain pointers into other allocations).
alloc_map: FxHashMap<AllocId, Allocation>,
/// Actual memory allocations (arbitrary bytes, may contain pointers into other allocations).
///
/// Stores statics while they are being processed, before they are interned and thus frozen
uninitialized_statics: FxHashMap<AllocId, Allocation>,
/// The current stack frame. Used to check accesses against locks.
pub cur_frame: usize,
pub tcx: TyCtxtAt<'a, 'tcx, 'tcx>,
}
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
pub fn new(tcx: TyCtxtAt<'a, 'tcx, 'tcx>, data: M::MemoryData) -> Self {
Memory {
data,
alloc_kind: FxHashMap::default(),
alloc_map: FxHashMap::default(),
uninitialized_statics: FxHashMap::default(),
tcx,
cur_frame: usize::max_value(),
}
}
pub fn allocations<'x>(
&'x self,
) -> impl Iterator<Item = (AllocId, &'x Allocation)> {
self.alloc_map.iter().map(|(&id, alloc)| (id, alloc))
}
pub fn create_fn_alloc(&mut self, instance: Instance<'tcx>) -> Pointer {
self.tcx.alloc_map.lock().create_fn_alloc(instance).into()
}
pub fn allocate_bytes(&mut self, bytes: &[u8]) -> Pointer {
self.tcx.allocate_bytes(bytes).into()
}
/// kind is `None` for statics
pub fn allocate_value(
&mut self,
alloc: Allocation,
kind: Option<MemoryKind<M::MemoryKinds>>,
) -> EvalResult<'tcx, AllocId> {
let id = self.tcx.alloc_map.lock().reserve();
M::add_lock(self, id);
match kind {
Some(kind @ MemoryKind::Stack) |
Some(kind @ MemoryKind::Machine(_)) => {
self.alloc_map.insert(id, alloc);
self.alloc_kind.insert(id, kind);
},
None => {
self.uninitialized_statics.insert(id, alloc);
},
}
Ok(id)
}
/// kind is `None` for statics
pub fn allocate(
&mut self,
size: Size,
align: Align,
kind: Option<MemoryKind<M::MemoryKinds>>,
) -> EvalResult<'tcx, Pointer> {
self.allocate_value(Allocation::undef(size, align), kind).map(Pointer::from)
}
pub fn reallocate(
&mut self,
ptr: Pointer,
old_size: Size,
old_align: Align,
new_size: Size,
new_align: Align,
kind: MemoryKind<M::MemoryKinds>,
) -> EvalResult<'tcx, Pointer> {
if ptr.offset.bytes() != 0 {
return err!(ReallocateNonBasePtr);
}
if self.alloc_map.contains_key(&ptr.alloc_id) {
let alloc_kind = self.alloc_kind[&ptr.alloc_id];
if alloc_kind != kind {
return err!(ReallocatedWrongMemoryKind(
format!("{:?}", alloc_kind),
format!("{:?}", kind),
));
}
}
// For simplicities' sake, we implement reallocate as "alloc, copy, dealloc"
let new_ptr = self.allocate(new_size, new_align, Some(kind))?;
self.copy(
ptr.into(),
old_align,
new_ptr.into(),
new_align,
old_size.min(new_size),
/*nonoverlapping*/
true,
)?;
self.deallocate(ptr, Some((old_size, old_align)), kind)?;
Ok(new_ptr)
}
pub fn deallocate_local(&mut self, ptr: Pointer) -> EvalResult<'tcx> {
match self.alloc_kind.get(&ptr.alloc_id).cloned() {
Some(MemoryKind::Stack) => self.deallocate(ptr, None, MemoryKind::Stack),
// Happens if the memory was interned into immutable memory
None => Ok(()),
other => bug!("local contained non-stack memory: {:?}", other),
}
}
pub fn deallocate(
&mut self,
ptr: Pointer,
size_and_align: Option<(Size, Align)>,
kind: MemoryKind<M::MemoryKinds>,
) -> EvalResult<'tcx> {
if ptr.offset.bytes() != 0 {
return err!(DeallocateNonBasePtr);
}
let alloc = match self.alloc_map.remove(&ptr.alloc_id) {
Some(alloc) => alloc,
None => if self.uninitialized_statics.contains_key(&ptr.alloc_id) {
return err!(DeallocatedWrongMemoryKind(
"uninitializedstatic".to_string(),
format!("{:?}", kind),
))
} else {
return match self.tcx.alloc_map.lock().get(ptr.alloc_id) {
Some(AllocType::Function(..)) => err!(DeallocatedWrongMemoryKind(
"function".to_string(),
format!("{:?}", kind),
)),
Some(AllocType::Static(..)) |
Some(AllocType::Memory(..)) => err!(DeallocatedWrongMemoryKind(
"static".to_string(),
format!("{:?}", kind),
)),
None => err!(DoubleFree)
}
}
};
let alloc_kind = self.alloc_kind.remove(&ptr.alloc_id).expect("alloc_map out of sync with alloc_kind");
// It is okay for us to still holds locks on deallocation -- for example, we could store data we own
// in a local, and the local could be deallocated (from StorageDead) before the function returns.
// However, we should check *something*. For now, we make sure that there is no conflicting write
// lock by another frame. We *have* to permit deallocation if we hold a read lock.
// TODO: Figure out the exact rules here.
M::free_lock(self, ptr.alloc_id, alloc.bytes.len() as u64)?;
if alloc_kind != kind {
return err!(DeallocatedWrongMemoryKind(
format!("{:?}", alloc_kind),
format!("{:?}", kind),
));
}
if let Some((size, align)) = size_and_align {
if size.bytes() != alloc.bytes.len() as u64 || align != alloc.align {
return err!(IncorrectAllocationInformation(size, Size::from_bytes(alloc.bytes.len() as u64), align, alloc.align));
}
}
debug!("deallocated : {}", ptr.alloc_id);
Ok(())
}
pub fn pointer_size(&self) -> Size {
self.tcx.data_layout.pointer_size
}
pub fn endianness(&self) -> layout::Endian {
self.tcx.data_layout.endian
}
/// Check that the pointer is aligned AND non-NULL.
pub fn check_align(&self, ptr: Scalar, required_align: Align) -> EvalResult<'tcx> {
// Check non-NULL/Undef, extract offset
let (offset, alloc_align) = match ptr {
Scalar::Ptr(ptr) => {
let alloc = self.get(ptr.alloc_id)?;
(ptr.offset.bytes(), alloc.align)
}
Scalar::Bits { bits, defined } => {
if (defined as u64) < self.pointer_size().bits() {
return err!(ReadUndefBytes);
}
// FIXME: what on earth does this line do? docs or fix needed!
let v = ((bits as u128) % (1 << self.pointer_size().bytes())) as u64;
if v == 0 {
return err!(InvalidNullPointerUsage);
}
// the base address if the "integer allocation" is 0 and hence always aligned
(v, required_align)
}
};
// Check alignment
if alloc_align.abi() < required_align.abi() {
return err!(AlignmentCheckFailed {
has: alloc_align,
required: required_align,
});
}
if offset % required_align.abi() == 0 {
Ok(())
} else {
let has = offset % required_align.abi();
err!(AlignmentCheckFailed {
has: Align::from_bytes(has, has).unwrap(),
required: required_align,
})
}
}
pub fn check_bounds(&self, ptr: Pointer, access: bool) -> EvalResult<'tcx> {
let alloc = self.get(ptr.alloc_id)?;
let allocation_size = alloc.bytes.len() as u64;
if ptr.offset.bytes() > allocation_size {
return err!(PointerOutOfBounds {
ptr,
access,
allocation_size: Size::from_bytes(allocation_size),
});
}
Ok(())
}
}
/// Allocation accessors
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
fn const_eval_static(&self, def_id: DefId) -> EvalResult<'tcx, &'tcx Allocation> {
let instance = Instance::mono(self.tcx.tcx, def_id);
let gid = GlobalId {
instance,
promoted: None,
};
self.tcx.const_eval(ParamEnv::reveal_all().and(gid)).map_err(|err| {
match *err.kind {
ErrKind::Miri(ref err, _) => match err.kind {
EvalErrorKind::TypeckError |
EvalErrorKind::Layout(_) => EvalErrorKind::TypeckError.into(),
_ => EvalErrorKind::ReferencedConstant.into(),
},
ErrKind::TypeckError => EvalErrorKind::TypeckError.into(),
ref other => bug!("const eval returned {:?}", other),
}
}).map(|val| {
let const_val = match val.val {
ConstVal::Value(val) => val,
ConstVal::Unevaluated(..) => bug!("should be evaluated"),
};
self.tcx.const_value_to_allocation((const_val, val.ty))
})
}
pub fn get(&self, id: AllocId) -> EvalResult<'tcx, &Allocation> {
// normal alloc?
match self.alloc_map.get(&id) {
Some(alloc) => Ok(alloc),
// uninitialized static alloc?
None => match self.uninitialized_statics.get(&id) {
Some(alloc) => Ok(alloc),
None => {
// static alloc?
match self.tcx.alloc_map.lock().get(id) {
Some(AllocType::Memory(mem)) => Ok(mem),
Some(AllocType::Function(..)) => {
Err(EvalErrorKind::DerefFunctionPointer.into())
}
Some(AllocType::Static(did)) => {
self.const_eval_static(did)
}
None => Err(EvalErrorKind::DanglingPointerDeref.into()),
}
},
},
}
}
fn get_mut(
&mut self,
id: AllocId,
) -> EvalResult<'tcx, &mut Allocation> {
// normal alloc?
match self.alloc_map.get_mut(&id) {
Some(alloc) => Ok(alloc),
// uninitialized static alloc?
None => match self.uninitialized_statics.get_mut(&id) {
Some(alloc) => Ok(alloc),
None => {
// no alloc or immutable alloc? produce an error
match self.tcx.alloc_map.lock().get(id) {
Some(AllocType::Memory(..)) |
Some(AllocType::Static(..)) => err!(ModifiedConstantMemory),
Some(AllocType::Function(..)) => err!(DerefFunctionPointer),
None => err!(DanglingPointerDeref),
}
},
},
}
}
pub fn get_fn(&self, ptr: Pointer) -> EvalResult<'tcx, Instance<'tcx>> {
if ptr.offset.bytes() != 0 {
return err!(InvalidFunctionPointer);
}
debug!("reading fn ptr: {}", ptr.alloc_id);
match self.tcx.alloc_map.lock().get(ptr.alloc_id) {
Some(AllocType::Function(instance)) => Ok(instance),
_ => Err(EvalErrorKind::ExecuteMemory.into()),
}
}
pub fn get_alloc_kind(&self, id: AllocId) -> Option<MemoryKind<M::MemoryKinds>> {
self.alloc_kind.get(&id).cloned()
}
/// For debugging, print an allocation and all allocations it points to, recursively.
pub fn dump_alloc(&self, id: AllocId) {
if !log_enabled!(::log::Level::Trace) {
return;
}
self.dump_allocs(vec![id]);
}
/// For debugging, print a list of allocations and all allocations they point to, recursively.
pub fn dump_allocs(&self, mut allocs: Vec<AllocId>) {
if !log_enabled!(::log::Level::Trace) {
return;
}
use std::fmt::Write;
allocs.sort();
allocs.dedup();
let mut allocs_to_print = VecDeque::from(allocs);
let mut allocs_seen = FxHashSet::default();
while let Some(id) = allocs_to_print.pop_front() {
let mut msg = format!("Alloc {:<5} ", format!("{}:", id));
let prefix_len = msg.len();
let mut relocations = vec![];
let (alloc, immutable) =
// normal alloc?
match self.alloc_map.get(&id) {
Some(a) => (a, match self.alloc_kind[&id] {
MemoryKind::Stack => " (stack)".to_owned(),
MemoryKind::Machine(m) => format!(" ({:?})", m),
}),
// uninitialized static alloc?
None => match self.uninitialized_statics.get(&id) {
Some(a) => (a, " (static in the process of initialization)".to_owned()),
None => {
// static alloc?
match self.tcx.alloc_map.lock().get(id) {
Some(AllocType::Memory(a)) => (a, "(immutable)".to_owned()),
Some(AllocType::Function(func)) => {
trace!("{} {}", msg, func);
continue;
}
Some(AllocType::Static(did)) => {
trace!("{} {:?}", msg, did);
continue;
}
None => {
trace!("{} (deallocated)", msg);
continue;
}
}
},
},
};
for i in 0..(alloc.bytes.len() as u64) {
let i = Size::from_bytes(i);
if let Some(&target_id) = alloc.relocations.get(&i) {
if allocs_seen.insert(target_id) {
allocs_to_print.push_back(target_id);
}
relocations.push((i, target_id));
}
if alloc.undef_mask.is_range_defined(i, i + Size::from_bytes(1)) {
// this `as usize` is fine, since `i` came from a `usize`
write!(msg, "{:02x} ", alloc.bytes[i.bytes() as usize]).unwrap();
} else {
msg.push_str("__ ");
}
}
trace!(
"{}({} bytes, alignment {}){}",
msg,
alloc.bytes.len(),
alloc.align.abi(),
immutable
);
if !relocations.is_empty() {
msg.clear();
write!(msg, "{:1$}", "", prefix_len).unwrap(); // Print spaces.
let mut pos = Size::ZERO;
let relocation_width = (self.pointer_size().bytes() - 1) * 3;
for (i, target_id) in relocations {
// this `as usize` is fine, since we can't print more chars than `usize::MAX`
write!(msg, "{:1$}", "", ((i - pos) * 3).bytes() as usize).unwrap();
let target = format!("({})", target_id);
// this `as usize` is fine, since we can't print more chars than `usize::MAX`
write!(msg, "└{0:─^1$}┘ ", target, relocation_width as usize).unwrap();
pos = i + self.pointer_size();
}
trace!("{}", msg);
}
}
}
pub fn leak_report(&self) -> usize {
trace!("### LEAK REPORT ###");
let leaks: Vec<_> = self.alloc_map
.keys()
.cloned()
.collect();
let n = leaks.len();
self.dump_allocs(leaks);
n
}
}
/// Byte accessors
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
fn get_bytes_unchecked(
&self,
ptr: Pointer,
size: Size,
align: Align,
) -> EvalResult<'tcx, &[u8]> {
// Zero-sized accesses can use dangling pointers, but they still have to be aligned and non-NULL
self.check_align(ptr.into(), align)?;
if size.bytes() == 0 {
return Ok(&[]);
}
M::check_locks(self, ptr, size, AccessKind::Read)?;
self.check_bounds(ptr.offset(size, self)?, true)?; // if ptr.offset is in bounds, then so is ptr (because offset checks for overflow)
let alloc = self.get(ptr.alloc_id)?;
assert_eq!(ptr.offset.bytes() as usize as u64, ptr.offset.bytes());
assert_eq!(size.bytes() as usize as u64, size.bytes());
let offset = ptr.offset.bytes() as usize;
Ok(&alloc.bytes[offset..offset + size.bytes() as usize])
}
fn get_bytes_unchecked_mut(
&mut self,
ptr: Pointer,
size: Size,
align: Align,
) -> EvalResult<'tcx, &mut [u8]> {
// Zero-sized accesses can use dangling pointers, but they still have to be aligned and non-NULL
self.check_align(ptr.into(), align)?;
if size.bytes() == 0 {
return Ok(&mut []);
}
M::check_locks(self, ptr, size, AccessKind::Write)?;
self.check_bounds(ptr.offset(size, &*self)?, true)?; // if ptr.offset is in bounds, then so is ptr (because offset checks for overflow)
let alloc = self.get_mut(ptr.alloc_id)?;
assert_eq!(ptr.offset.bytes() as usize as u64, ptr.offset.bytes());
assert_eq!(size.bytes() as usize as u64, size.bytes());
let offset = ptr.offset.bytes() as usize;
Ok(&mut alloc.bytes[offset..offset + size.bytes() as usize])
}
fn get_bytes(&self, ptr: Pointer, size: Size, align: Align) -> EvalResult<'tcx, &[u8]> {
assert_ne!(size.bytes(), 0);
if self.relocations(ptr, size)?.len() != 0 {
return err!(ReadPointerAsBytes);
}
self.check_defined(ptr, size)?;
self.get_bytes_unchecked(ptr, size, align)
}
fn get_bytes_mut(
&mut self,
ptr: Pointer,
size: Size,
align: Align,
) -> EvalResult<'tcx, &mut [u8]> {
assert_ne!(size.bytes(), 0);
self.clear_relocations(ptr, size)?;
self.mark_definedness(ptr.into(), size, true)?;
self.get_bytes_unchecked_mut(ptr, size, align)
}
}
/// Reading and writing
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
/// mark an allocation pointed to by a static as static and initialized
fn mark_inner_allocation_initialized(
&mut self,
alloc: AllocId,
mutability: Mutability,
) -> EvalResult<'tcx> {
match self.alloc_kind.get(&alloc) {
// do not go into statics
None => Ok(()),
// just locals and machine allocs
Some(_) => self.mark_static_initialized(alloc, mutability),
}
}
/// mark an allocation as static and initialized, either mutable or not
pub fn mark_static_initialized(
&mut self,
alloc_id: AllocId,
mutability: Mutability,
) -> EvalResult<'tcx> {
trace!(
"mark_static_initialized {:?}, mutability: {:?}",
alloc_id,
mutability
);
// The machine handled it
if M::mark_static_initialized(self, alloc_id, mutability)? {
return Ok(())
}
let alloc = self.alloc_map.remove(&alloc_id);
match self.alloc_kind.remove(&alloc_id) {
None => {},
Some(MemoryKind::Machine(_)) => bug!("machine didn't handle machine alloc"),
Some(MemoryKind::Stack) => {},
}
let uninit = self.uninitialized_statics.remove(&alloc_id);
if let Some(mut alloc) = alloc.or(uninit) {
// ensure llvm knows not to put this into immutable memroy
alloc.runtime_mutability = mutability;
let alloc = self.tcx.intern_const_alloc(alloc);
self.tcx.alloc_map.lock().set_id_memory(alloc_id, alloc);
// recurse into inner allocations
for &alloc in alloc.relocations.values() {
self.mark_inner_allocation_initialized(alloc, mutability)?;
}
} else {
bug!("no allocation found for {:?}", alloc_id);
}
Ok(())
}
pub fn copy(
&mut self,
src: Scalar,
src_align: Align,
dest: Scalar,
dest_align: Align,
size: Size,
nonoverlapping: bool,
) -> EvalResult<'tcx> {
// Empty accesses don't need to be valid pointers, but they should still be aligned
self.check_align(src, src_align)?;
self.check_align(dest, dest_align)?;
if size.bytes() == 0 {
return Ok(());
}
let src = src.to_ptr()?;
let dest = dest.to_ptr()?;
self.check_relocation_edges(src, size)?;
// first copy the relocations to a temporary buffer, because
// `get_bytes_mut` will clear the relocations, which is correct,
// since we don't want to keep any relocations at the target.
let relocations: Vec<_> = self.relocations(src, size)?
.iter()
.map(|&(offset, alloc_id)| {
// Update relocation offsets for the new positions in the destination allocation.
(offset + dest.offset - src.offset, alloc_id)
})
.collect();
let src_bytes = self.get_bytes_unchecked(src, size, src_align)?.as_ptr();
let dest_bytes = self.get_bytes_mut(dest, size, dest_align)?.as_mut_ptr();
// SAFE: The above indexing would have panicked if there weren't at least `size` bytes
// behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and
// `dest` could possibly overlap.
unsafe {
assert_eq!(size.bytes() as usize as u64, size.bytes());
if src.alloc_id == dest.alloc_id {
if nonoverlapping {
if (src.offset <= dest.offset && src.offset + size > dest.offset) ||
(dest.offset <= src.offset && dest.offset + size > src.offset)
{
return err!(Intrinsic(
format!("copy_nonoverlapping called on overlapping ranges"),
));
}
}
ptr::copy(src_bytes, dest_bytes, size.bytes() as usize);
} else {
ptr::copy_nonoverlapping(src_bytes, dest_bytes, size.bytes() as usize);
}
}
self.copy_undef_mask(src, dest, size)?;
// copy back the relocations
self.get_mut(dest.alloc_id)?.relocations.insert_presorted(relocations);
Ok(())
}
pub fn read_c_str(&self, ptr: Pointer) -> EvalResult<'tcx, &[u8]> {
let alloc = self.get(ptr.alloc_id)?;
assert_eq!(ptr.offset.bytes() as usize as u64, ptr.offset.bytes());
let offset = ptr.offset.bytes() as usize;
match alloc.bytes[offset..].iter().position(|&c| c == 0) {
Some(size) => {
let p1 = Size::from_bytes((size + 1) as u64);
if self.relocations(ptr, p1)?.len() != 0 {
return err!(ReadPointerAsBytes);
}
self.check_defined(ptr, p1)?;
M::check_locks(self, ptr, p1, AccessKind::Read)?;
Ok(&alloc.bytes[offset..offset + size])
}
None => err!(UnterminatedCString(ptr)),
}
}
pub fn read_bytes(&self, ptr: Scalar, size: Size) -> EvalResult<'tcx, &[u8]> {
// Empty accesses don't need to be valid pointers, but they should still be non-NULL
let align = Align::from_bytes(1, 1).unwrap();
self.check_align(ptr, align)?;
if size.bytes() == 0 {
return Ok(&[]);
}
self.get_bytes(ptr.to_ptr()?, size, align)
}
pub fn write_bytes(&mut self, ptr: Scalar, src: &[u8]) -> EvalResult<'tcx> {
// Empty accesses don't need to be valid pointers, but they should still be non-NULL
let align = Align::from_bytes(1, 1).unwrap();
self.check_align(ptr, align)?;
if src.is_empty() {
return Ok(());
}
let bytes = self.get_bytes_mut(ptr.to_ptr()?, Size::from_bytes(src.len() as u64), align)?;
bytes.clone_from_slice(src);
Ok(())
}
pub fn write_repeat(&mut self, ptr: Scalar, val: u8, count: Size) -> EvalResult<'tcx> {
// Empty accesses don't need to be valid pointers, but they should still be non-NULL
let align = Align::from_bytes(1, 1).unwrap();
self.check_align(ptr, align)?;
if count.bytes() == 0 {
return Ok(());
}
let bytes = self.get_bytes_mut(ptr.to_ptr()?, count, align)?;
for b in bytes {
*b = val;
}
Ok(())
}
pub fn read_scalar(&self, ptr: Pointer, ptr_align: Align, size: Size) -> EvalResult<'tcx, Scalar> {
self.check_relocation_edges(ptr, size)?; // Make sure we don't read part of a pointer as a pointer
let endianness = self.endianness();
let bytes = self.get_bytes_unchecked(ptr, size, ptr_align.min(self.int_align(size)))?;
// Undef check happens *after* we established that the alignment is correct.
// We must not return Ok() for unaligned pointers!
if self.check_defined(ptr, size).is_err() {
return Ok(Scalar::undef().into());
}
// Now we do the actual reading
let bits = read_target_uint(endianness, bytes).unwrap();
// See if we got a pointer
if size != self.pointer_size() {
if self.relocations(ptr, size)?.len() != 0 {
return err!(ReadPointerAsBytes);
}
} else {
let alloc = self.get(ptr.alloc_id)?;
match alloc.relocations.get(&ptr.offset) {
Some(&alloc_id) => return Ok(Pointer::new(alloc_id, Size::from_bytes(bits as u64)).into()),
None => {},
}
}
// We don't. Just return the bits.
Ok(Scalar::Bits {
bits,
defined: size.bits() as u8,
})
}
pub fn read_ptr_sized(&self, ptr: Pointer, ptr_align: Align) -> EvalResult<'tcx, Scalar> {
self.read_scalar(ptr, ptr_align, self.pointer_size())
}
pub fn write_scalar(&mut self, ptr: Scalar, ptr_align: Align, val: Scalar, size: Size, signed: bool) -> EvalResult<'tcx> {
let endianness = self.endianness();
let bytes = match val {
Scalar::Ptr(val) => {
assert_eq!(size, self.pointer_size());
val.offset.bytes() as u128
}
Scalar::Bits { bits, defined } if defined as u64 >= size.bits() && size.bits() != 0 => bits,
Scalar::Bits { .. } => {
self.check_align(ptr.into(), ptr_align)?;
self.mark_definedness(ptr, size, false)?;
return Ok(());
}
};
let ptr = ptr.to_ptr()?;
{
let align = self.int_align(size);
let dst = self.get_bytes_mut(ptr, size, ptr_align.min(align))?;
if signed {
write_target_int(endianness, dst, bytes as i128).unwrap();
} else {
write_target_uint(endianness, dst, bytes).unwrap();
}
}
// See if we have to also write a relocation
match val {
Scalar::Ptr(val) => {
self.get_mut(ptr.alloc_id)?.relocations.insert(
ptr.offset,
val.alloc_id,
);
}
_ => {}
}
Ok(())
}
pub fn write_ptr_sized_unsigned(&mut self, ptr: Pointer, ptr_align: Align, val: Scalar) -> EvalResult<'tcx> {
let ptr_size = self.pointer_size();
self.write_scalar(ptr.into(), ptr_align, val, ptr_size, false)
}
fn int_align(&self, size: Size) -> Align {
// We assume pointer-sized integers have the same alignment as pointers.
// We also assume signed and unsigned integers of the same size have the same alignment.
let ity = match size.bytes() {
1 => layout::I8,
2 => layout::I16,
4 => layout::I32,
8 => layout::I64,
16 => layout::I128,
_ => bug!("bad integer size: {}", size.bytes()),
};
ity.align(self)
}
}
/// Relocations
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
fn relocations(
&self,
ptr: Pointer,
size: Size,
) -> EvalResult<'tcx, &[(Size, AllocId)]> {
let start = ptr.offset.bytes().saturating_sub(self.pointer_size().bytes() - 1);
let end = ptr.offset + size;
Ok(self.get(ptr.alloc_id)?.relocations.range(Size::from_bytes(start)..end))
}
fn clear_relocations(&mut self, ptr: Pointer, size: Size) -> EvalResult<'tcx> {
// Find the start and end of the given range and its outermost relocations.
let (first, last) = {
// Find all relocations overlapping the given range.
let relocations = self.relocations(ptr, size)?;
if relocations.is_empty() {
return Ok(());
}
(relocations.first().unwrap().0,
relocations.last().unwrap().0 + self.pointer_size())
};
let start = ptr.offset;
let end = start + size;
let alloc = self.get_mut(ptr.alloc_id)?;
// Mark parts of the outermost relocations as undefined if they partially fall outside the
// given range.
if first < start {
alloc.undef_mask.set_range(first, start, false);
}
if last > end {
alloc.undef_mask.set_range(end, last, false);
}
// Forget all the relocations.
alloc.relocations.remove_range(first..last);
Ok(())
}
fn check_relocation_edges(&self, ptr: Pointer, size: Size) -> EvalResult<'tcx> {
let overlapping_start = self.relocations(ptr, Size::ZERO)?.len();
let overlapping_end = self.relocations(ptr.offset(size, self)?, Size::ZERO)?.len();
if overlapping_start + overlapping_end != 0 {
return err!(ReadPointerAsBytes);
}
Ok(())
}
}
/// Undefined bytes
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'a, 'mir, 'tcx, M> {
// FIXME(solson): This is a very naive, slow version.
fn copy_undef_mask(
&mut self,
src: Pointer,
dest: Pointer,
size: Size,
) -> EvalResult<'tcx> {
// The bits have to be saved locally before writing to dest in case src and dest overlap.
assert_eq!(size.bytes() as usize as u64, size.bytes());
let mut v = Vec::with_capacity(size.bytes() as usize);
for i in 0..size.bytes() {
let defined = self.get(src.alloc_id)?.undef_mask.get(src.offset + Size::from_bytes(i));
v.push(defined);
}
for (i, defined) in v.into_iter().enumerate() {
self.get_mut(dest.alloc_id)?.undef_mask.set(
dest.offset +
Size::from_bytes(i as u64),
defined,
);
}
Ok(())
}
fn check_defined(&self, ptr: Pointer, size: Size) -> EvalResult<'tcx> {
let alloc = self.get(ptr.alloc_id)?;
if !alloc.undef_mask.is_range_defined(
ptr.offset,
ptr.offset + size,
)
{
return err!(ReadUndefBytes);
}
Ok(())
}
pub fn mark_definedness(
&mut self,
ptr: Scalar,
size: Size,
new_state: bool,
) -> EvalResult<'tcx> {
if size.bytes() == 0 {
return Ok(());
}
let ptr = ptr.to_ptr()?;
let alloc = self.get_mut(ptr.alloc_id)?;
alloc.undef_mask.set_range(
ptr.offset,
ptr.offset + size,
new_state,
);
Ok(())
}
}
////////////////////////////////////////////////////////////////////////////////
// Unaligned accesses
////////////////////////////////////////////////////////////////////////////////
pub trait HasMemory<'a, 'mir, 'tcx: 'a + 'mir, M: Machine<'mir, 'tcx>> {
fn memory_mut(&mut self) -> &mut Memory<'a, 'mir, 'tcx, M>;
fn memory(&self) -> &Memory<'a, 'mir, 'tcx, M>;
/// Convert the value into a pointer (or a pointer-sized integer). If the value is a ByRef,
/// this may have to perform a load.
fn into_ptr(
&self,
value: Value,
) -> EvalResult<'tcx, Scalar> {
Ok(match value {
Value::ByRef(ptr, align) => {
self.memory().read_ptr_sized(ptr.to_ptr()?, align)?
}
Value::Scalar(ptr) |
Value::ScalarPair(ptr, _) => ptr,
}.into())
}
fn into_ptr_vtable_pair(
&self,
value: Value,
) -> EvalResult<'tcx, (Scalar, Pointer)> {
match value {
Value::ByRef(ref_ptr, align) => {
let mem = self.memory();
let ptr = mem.read_ptr_sized(ref_ptr.to_ptr()?, align)?.into();
let vtable = mem.read_ptr_sized(
ref_ptr.ptr_offset(mem.pointer_size(), &mem.tcx.data_layout)?.to_ptr()?,
align
)?.to_ptr()?;
Ok((ptr, vtable))
}
Value::ScalarPair(ptr, vtable) => Ok((ptr.into(), vtable.to_ptr()?)),
_ => bug!("expected ptr and vtable, got {:?}", value),
}
}
fn into_slice(
&self,
value: Value,
) -> EvalResult<'tcx, (Scalar, u64)> {
match value {
Value::ByRef(ref_ptr, align) => {
let mem = self.memory();
let ptr = mem.read_ptr_sized(ref_ptr.to_ptr()?, align)?.into();
let len = mem.read_ptr_sized(
ref_ptr.ptr_offset(mem.pointer_size(), &mem.tcx.data_layout)?.to_ptr()?,
align
)?.to_bits(mem.pointer_size())? as u64;
Ok((ptr, len))
}
Value::ScalarPair(ptr, val) => {
let len = val.to_bits(self.memory().pointer_size())?;
Ok((ptr.into(), len as u64))
}
Value::Scalar(_) => bug!("expected ptr and length, got {:?}", value),
}
}
}
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> HasMemory<'a, 'mir, 'tcx, M> for Memory<'a, 'mir, 'tcx, M> {
#[inline]
fn memory_mut(&mut self) -> &mut Memory<'a, 'mir, 'tcx, M> {
self
}
#[inline]
fn memory(&self) -> &Memory<'a, 'mir, 'tcx, M> {
self
}
}
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> HasMemory<'a, 'mir, 'tcx, M> for EvalContext<'a, 'mir, 'tcx, M> {
#[inline]
fn memory_mut(&mut self) -> &mut Memory<'a, 'mir, 'tcx, M> {
&mut self.memory
}
#[inline]
fn memory(&self) -> &Memory<'a, 'mir, 'tcx, M> {
&self.memory
}
}
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> layout::HasDataLayout for &'a Memory<'a, 'mir, 'tcx, M> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}